Parametrikus tervezés
|
|
- Domokos Lakatos
- 8 évvel ezelőtt
- Látták:
Átírás
1
2 Statikus modell Dinamikus modell Parametrikus tervezés Módosítások a tervezés folyamán Konstrukciós variánsok (termékcsaládok)
3 Parametrikus Modell Parametrikus tervezés Paraméterek (változók ) Kapcsolatok(összefüggések)(K) geometriai, algebrai ( =,, <, >) logikai Kötöttségek párhuzamos, merőleges, érintőleges, koncentrikus Lehetséges megoldások PM = {P, K, M, S} ha d > 40 akkor n = 2
4 Parametrikus tervezés
5 Parametrikus tervezés Parametrikus modell típusai Geometriai Strukturális (Topológiai)
6 Paraméter hálózat P, K, M, S struktúra határozott alulhatározott túlhatározott Parametrikus tervezés Paraméter hálózat értékelése feleslegesség kizárása ellentmondások kizárása
7 Parametrikus tervezés Parametrikus modell létrehozása és értékelése adat orientált statikus geometriai modell változó méretek meghatározása összefüggések, kötöttségek definiálása eljárás orientált paraméter hálózat felépítése modell létrehozása programmal Parametrikus modell értékelése új méretek meghatározása új geometriai modell létrehozása
8 Alaksajátosság alapú tervezés Klasszikus geometriai tervezés hiányosságai alacsony szintű modellezés hiányos leírás (mikrogeometria, fizikai jellegzetességek) nincs koncepcionális leírás és értelmezés integrált tervezés nem támogatott Sajátosság: geometriai elemek csoportja + szemantikai tartalom kötöttségek, összefüggések funkcionalitás gyártás
9 Alaksajátosságok értelmezése Geometria központú szemlélet Geometriai elemek szemantikai értelmezésű csoportja (tervezés, gyártás, szerelés, stb.) nem egyértelmű: borda- üreg üreg borda
10 Alaksajátosságok értelmezése Geometria i szemlélet (példák)
11 Alaksajátosságok értelmezése Alkalmazás központú szemlélet típusok (alkalmazás szerinti) koncepcionális geometriai absztrakció tervezés funkcionalitás gyártás szerelés analízis(optimálás) alkalmazás központú sajátosságok attribútumai alaklétrehozás (alap forma) alakmódosítás alakfüggetlenség (tűrés, felületkezelés) alaksemleges (anyagminőség, hőkezelés)
12 Alaksajátosságok értelmezése bemetszés menet furat reteszhorony lekerekítés központ furat beszúrás letörés
13 Alaksajátosságok értelmezése Sajátosságok a CAD rendszerekben sajátosságok definíciója és szerkesztése alaksajátosság adatbázis az aktuális méretekhez való igazítás geometriai modellbe való beépítés
14 Alaksajátosságok értelmezése Térfogat alapú értelmezés alap testelemek(csg) előnyök egyszerű méretmegadás, tűrésezés technológia orientált térfogatok anyag eltávolítás hierarchia megmunkálási műveletek módosítás(anyag eltávolítás) hátrányok integritás ellenőrzés félreérthetőség a létrehozásban nem áll rendelkezésre alacsony szintű geometria illetve topológia
15 Palást alapú értelmezés felületek, élek, csúcsok halmaza (geometria + topológia) zárt, nyitott Alaksajátosságok értelmezése előnyök explicit G és T információk közvetlen hozzáférés felületek > megmunkálási attribútumok helyi módosítás hátrányok nagy tárolási kapacitás igény geometriai korrektség ellenőrzési igény
16 Alaksajátosságok értelmezése Parametrikus geometriai paraméterezés funkcionális paraméterezés pl.: terhelés Gráf alapú Közbenső modell a GM és az AA modellek között alaksajátosság gráf: alapelemek szomszédsági gráf (lap, él) (attribútumok) konvex élsorozat : kihúzás konkáv élsorozat : benyomódás Alkalmazási Alaksajátosság
17 Alaksajátosságok értelmezése Gráf alapú példa-síklépcső konvex 5 4 konkáv
18 Alaksajátosságok kezelése Osztályozás komplexitás: egyszerű- összetett explicit - implicit tartalom Felismerés cél: alaksajátosság információk kinyerése a CAD modellből interaktív automatikus determinisztikus (algoritmus alapú) o minta definíció o kinyerés o értelmezés heurisztikus o szemantikus összefüggések, szabályok
19 Alaksajátosságok kezelése Felismerés példa (tárcsa)
20 Beépítés Alaksajátosságok kezelése alap geometria + alaksajátosságok -> kész modell alaksajátosságok beépítése a geometriai modellbe pozícionálás, méretezés alaksajátosságok egymás közti interakciója hierarchia integrált kezelés kombinált alaksajátosság kezelés (beépítés+ kinyerés) integrált termékmodell alaksajátosságokkal
CAD Rendszerek I. Sajátosság alapú tervezés - Szinkron modellezés
CAD Rendszerek I. Sajátosság alapú tervezés - Szinkron modellezés Farkas Zsolt Budapesti Műszaki és Gazdaságtudományi Egyetem, Gép- és Terméktervezés Tanszék 1/ 14 Tartalom -Sajátosság alapú tervezés:
Termék modell. Definíció:
Definíció: Termék modell Összetett, többfunkciós, integrált modell (számítógépes reprezentáció) amely leír egy műszaki objektumot annak különböző életfázis szakaszaiban: tervezés, gyártás, szerelés, szervízelés,
ELŐADÁSOK ANYAGA. 8. Alaksajátosságok transzformációja, kiosztások, tükrözések
FÉLÉVES TEMATIKA CAD RENDSZEREK GESGT110B c. tárgyból Oktatási hét 1. 2. ELŐADÁSOK ANYAGA Integrált tervezőrendszerek jelentősége, helye a géptervezésben, ilyen rendszerek jellemzői, felépítése. Vázlatkészítés
3D számítógépes geometria és alakzatrekonstrukció
3D számítógépes geometria és alakzatrekonstrukció 12. Tömör testek modellezése http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME,
Lemezalkatrész modellezés. SolidEdge. alkatrészen
A példa megnevezése: A példa száma: A példa szintje: Modellezõ rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: Lemezalkatrész modellezés SZIE-A2 alap közepes - haladó SolidEdge CAD 3D
Lemezalkatrész modellezés. SolidEdge. alkatrészen
A példa megnevezése: A példa száma: A példa szintje: Modellezõ rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: Lemezalkatrész modellezés SZIE-A5 alap közepes - haladó SolidEdge CAD 3D
Lemezalkatrész modellezés. SolidEdge. alkatrészen
A példa megnevezése: A példa száma: A példa szintje: Modellezõ rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: Lemezalkatrész modellezés SZIE-A4 alap közepes - haladó SolidEdge CAD 3D
Vállalati modellek. Előadásvázlat. dr. Kovács László
Vállalati modellek Előadásvázlat dr. Kovács László Vállalati modell fogalom értelmezés Strukturált szervezet gazdasági tevékenység elvégzésére, nyereség optimalizálási céllal Jellemzői: gazdasági egység
Tartalom C O N S T E E L 1 3 Ú J D O N S Á G O K
Tartalom 1. Lemez CAD funkciók fejlesztése... 2 2. cspi fejlesztések... 3 3. Hidegen alakított vékonyfalú makro szelvények... 4 4. Keresztmetszet rajzoló... 5 5. Hidegen alakított keresztmetszetek ellenőrzése...
3D számítógépes geometria és alakzatrekonstrukció
3D számítógépes geometria és alakzatrekonstrukció 14. Digitális Alakzatrekonstrukció - Bevezetés http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr.
Követelmény a 6. évfolyamon félévkor matematikából
Követelmény a 6. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Halmazba rendezés adott tulajdonság alapján, részhalmaz felírása, felismerése. Két véges halmaz közös részének,
3D-s számítógépes geometria és alakzatrekonstrukció
3D-s számítógépes geometria és alakzatrekonstrukció 14. Digitális Alakzatrekonstrukció - Bevezetés http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav08 Dr. Várady Tamás,
3D-S TERVEZÉS AZ ÓBUDAI EGYETEM REJTŐ SÁNDOR KARÁN
3D-S TERVEZÉS AZ ÓBUDAI EGYETEM REJTŐ SÁNDOR KARÁN AMBRUSNÉ SOMOGYI Kornélia, GYÖNGYNÉ MAROS Judit Óbudai Egyetem, Rejtő Sándor Könnyűipari és Környezetmérnöki Kar Az Óbudai Egyetem Rejtő Sándor Könnyűipari
A hálózattervezés alapvető ismeretei
A hálózattervezés alapvető ismeretei Infokommunikációs hálózatok tervezése és üzemeltetése 2011 2011 Sipos Attila ügyvivő szakértő BME Híradástechnikai Tanszék siposa@hit.bme.hu A terv általános meghatározásai
Összeállította Horváth László egyetemi tanár
Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Intelligens Mérnöki Rendszerek Szakirány a Mérnök informatikus alapszakon Összeállította Horváth László Budapest, 2011
nappali tagozat, tanítói szak TAN05MSZ Szigorlati követelmények és tételek Vizsgatematika A szigorlat követelményei:
Matematika Tanszék Matematika műveltségi terület, nappali tagozat, tanítói szak TAN05MSZ Szigorlati követelmények és tételek A szigorlat követelményei: Vizsgatematika A hallgató legyen képes 15-20 perces
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával
TERMÉKSZIMULÁCIÓ Modellek, szimuláció TERMÉKMODELL
TERMÉKSZIMULÁCIÓ Modellek, szimuláció TERMÉKMODELL 1-2. hét 2011. február 8. Összeállította: Dr. Kovács Zsolt egyetemi tanár Modell Az eredeti leképezése A szó eredete: latin modus, modulus (mérték, mód,
- Adat, információ, tudás definíciói, összefüggéseik reprezentációtípusok Részletesebben a téma az AI alapjai című tárgyban
I. Intelligens tervezőrendszerek - Adat, információ, tudás definíciói, összefüggéseik reprezentációtípusok Részletesebben a téma az AI alapjai című tárgyban Adat = struktúrálatlan tények, amelyek tárolhatók,
Mit jelent a CAD rendszerek integrációja? Ismertesse a kernel főbb funkcióit!
Mit jelent a CAD rendszerek integrációja? Ismertesse a kernel főbb funkcióit! A CAD rendszerek integrációjának kétféle iránya figyelhető meg. Egyrészt a CAD rendszerek bizonyos funkciói beépülnek más alkalmazásokba,
Modellek dokumentálása
előadás CAD Rendszerek II AGC2 Piros Attila Budapesti Műszaki és Gazdaságtudományi Egyetem, Gép- és Terméktervezés Tanszék 1 / 18 DOKUMENTÁCIÓK FELOSZTÁSA I. Felosztás felhasználás szerint: gyártási dokumentáció
Költségbecslési módszerek a szerszámgyártásban. Tartalom. CEE-Product Groups. Költségbecslés. A költségbecslés szerepe. Dr.
Gépgyártástechnológia Tsz Költségbecslési módszerek a szerszámgyártásban Szerszámgyártók Magyarországi Szövetsége 2003. december 11. 1 2 CEE-Product Groups Tartalom 1. Költségbecslési módszerek 2. MoldCoster
3D Számítógépes Geometria II.
3D Számítógépes Geometria II. 1. Bevezetés http://cg.iit.bme.hu/portal/3dgeo2 https://www.vik.bme.hu/kepzes/targyak/viiiav16 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki és Informatikai Kar Irányítástechnika
SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL
SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL MAGYAR TUDOMÁNY NAPJA KONFERENCIA 2010 GÁBOR DÉNES FŐISKOLA CSUKA ANTAL TARTALOM A KÍSÉRLET ÉS MÉRÉS JELENTŐSÉGE A MÉRNÖKI GYAKORLATBAN, MECHANIKAI FESZÜLTSÉG
1. Mit jelent a CAD rendszerek integrációja? Ismertesse a kernel főbb funkcióit! (E-book 29-34)
1. Mit jelent a CAD rendszerek integrációja? Ismertesse a kernel főbb funkcióit! (E-book 29-34) CAD rendszerek integrációjának kétféle iránya figyelhető meg. Egyrészt a CAD rendszerek bizonyos funkciói
A felkészülés ideje alatt segédeszköz nem használható!
A vizsgafeladat ismertetése: A szóbeli központilag összeállított vizsgakérdései (6 db) a 4. Szakmai követelmények fejezetben megadott témakörök mindegyikét tartalmazza A felkészülés ideje alatt segédeszköz
CAD technikák A számítógépes tervezési módszerek hatása a tervezési folyamatokra
A számítógépes tervezési módszerek hatása a tervezési folyamatokra VII. előadás 2008. március 31. A számítógéppel segített tervezés napjainkra már ipari technológiává vált. A mai integrált terméktervező
Az alkatrésztervezés folyamata 1. (meghatározó a biztonság szempontjából)
Az alkatrésztervezés folyamata 1. (meghatározó a biztonság szempontjából) 1 / 15 Az alkatrésztervezés folyamata 2. 2 / 15 A szilárdsági számítás végeredménye az adott feladattól függően a szükséges méret,
Vállalati információs rendszerek I, MIN5B6IN, 5 kredit, K. 4. A meghirdetés ideje (mintatanterv szerint vagy keresztfélében):
Követelményrendszer 1. Tantárgynév, kód, kredit, választhatóság: Vállalati információs rendszerek I, MIN5B6IN, 5 kredit, K 2. Felelős tanszék: Informatika Szakcsoport 3. Szak, szakirány, tagozat: Műszaki
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás ek - 2019. április 2. http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME,
SZENZOROKRA ÉPÜLŐ ADAPTÍV RENDSZERMODELL
infokommunikációs technológiák SZENZOROKRA ÉPÜLŐ ADAPTÍV RENDSZERMODELL Dr. Jaskó Szilárd Pannon Egyetem, MIK, Nagykanizsai kampusz Kanizsa Felsőoktatásáért Alapítvány 2015 VIRTUÁLIS STRUKTÚRA 2 VIRTUÁLIS
7. Koordináta méréstechnika
7. Koordináta méréstechnika Coordinate Measuring Machine: CMM, 3D-s mérőgép Egyiptomi piramis kövek mérése i.e. 1440 Egyiptomi mérővonalzó, Amenphotep fáraó (i.e. 1550) alkarjának hossza: 524mm A koordináta
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 7 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam
Helyi tanterv Német nyelvű matematika érettségi előkészítő 11. évfolyam Tematikai egység címe órakeret 1. Gondolkodási és megismerési módszerek 10 óra 2. Geometria 30 óra 3. Számtan, algebra 32 óra Az
Hálózati réteg. WSN topológia. Útvonalválasztás.
Hálózati réteg WSN topológia. Útvonalválasztás. Tartalom Hálózati réteg WSN topológia Útvonalválasztás 2015. tavasz Szenzorhálózatok és alkalmazásaik (VITMMA09) - Okos város villamosmérnöki MSc mellékspecializáció,
Fogalmi modellezés. Ontológiák Alkalmazott modellező módszertan (UML)
Fogalmi modellezés Ontológiák Alkalmazott modellező módszertan (UML) Fogalom képzés / kialakítás Cél: Példák: A fogalom képzés segít minket abban, hogy figyelmen kívül hagyjuk azt, ami lényegtelen idealizált
Dinamikus geometriai programok
2010. szeptember 18. Ebben a vázlatban arról írok, hogyan válhatnak a dinamikus geometriai programok a matematika tanítás hatékony segítőivé. Reform mozgalmak a formális matematika megalapozását az életkjori
I. feladatsor. (t) z 1 z 3
I. feladatsor () Töltse ki az alábbi táblázatot: Komple szám Valós rész Képzetes rész Konjugált Abszolútérték 4 + i 3 + 4i 5i 6i 3 5 3 i 7i () Adottak az alábbi komple számok: z = + 3i, z = i, z 3 = i.
Osztályozóvizsga-tematika 8. évfolyam Matematika
Osztályozóvizsga-tematika 8. évfolyam Matematika 1. félév 1. Gondolkozz és számolj! A természetes szám fogalma, műveleti tulajdonságok Helyiértékek rendszere a tízes számrendszerben: alakiérték, tényleges
Ember és robot együttműködése a gyártásban Ipar 4.0
Helyszín: MTA Székház, Felolvasóterem Időpont: 2017. November 7. Ember és robot együttműködése a gyártásban Ipar 4.0 Dr. Erdős Ferenc Gábor MTA SZTAKI Fejlett robotika ígérete A fejlett robotika és az
3D Számítógépes Geometria II.
3D Számítógépes Geometria II. Önálló hallgatói projektek, 2018. szept. 24. http://cg.iit.bme.hu/portal/3dgeo2 https://www.vik.bme.hu/kepzes/targyak/viiiav16 Dr. Várady Tamás, Dr. Salvi Péter, Vaitkus Márton
(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja.
Testmodellezés Testmodellezés (Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. A tervezés (modellezés) során megadjuk a objektum geometria
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás Önálló projektek - 2017. április 7. http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr.
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel
TÉRINFORMATIKAI ALGORITMUSOK
Topológiai algoritmusok és adatszerkezetek TÉRINFORMATIKAI ALGORITMUSOK Cserép Máté mcserep@caesar.elte.hu 2015. november 18. EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR BEVEZETŐ Topológia: olyan matematikai
Hely- és kontextusfüggő alkalmazások fejlesztését támogató keretrendszer mobil környezetben
Department of Distributed Systems Hely- és kontextusfüggő alkalmazások fejlesztését támogató keretrendszer mobil környezetben MTA SZTAKI Elosztott Rendszerek Osztály - Mátételki Péter matetelki@sztaki.hu
2014/2015. tavaszi félév
Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés
TSIMMIS egy lekérdezés centrikus megközelítés. TSIMMIS célok, technikák, megoldások TSIMMIS korlátai További lehetségek
TSIMMIS egy lekérdezés centrikus megközelítés TSIMMIS célok, technikák, megoldások TSIMMIS korlátai További lehetségek 1 Információk heterogén információs forrásokban érhetk el WWW Társalgás Jegyzet papírok
A gyártástervezés modelljei. Dr. Mikó Balázs
Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai Mérnöki Kar Anyagtudományi és Gyártástechnológiai Intézet ermelési folyamatok II. A gyártástervezés modelljei Dr. Mikó Balázs miko.balazs@bgk.uni-obuda.hu
Gyártástechnológia II.
Gyártástechnológia II. BAGGT23NNB Bevezetés, Alapfogalmak Dr. Mikó Balázs miko.balazs@bgk.bmf.hu Tartalom Alapfogalmak Technológiai dokumentumok Elıgyártmányok Gyártási hibák, ráhagyások Bázisok és készülékek
PTE PMMIK, SzKK Smart City Technologies, BimSolutions.hu 1
KÖLTSÉGVETÉS KÉSZÍTÉSE HAGYOMÁNYOS MÓDSZEREKKEL Épületelem és szerkezet azonosítása, anyagok meghatározása Rajzi dokumentációból Műszaki leírásból Normagyűjtemény vagy költségvetés készítő program felhasználásával
Követelmény a 7. évfolyamon félévkor matematikából
Követelmény a 7. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Elemek halmazba rendezése több szempont alapján. Halmazok ábrázolása. A nyelv logikai elemeinek helyes használata.
Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag!
Részletes követelmények Matematika házivizsga Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! A vizsga időpontja: 2015. április
A 3D ingatlan-nyilvántartás megvalósítása
A 3D ingatlan-nyilvántartás megvalósítása Iván Gyula műszaki főtanácsadó Magyar Földmérési, Térképészeti és Távérzékelési Társaság XXIX. Vándorgyűlése Sopron, 2013. július 11-13. FÖLD A Föld felszíne önmaga
GÉPÉSZETI ALAPISMERETEK
Gépészeti alapismeretek emelt szint 1411 ÉRETTSÉGI VIZSGA 2015. május 19. GÉPÉSZETI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos
Alkatrész modellezés SolidWorks-szel - ismétlés
Alkatrész modellezés SolidWorks-szel - ismétlés Feladat: Készítse el az ábrán látható szenzorház geometriai modelljét a megadott lépések segítségével! (1. ábra) 1. ábra 1. Feladat 1. Vázlat készítés Készítsen
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék 2012/13 2. félév 4. Előadás Dr. Kulcsár Gyula egyetemi docens Gyártórendszerek egyszerűsített irányítási modellje Zavaró
Adatszerkezetek 1. előadás
Adatszerkezetek 1. előadás Irodalom: Lipschutz: Adatszerkezetek Morvay, Sebők: Számítógépes adatkezelés Cormen, Leiserson, Rives, Stein: Új algoritmusok http://it.inf.unideb.hu/~halasz http://it.inf.unideb.hu/adatszerk
NEMZETI FEJLESZTÉSI MINISZTÉRIUM
NEMZETI FEJLESZTÉSI MINISZTÉRIUM OSZTV 2014/2015 DÖNTŐ Gyakorlati vizsgatevékenység Szakképesítés azonosító száma, megnevezése: 54 481 01 CAD-CAM informatikus Vizsgafeladat megnevezése: CNC gépkezelés
TANMENET. a matematika tantárgy tanításához a 12. E osztályok számára
Az iskola fejbélyegzője TANMENET a matematika tantárgy tanításához a 12. E osztályok számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján
Pneumatika az ipari alkalmazásokban
Pneumatika az ipari alkalmazásokban Manipulátorok Balanszer technika Pneumatikus pozícionálás Anyagmozgatási és Logisztikai Rendszerek Tanszék Manipulátorok - Mechanikai struktúra vagy manipulátor, amely
VIR alapfogalmai. Előadásvázlat. dr. Kovács László
VIR alapfogalmai Előadásvázlat dr. Kovács László Információ szerepe Információ-éhes világban élünk Mi is az információ? - újszerű ismeret - jelentés Hogyan mérhető az információ? - statisztikai - szintaktikai
NETinv. Új generációs informatikai és kommunikációs megoldások
Új generációs informatikai és kommunikációs megoldások NETinv távközlési hálózatok informatikai hálózatok kutatás és fejlesztés gazdaságos üzemeltetés NETinv 1.4.2 Távközlési szolgáltatók és nagyvállatok
Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t
Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,
TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS
TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS 1 ALAPADATOK 1.1 Tantárgy neve TÉRINFORMATIKAI ELEMZÉSEK 1.2 Azonosító (tantárgykód) BMEEOFTA-J1 1.3 A tantárgy jellege kontaktórás tanegység 1.4 Óraszámok típus előadás
Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra
Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra A Kiadó javaslata alapján összeállította: Látta:...... Harmath Lajos munkaközösség vezető tanár Jóváhagyta:... igazgató
Mőanyag fröccsöntı szerszámok tervezése és gyártása
Dr. Mikó Balázs miko.balazs@bgk.bmf.hu Mőanyag fröccsöntı szerszámok tervezése és gyártása Megvalósítási folyamat lépései Mőanyag termék elıállítása 1 Fröccsöntı szerszám Megrendelı Termék dokumentáció
Matematika emelt szint a 11-12.évfolyam számára
Német Nemzetiségi Gimnázium és Kollégium Budapest Helyi tanterv Matematika emelt szint a 11-12.évfolyam számára 1 Emelt szintű matematika 11 12. évfolyam Ez a szakasz az érettségire felkészítés időszaka
Elektronikai tervezés Dr. Burány, Nándor Dr. Zachár, András
Elektronikai tervezés Dr. Burány, Nándor Dr. Zachár, András Elektronikai tervezés írta Dr. Burány, Nándor és Dr. Zachár, András Publication date 2013 Szerzői
Követelmény az 5. évfolyamon félévkor matematikából
Követelmény az 5. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Néhány elem kiválasztása adott szempont szerint. Néhány elem sorba rendezése, az összes lehetséges sorrend felsorolása.
Mágnesszelep analízise. IX. ANSYS felhasználói konferencia 2010 Előadja: Gráf Márton
Mágnesszelep analízise MaxwellbenésSimplorerben IX. ANSYS felhasználói konferencia 2010 Előadja: Gráf Márton Diesel hidegindítás A hidegindítási rendszerek szerepe A dízelmotorokban az égés öngyulladás
Az irányítástechnika alapfogalmai. 2008.02.15. Irányítástechnika MI BSc 1
Az irányítástechnika alapfogalmai 2008.02.15. 1 Irányítás fogalma irányítástechnika: önműködő irányítás törvényeivel és gyakorlati megvalósításával foglakozó műszaki tudomány irányítás: olyan művelet,
Modellkiválasztás és struktúrák tanulása
Modellkiválasztás és struktúrák tanulása Szervezőelvek keresése Az unsupervised learning egyik fő célja Optimális reprezentációk Magyarázatok Predikciók Az emberi tanulás alapja Általános strukturális
Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai Mérnöki Kar Anyagtudományi és Gyártástechnológiai Intézet, Gépgyártástechnológia Szakcsoport
Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai Mérnöki Kar Anyagtudományi és Gyártástechnológiai Intézet, Gépgyártástechnológia Szakcsoport Dr. Mikó Balázs miko.balazs@bgk.uni-obuda.hu MŰANYAG
Az igény szerinti betöltés mindig aktív az egyszerűsített megjelenítéseknél. Memória megtakarítás 40%.
Négy új diagnosztikai eszköz. Továbbfejlesztett hibajavítás a gyakori vázlat problémákhoz. Helyi szerelési gyorsmenü. A szerelési referencia kezelő megmutatja a kapcsolódó referenciát. Továbbfejlesztett
Dinamikus geometriai programok
2011. február 19. Eszköz és médium (fotó: http://sliderulemuseum.com) ugyanez egyben: Enter Reform mozgalmak a formális matematika megalapozását az életkjori sajátosságoknak megfelelő tárgyi tevékenységnek
Egy Erlang refaktor lépés: Függvényparaméterek összevonása tuple-ba
Egy Erlang refaktor lépés: Függvényparaméterek összevonása tuple-ba Témavezető: Horváth Zoltán és Simon Thompson OTDK 2007, Miskolc Egy Erlang refaktor lépés: Függvényparaméterek összevonása tuple-ba OTDK
Sztöchiometriai egyenletrendszerek minimális számú aktív változót tartalmazó megoldásainak meghatározása a P-gráf módszertan alkalmazásával
Sztöchiometriai egyenletrendszerek minimális számú aktív változót tartalmazó megoldásainak meghatározása a P-gráf módszertan alkalmazásával * Pannon Egyetem, M szaki Informatikai Kar, Számítástudomány
TERMÉKFEJLESZTÉS (BMEGEGE MNTF)
TERVEZÉS ELMÉLET ÉS MÓDSZERTAN (BMEGEGE MGTM) TERMÉKFEJLESZTÉS (BMEGEGE MNTF) 1. Előadás Tervezési iskolák, elméletek, módszerek. A tervezési folyamat és modellezése 2010/2011 II. félév 1 / 24 Ütemterv
CAD-ART Kft Budapest, Fehérvári út 35.
CAD-ART Kft. 1117 Budapest, Fehérvári út 35. Tel./fax: (36 1) 361-3540 email : cad-art@cad-art.hu http://www.cad-art.hu PEPS CNC Programozó Rendszer Oktatási Segédlet Marás PEPS 5 marási példa A feladatban
Ö Á Í Í ű ű ú ű ű ű ű ú ú ú ú ű ű ű ű ű ű ű ű ű ú ű ú ú ú ű ú Á ú ű ű Ó ú ű ű ű ú Ó ú ű ú É ú ú ú ű ű ú ű ú Ú Á ú É ú Ó ú ú ú ú ű ű ű ú É Á É É ű ű Í ú ú Ó Í ű Í ű ű ú ű ű ű É ű ú Á ű ű ú Í ű Á ű ú ú É
ö ö ö ö ö ö ö ű ű ö ö ö ö ö Ő ö Ó Ú ö Ö ö ö ö ö Ö Ő ö ö Í Ó Ó Ő ö ö ö ö ö Ő Ő Ó Ő É ö Ú ö ö Ő ö ö ö ö ö ö ö Ő ö Ő É ö Ő ö ö Ő ö ö ö Ó ű ö ö ö Ő ö ö ö Í Ő Ó Í ö ö ö ö Ő Ő Ő Ő Í Ó Ő Ő Í Ő ö ö ö ö ö Ő Ő ö
Ú ű ü ü Ü ű É É Ö Ö Á ü ü ü ű É ú Á Ö Ü ü ü ű É Á É Ű ű Ü Ü ű ü ű ü ű ü Ü ü ü Ű Á Á Á ű ú ű Á Ó Ó É Á Ó Á Ó ű ü ü ű ű ü ú ú ü ü ü ű ü ű Ü ű ü ü ú ü Ö ü ú ú ü ü ü ü ű ú ü Ó ü Ó Ó ü ü Ó ü ü Ó ű ű ú ű ű ü
Neurális hálózatok bemutató
Neurális hálózatok bemutató Füvesi Viktor Miskolci Egyetem Alkalmazott Földtudományi Kutatóintézet Miért? Vannak feladatok amelyeket az agy gyorsabban hajt végre mint a konvencionális számítógépek. Pl.:
A cloud szolgáltatási modell a közigazgatásban
A cloud szolgáltatási modell a közigazgatásban Gombás László Krasznay Csaba Copyright 2011 Hewlett-Packard Development Company HP Informatikai Kft. 2011. november 23. Témafelvetés 2 HP Confidential Cloud
Hálózatok állapotfelmérése - Integrált informatikai rendszer bevezetése az ELMŰ ÉMÁSZ társaságcsoportnál
Hálózatok állapotfelmérése - Integrált informatikai rendszer bevezetése az ELMŰ ÉMÁSZ társaságcsoportnál Orlay Imre, műszaki szakértő, ÉMÁSZ Hálózati Kft. Szécsy Tamás, vezető rendszertervező, GEOMETRIA
SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA
1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal
ADATBÁZIS-KEZELÉS. Relációs modell
ADATBÁZIS-KEZELÉS Relációs modell Relációséma neve attribútumok ORSZÁGOK Azon Ország Terület Lakosság Főváros Földrész 131 Magyarország 93036 10041000 Budapest Európa 3 Algéria 2381740 33769669 Algír Afrika
Nemzeti alaptanterv 2012 MATEMATIKA
ALAPELVEK, CÉLOK Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
ACÉLSZERKEZETEK ÉPÍTÉSTECHNOLÓGIÁJA BME ÉPÍTÉSKIVITELEZÉS 2009. ELŐADÓ: KLUJBER RÓBERT
ACÉLSZERKEZETEK ÉPÍTÉSTECHNOLÓGIÁJA BME ÉPÍTÉSKIVITELEZÉS 2009. ELŐADÓ: KLUJBER RÓBERT PÉLDÁK PÉLDÁK PÉLDÁK PÉLDÁK FOGALOMTÁR ELŐREGYÁRTÁS üzemi jellegű körülmények között acélszerkezetek előállítása,
Szoftverminőségbiztosítás
NGB_IN003_1 SZE 2014-15/2 (13) Szoftverminőségbiztosítás Szoftverminőség és formális módszerek Formális módszerek Formális módszer formalizált módszer(tan) Formális eljárások alkalmazása a fejlesztésben
A szoftverfejlesztés eszközei
A szoftverfejlesztés eszközei Fejleszt! eszközök Segédeszközök (szoftverek) programok és fejlesztési dokumentáció írásához elemzéséhez teszteléséhez karbantartásához 2 Történet (hw) Lyukkártya válogató
EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY
EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY SÍKIDOMOK Síkidom 1 síkidom az a térelem, amelynek valamennyi pontja ugyan abban a síkban helyezkedik el. A síkidomokat
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék. Dr. Kulcsár Gyula egyetemi docens
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék Dr. Kulcsár Gyula egyetemi docens Tartalomjegyzék Bevezetés Termelési paradigma fogalma Paradigma váltások A CIM fogalmának
IV/1. sz. melléklet: Vállalati CRM, értékesítési terület funkcionális specifikáció
IV/1. sz. melléklet: Vállalati CRM, értékesítési terület funkcionális specifikáció 1. A követelménylista céljáról Jelen követelménylista (mint a GOP 2.2.1 / KMOP 1.2.5 pályázati útmutató melléklete) meghatározza
Házi feladat Dr Mikó Balázs - Gyártástechnológia II. 5
Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai Mérnöki Kar Anyagtudományi és Gyártástechnológiai Intézet Gyártástechnológia II. BAGGT23NND/NLD 01A - Bevezetés, Alapfogalmak Dr. Mikó Balázs miko.balazs@bgk.uni-obuda.hu
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 12 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Emelt
Foglalkozási napló a 20 /20. tanévre
i napló a 20 /20. tanévre Gépi forgácsoló szakma gyakorlati oktatásához OKJ száma: 4 521 0 A napló vezetéséért felelős: A napló megnyitásának dátuma: A napló lezárásának dátuma: Tanulók adatai és értékelése
Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás
12. évfolyam Osztályozó vizsga 2013. augusztus Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás Ismerje a számsorozat