3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
|
|
- Mátyás Tamás
- 6 évvel ezelőtt
- Látták:
Átírás
1 3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás Önálló projektek április Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki és Informatikai Kar Irányítástechnika és Informatika Tanszék 1
2 Követelmények 2 kis házi feladat (kötelező) vizsga önálló projektek megajánlott jegy: szakirodalom feldolgozása programfejlesztés rövid szeminárium (10-15 perc) 2
3 Input: egy ponthalmaz és ennek Delaunay háromszögelése Feladat: a háromszögelés finomítása különböző kényszerek figyelembevételével - lerögzített élek, legkisebb szög, leghosszabb él-hossz előírása - alapján Szemináriumi előadás és prototípus implementáció Világos Nándor 3
4 Voronoi diagramok, közép tengely diagramok, (MAT - medial-axis-transform) Input: konvex vagy konkáv poligon Output: MAT diagram Interaktív tesztprogram létrehozása Szeminárium és demó Bácsi Gábor 4
5 Önálló projekt 3D-s modellek közelítése gömbökkel Input: háromszögháló Output: gömbök középpontjai és sugarai Interaktív tesztprogram létrehozása Szeminárium és demó (Bischoff-Kobbelt 02 cikk alapján) Terjék Dávid 5
6 Progresszív hálók rövid szeminárium és prototípus implementáció Input: mesh Output: animált progresszív háromszögháló Az animáció megállítható, valamint tovább- és visszaléptethető az egyszerűsítés módszerei: (i) nézőpont szerint (ii) síklapúság szerint (iii) háromszögméret szerint Kormány Zsolt 6
7 Input: egy tetszőleges háromszögháló Output: egy izotropikus háromszögháló, amely az inputot közelíti Opcionálisan: változó élhosszak görbület alapján Szemináriumi előadás és prototípus implementáció Rabatin Gábor 7
8 Subdivision surfaces - 3D-s interaktív grafikus tesztprogram Input adatok: általános topológiájú poliéder módszer: a) Doo-Sabin, b) Catmull-Clark, c) Középosztásos kontroll poliéder - osztási mélység (m1) felület megjelenítés - osztási mélység (m2 >> m1) az aktuális kontroll poliéder csúcsait interaktívan módosítani lehet megjelenítés: kontroll poliéder, felület (shading, + opcionálisan görbületi térképek) Szemináriumi előadás és prototípus implementáció Gurzó Lajos 8
9 N-oldalú felület generálás (n=5,6) szemináriumi előadás és prototípus implementáció határgörbék - Bézier görbék keresztderiváltak - Bézier-szerű kontrollpontok 3D-s háromszögháló előállítása kontrollpontok módosítása 9
10 Felületinterpoláció megbeszélés alatt (scattered data interpolation) színtér generálás adott adatpontok alapján szemináriumi előadás és prototípus implementáció Ijgyártó János 10
11 Két Bézier felület G1 (érintősík alapú) összekapcsolása a) azonos fokszámú négyoldalú felületek b) azonos fokszámú háromoldalú felületek szemináriumi előadás és prototípus implementáció Két Bézier felület folytonos összekapcsolása Kontrollpontok mozgatása, 3D-s háromszögháló előállítása Kontrollpontok módosítása az egyik oldalon változtatja a kontrollpontokat a másik oldalon a G1 megkötés miatt!! 11
12 Felület-felület metszés Input: 1. két Bézier felület (két kontrollpont rács - file-ban) 2. görbekövetési paraméterek (pl. lépéshossz, tolerancia) Output: a két felület metszésgörbéje (csak nyitott görbék, széltől-szélig) Szeminárium és demó 12
13 Lekerekítő felületek generálása Input: 1. két Bézier felület (két kontrollpont rács - file-ban), és egy poligon, amely a metszésgörbét közelíti, valamint egy lekerekítési sugár érték Output: egy közelítő lekerekítő felület létrehozása az adott sugárral, Bézier formában Szeminárium és demó 13
14 N-oldalú felület generálás szemináriumi előadás és prototípus implementáció határgörbék - Bézier görbék keresztderiváltak - Bézier-szerű kontrollpontok 3D-s háromszögháló előállítása kontrollpontok módosítása 14
15 * Háromoldalú Bézier felületek - interaktív keretrendszer felületek 3D-s megjelenítése kontroll pontok interaktív módosítása görbület térkép mozgó domén pont ---- mozgó felület pont Szeminárium a háromoldalú Bézier felületekről Lipták Nándor Háromoldalú Bézier felületek 15
16 Dupin általános tórusz felületek (cyclides) Implicit reprezentáció Parametrikus reprezentáció Alkalmazás változó sugarú lekerekítésekhez Szeminárium Demeter Deli Kristóf Implicit és parametrikus 16
17 Görbék ívhosszának számítása: s b r ( t) r ( t) r ( t) dt r ( t) a x y z b a dt Szeminárium: mikor polinomiális az ívhossz pitagoraszi hodográf görbék Implementáció: pitagoraszi hodográf görbék létrehozása, görbe interpoláció ötödfokú PH görbékkel Parametrikus görbék 17
18 Beosztás 1. szeminárium 2. szeminárium Ápr.... csütörtök Ápr.... péntek Máj.... csütörtök Máj.... péntek 18
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás ek - 2019. április 2. http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME,
Részletesebben3D Számítógépes Geometria II.
3D Számítógépes Geometria II. Önálló hallgatói projektek, 2018. szept. 24. http://cg.iit.bme.hu/portal/3dgeo2 https://www.vik.bme.hu/kepzes/targyak/viiiav16 Dr. Várady Tamás, Dr. Salvi Péter, Vaitkus Márton
Részletesebben3D számítógépes geometria és alakzatrekonstrukció
3D számítógépes geometria és alakzatrekonstrukció 2a. Háromszöghálók http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki
Részletesebben3D Számítógépes Geometria II.
3D Számítógépes Geometria II. 1. Bevezetés http://cg.iit.bme.hu/portal/3dgeo2 https://www.vik.bme.hu/kepzes/targyak/viiiav16 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki és Informatikai Kar Irányítástechnika
Részletesebben3D Számítógépes Geometria II.
3D Számítógépes Geometria II. 1. Bevezetés http://cg.iit.bme.hu/portal/3dgeo2 https://www.vik.bme.hu/kepzes/targyak/viiiav16 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki és Informatikai Kar Irányítástechnika
Részletesebben3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás Önálló projektek - 2015. február 6. http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr.
Részletesebben3D-s számítógépes geometria és alakzatrekonstrukció
3D-s számítógépes geometria és alakzatrekonstrukció 2a. Háromszöghálók http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav08 Dr. Várady Tamás, Salvi Péter BME, Villamosmérnöki
Részletesebben3D számítógépes geometria és alakzatrekonstrukció
3D számítógépes geometria és alakzatrekonstrukció 1a. Bevezetés http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki
Részletesebben3D-s számítógépes geometria
3D-s számítógépes geometria 2. Háromszöghálók I. http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav01 Dr. Várady Tamás BME, Villamosmérnöki és Informatikai Kar Irányítástechnika
Részletesebben3D számítógépes geometria és alakzatrekonstrukció
3D számítógépes geometria és alakzatrekonstrukció 12. Tömör testek modellezése http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME,
Részletesebben3D számítógépes geometria és alakzatrekonstrukció
3D számítógépes geometria és alakzatrekonstrukció 14. Digitális Alakzatrekonstrukció - Bevezetés http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr.
RészletesebbenHajder Levente 2018/2019. II. félév
Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2018/2019. II. félév Tartalom 1 2 Törtvonal Felületi folytonosságok B-spline Spline variánsok Felosztott (subdivision) görbék
Részletesebben3D-s számítógépes geometria és alakzatrekonstrukció
3D-s számítógépes geometria és alakzatrekonstrukció 14. Digitális Alakzatrekonstrukció - Bevezetés http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav08 Dr. Várady Tamás,
Részletesebben3D-s számítógépes geometria
3D-s számítógépes geometria 2. Háromszöghálók http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav01 Dr. Várady Tamás BME, Villamosmérnöki és Informatikai Kar Irányítástechnika
Részletesebben3D-s számítógépes geometria és alakzatrekonstrukció
3D-s számítógépes geometria és alakzatrekonstrukció Tesztkörnyezet II http://cg.iit.bme.hu/portal/node/312 https://portal.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki
Részletesebbenx = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?
. Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs
RészletesebbenValasek Gábor tavaszi félév
Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2016-2017 tavaszi félév Tartalom Görbék és felületek vizuális anaĺızise Szórt adat interpoláció Műveletek görbékkel és felületekkel
Részletesebben3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 15. Digitális Alakzatrekonstrukció Méréstechnológia, Ponthalmazok regisztrációja http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav54
RészletesebbenGeometriai modellezés. Szécsi László
Geometriai modellezés Szécsi László Adatáramlás vezérlés Animáció világleírás Modellezés kamera Virtuális világ kép Képszintézis A modellezés részfeladatai Geometria megadása [1. előadás] pont, görbe,
RészletesebbenValasek Gábor
Geometria és topológia tárolása Görbék reprezentációja Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2015/2016. őszi félév Geometria és topológia tárolása Görbék reprezentációja
RészletesebbenTartalom. Geometria közvetlen tárolása. Geometria tárolása - brute force. Valasek Gábor valasek@inf.elte.hu. Hermite interpoláció. Subdivision görbék
Tartalom Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2015/2016. őszi félév Geometria és topológia tárolása Geometria tárolása Topológia tárolása
Részletesebben3D Számítógépes Geometria II.
3D Számítógépes Geometra II. 3. Szabadformáú felületek llesztése és smítása http://cg.t.bme.h/portal/3dgeo https://www.k.bme.h/kepzes/targyak/viiiav16 Dr. Várady Tamás Dr. Sal Péter BME Vllamosmérnök és
RészletesebbenGörbe- és felületmodellezés. Szplájnok Felületmodellezés
Görbe- és felületmodellezés Szplájnok Felületmodellezés Spline (szplájn) Spline: Szakaszosan, parametrikus polinomokkal leírt görbe A spline nevét arról a rugalmasan hajlítható vonalzóról kapta, melyet
Részletesebben3D számítógépes geometria és alakzatrekonstrukció
3D számítógépes geometria és alakzatrekonstrukció 15. Digitális Alakzatrekonstrukció Méréstechnológia, Ponthalmazok regisztrációja http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01
Részletesebben3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometra modellezés, alakzatrekonstrukcó, nyomtatás 17. 3D Szegmentálás http://cg.t.bme.hu/portal/node/312 https://www.vk.bme.hu/kepzes/targyak/viiiav54 Dr. Várady Tamás, Dr. Salv Péter BME, Vllamosmérnök
Részletesebben3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 1a. Bevezetés http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav54 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki
RészletesebbenValasek Gábor
Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. őszi félév Tartalom 1 Motiváció Görbék Hermite interpoláció Catmull-Rom spline Kochanek-Bartels spline Műveletek
RészletesebbenTermék modell. Definíció:
Definíció: Termék modell Összetett, többfunkciós, integrált modell (számítógépes reprezentáció) amely leír egy műszaki objektumot annak különböző életfázis szakaszaiban: tervezés, gyártás, szerelés, szervízelés,
Részletesebben3D számítógépes geometria és alakzatrekonstrukció
3D számítógépes geometria és alakzatrekonstrukció 3D nyomtatás http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki
Részletesebben2014/2015. tavaszi félév
Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés
RészletesebbenEredmények, objektumok grafikus megjelenítése 3D felületek rajzoló függvényei.. Beépített 3D felületek rajzoló függvényei
Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. MATLAB alapismeretek VIII. Eredmények, objektumok grafikus megjelenítése 3D felületek rajzoló függvényei.. Beépített 3D
Részletesebben3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometra modellezés, alakzatrekostrukcó, yomtatás 8 Rekurzív felosztáso alauló felületek htt://cgtbmehu/ortal/ode/3 htts://wwwvkbmehu/kezes/targyak/viiiav54 Dr Várady Tamás, Dr Salv Péter BME, Vllamosmérök
RészletesebbenCAD Rendszerek I. Sajátosság alapú tervezés - Szinkron modellezés
CAD Rendszerek I. Sajátosság alapú tervezés - Szinkron modellezés Farkas Zsolt Budapesti Műszaki és Gazdaságtudományi Egyetem, Gép- és Terméktervezés Tanszék 1/ 14 Tartalom -Sajátosság alapú tervezés:
Részletesebben3D számítógépes geometria és alakzatrekonstrukció
D számítógées geometra és alakzatrekostrukcó 8 Rekurzív felosztáso alauló felületek htt://cgtbmehu/ortal/ode/ htts://wwwvkbmehu/kezes/targyak/viiima0 Dr Várady Tamás Dr Salv Péter BME Vllamosmérök és Iformatka
RészletesebbenA térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje?
Előzetes megjegyzés: 1. Az időt nyugodtan mérhetjük méterben. ct [s ] = t [m ] A film kétórás volt. = A film 2.16 milliárd kilométernyi ideig tartott. 2. A tömeget is nyugodtan mérhetjük méterben! GM [kg]
RészletesebbenA térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje?
Előzetes megjegyzés: 1. Az időt nyugodtan mérhetjük méterben. ct [s ] = t [m ] A film kétórás volt. = A film 2.16 milliárd kilométernyi ideig tartott. 2. A tömeget is nyugodtan mérhetjük méterben! GM [kg]
RészletesebbenA dinamikus geometriai rendszerek használatának egy lehetséges területe
Fejezetek a matematika tanításából A dinamikus geometriai rendszerek használatának egy lehetséges területe Készítette: Harsányi Sándor V. matematika-informatika szakos hallgató Porcsalma, 2004. december
RészletesebbenLáthatósági kérdések
Láthatósági kérdések Láthatósági algoritmusok Adott térbeli objektum és adott nézőpont esetén el kell döntenünk, hogy mi látható az adott alakzatból a nézőpontból, vagy irányából nézve. Az algoritmusok
RészletesebbenParametrikus tervezés
2012.03.31. Statikus modell Dinamikus modell Parametrikus tervezés Módosítások a tervezés folyamán Konstrukciós variánsok (termékcsaládok) Parametrikus Modell Parametrikus tervezés Paraméterek (változók
RészletesebbenGörbemodellezés. Interpoláció Approximáció
Görbemodellezés Interpoláció Approximáció Motiváció Mi okozhat problémát egy görbe megjelenítésekor? 1. A paraméteres alak segítségével történő megjelenítése nagyon bonyolult számításokat vehet igénybe.
Részletesebben3D-s számítógépes geometria
3D-s számítógépes geometri. Bevezetés, lpfoglmk https://www.vik.me.hu/kepzes/trgyk/viiiav0 Dr. Várdy Tmás BME, Villmosmérnöki és Informtiki Kr Irányítástechnik és Informtik Tnszék 3D-s számítógépes geometri
RészletesebbenA Vonallánc készlet parancsai lehetővé teszik vonalláncok és sokszögek rajzolását.
11. Geometriai elemek 883 11.3. Vonallánc A Vonallánc készlet parancsai lehetővé teszik vonalláncok és sokszögek rajzolását. A vonallánc egy olyan alapelem, amely szakaszok láncolatából áll. A sokszög
RészletesebbenGeometriai alapok Felületek
Geometriai alapok Felületek Geometriai alapok Felületek matematikai definíciója A háromdimenziós tér egy altere Függvénnyel rögzítjük a pontok helyét Parabolavezérgörbéjű donga 4 f z x + a C Elliptikus
RészletesebbenFeladatsor A differenciálgeometria alapja c. kurzus gyakorlatához
Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához Dr. Nagy Gábor, Geometria Tanszék 2010. szeptember 16. Görbék paraméterezése 1. feladat. (A) Bizonyítsuk be a vektoriális szorzatra vonatkozó
Részletesebben3D-s számítógépes geometria és alakzatrekonstrukció
3D-s számítógépes geometria és alakzatrekonstrukció Tesztkörnyezet III http://cg.iit.bme.hu/portal/node/312 https://portal.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki
Részletesebben(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja.
Testmodellezés Testmodellezés (Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. A tervezés (modellezés) során megadjuk a objektum geometria
RészletesebbenValasek Gábor tavaszi félév
Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2016-2017 tavaszi félév Tartalom Áttekintés Pont/* metszés Görbe/* metszés Felület/felület metszés Áttekintés Tartalom Áttekintés
RészletesebbenDigitális Domborzat Modellek (DTM)
Digitális Domborzat Modellek (DTM) Digitális Domborzat Modellek (DTM) Digitális Domborzat Modellek (DTM) DTM fogalma A földfelszín számítógéppel kezelhető topográfiai modellje Cél: tetszőleges pontban
RészletesebbenSzámítógépes Grafika mintafeladatok
Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk
RészletesebbenAdatszerkezetek 2. Dr. Iványi Péter
Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat
RészletesebbenPONTFELHŐ REGISZTRÁCIÓ
PONTFELHŐ REGISZTRÁCIÓ ITERATIVE CLOSEST POINT Cserteg Tamás, URLGNI, 2018.11.22. TARTALOM Röviden Alakzatrekonstrukció áttekintés ICP algoritmusok Projektfeladat Demó FORRÁSOK Cikkek Efficient Variants
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 16 XVI A DIFFERENCIÁLSZÁmÍTÁS ALkALmAZÁSAI 1 Érintő ÉS NORmÁLIS EGYENES, L HOSPITAL-SZAbÁLY Az görbe abszcisszájú pontjához tartozó érintőjének egyenlete (1), normálisának egyenlete
RészletesebbenSzámítógépes geometria (mester kurzus) III
2010 sz, Debreceni Egyetem Felületek A felület megadása implicit: F : R 3 R, F (x, y, z) = 0 Euler-Monge: f : [a, b] [c, d] R, z = f (x, y) paraméteres: r : [a, b] [c, d] R 3 trianguláris háló direkt megadása
RészletesebbenTANMENET. Matematika
Bethlen Gábor Református Gimnázium és Szathmáry Kollégium 6800 Hódmezővásárhely, Szőnyi utca 2. Telefon: +36-62-241-703 www.bgrg.hu OM: 029736 TANMENET Matematika 2016/2017 5.A természettudományos képzés
RészletesebbenSíkgörbék. 1. Készítsünk elfogadható ábrát a G: t frac(1/t) leképezés gráfjáról. (frac a törtrész függvény, ez a Maple függvénynév is.
Síkgörbék 1. Készítsünk elfogadható ábrát a G: t frac(1/t) leképezés gráfjáról. (frac a törtrész függvény, ez a Maple függvénynév is.) 2. (n szirmú virág.) Legyen r(t) = sin(nt), (0 t 2π). Ábrázoljuk polár
RészletesebbenMesh generálás. IványiPéter
Mesh generálás IványiPéter drview Grafikus program MDF file-ok szerkesztéséhez. A mesh generáló program bemenetét itt szerkesztjük meg. http://www.hexahedron.hu/personal/peteri/sx/index.html Pont létrehozásához
RészletesebbenÜtközések. Szécsi László
Ütközések Szécsi László Merev testek egymásra hatása két probléma hatnak-e egymásra? összeérnek, ütköznek ütközés-vizsgálat mi a hatás eredménye? erőhatás vagy direkt állapotváltozás ütközés-válasz először
RészletesebbenACM Snake. Orvosi képdiagnosztika 11. előadás első fele
ACM Snake Orvosi képdiagnosztika 11. előadás első fele ACM Snake (ismétlés) A szegmentáló kontúr egy paraméteres görbe: x Zs s X s, Y s,, s A szegmentáció energia funkcionál minimalizálása: E x Eint x
RészletesebbenRÉSZ IPARI TERMELÕ-SZOLGÁLTATÓ TEVÉKENYSÉG ELLENÕRZÉSE...11 1. A
TARTALOM Elõszó..................................................................9 A. RÉSZ IPARI TERMELÕ-SZOLGÁLTATÓ TEVÉKENYSÉG ELLENÕRZÉSE............11 1. A piaci tevékenység ellenõrzése...........................................11
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Részletesebben3D-s számítógépes geometria
3D-s számítógépes geometra 11. 3D szegmentálás http://cg.t.bme.hu/portal/node/31 https://www.vk.bme.hu/kepzes/targyak/viiiav01 Dr. Várady Tamás BME, Vllamosmérnök és Informatka Kar Irányítástechnka és
RészletesebbenHajder Levente 2018/2019. II. félév
Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2018/2019. II. félév Tartalom 1 2 3 4 5 Albrecht Dürer, 1525 Motiváció Tekintsünk minden pixelre úgy, mint egy kis ablakra
RészletesebbenAlap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
RészletesebbenHajder Levente 2014/2015. tavaszi félév
Hajder Levente hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom 1 2 3 4 5 Albrecht Dürer, 1525 Motiváció Tekintsünk minden pixelre úgy, mint
RészletesebbenOptika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen. Fermat-elv
Optika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen Kivonat Geometriai optika: közelítés, amely a fényterjedést, közeghatáron való áthaladást geometriai alakzatok görbék segítségével
RészletesebbenHálózat hidraulikai modell integrálása a Soproni Vízmű Zrt. térinformatikai rendszerébe
Hálózat hidraulikai modell integrálása a térinformatikai rendszerébe Hálózathidraulikai modellezés - Szakmai nap MHT Vízellátási Szakosztály 2015. április 9. Térinformatikai rendszer bemutatása Működési
Részletesebben7. Koordináta méréstechnika
7. Koordináta méréstechnika Coordinate Measuring Machine: CMM, 3D-s mérőgép Egyiptomi piramis kövek mérése i.e. 1440 Egyiptomi mérővonalzó, Amenphotep fáraó (i.e. 1550) alkarjának hossza: 524mm A koordináta
RészletesebbenTERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés
TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Dr. Goda Tibor egyetemi docens Gép- és Terméktervezés Tanszék 1. Bevezetés 1.1. A végeselem módszer alapjai - diszkretizáció, - szerkezet felbontása kicsi szabályos elemekre
RészletesebbenGeometriai feladatok, 9. évfolyam
Geometriai feladatok, 9. évfolyam Szögek 1. Nevezzük meg az ábrán látható szögpárokat. Mekkora a nagyságuk, ha α =52 o fok? 2. Mekkora az a szög, amelyik a, az egyenesszög 1/3-ad része b, pótszögénél 32
Részletesebben3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometra modellezés alazatreonstró nyomtatás 9. Szabadformáú felülete smtása http://g.t.bme.h/portal/node/3 https://www..bme.h/epzes/targya/viiiav54 Dr. Várady Tamás Dr. Sal éter BME Vllamosmérnö
RészletesebbenLemezalkatrész modellezés. SolidEdge. alkatrészen
A példa megnevezése: A példa száma: A példa szintje: Modellezõ rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: Lemezalkatrész modellezés SZIE-A2 alap közepes - haladó SolidEdge CAD 3D
RészletesebbenHenger eltávolítása 3D szkennelt kavicsról
Henger eltávolítása 3D szkennelt kavicsról Ludmány Balázs 2018. december 6. Kavicsok alakfejlődése A sziklák általában síkok mentén hasadnak Ahogy a víz szállítja őket folyamatosan lekerekednek Matematikai
RészletesebbenTerületszámítás Ívhossz számítás Térfogat számítás Felszínszámítás. Integrálszámítás 4. Filip Ferdinánd
Integrálszámítás 4. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 2015 november 30. Filip Ferdinánd 2015 november 30. Integrálszámítás 4. 1 / 12 Az el adás vázlata Területszámítás
RészletesebbenGÖRBE- ÉS FELÜLETMODELLEZÉS VEGYES TÍPUSÚ SPLINE-FÜGGVÉNYEKKEL Ph.D dolgozat tézisei
GÖRBE- ÉS FELÜLETMODELLEZÉS VEGYES TÍPUSÚ SPLINE-FÜGGVÉNYEKKEL Ph.D dolgozat tézisei PETHŐNÉ VENDEL TERÉZIA TÉMAVEZETŐ: NAGYNÉ DR. SZILVÁSI MÁRTA BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM TERMÉSZETTUDOMÁNYI
RészletesebbenKoordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:
005-0XX Emelt szint Koordinátageometria 1) a) Egy derékszögű háromszög egyik oldalegyenese valamelyik koordinátatengely, egy másik oldalegyenesének egyenlete x + y = 10, egyik csúcsa az origó. Hány ilyen
RészletesebbenLemezalkatrész modellezés. SolidEdge. alkatrészen
A példa megnevezése: A példa száma: A példa szintje: Modellezõ rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: Lemezalkatrész modellezés SZIE-A5 alap közepes - haladó SolidEdge CAD 3D
RészletesebbenMATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8.
EURÓPAI ÉRETTSÉGI 2009 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2009. június 8. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor
Részletesebben11. előadás. Konvex poliéderek
11. előadás Konvex poliéderek Konvex poliéder 1. definíció: Konvex poliédernek nevezzük a térben véges sok, nem egysíkú pont konvex burkát. 2. definíció: Konvex poliédernek nevezzük azokat a térbeli korlátos
RészletesebbenFelületek differenciálgeometriai vizsgálata
Felületek differenciálgeometriai vizsgálata Felületek differenciálgeometriai értelemben Felület: Olyan alakzat, amely előállítható az (u,v) sík egy összefüggő tartományán értelmezett r(u,v) kétparaméteres
RészletesebbenKoordináta-geometria feladatok (emelt szint)
Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik
RészletesebbenNégycsuklós mechanizmus modelljének. Adams. elkészítése, kinematikai vizsgálata,
A példa megnevezése: A példa száma: A példa szintje: Modellezõ rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: Négycsuklós mechanizmus modellezése SZIE-K2 alap közepes - haladó Adams
RészletesebbenBevezetés a fúziós plazmafizikába 3.
Bevezetés a fúziós plazmafizikába 3. Mágneses összetartás konfigurációk Dr. Pokol Gergő BME NTI Bevezetés a fúziós plazmafizikába 2018. szeptember 18. Tematika, időbeosztás Dátum Előadó Cím Szeptember
Részletesebben4. gyakorlat: interpolációs és approximációs görbék implementációja
Pázmány Péter Katolikus Egyetem Információs Technológiai Kar A számítógépes grafika alapjai kurzus, gyakorlati anyagok Benedek Csaba 4. gyakorlat: interpolációs és approximációs görbék implementációja
RészletesebbenOsztályozóvizsga-tematika 8. évfolyam Matematika
Osztályozóvizsga-tematika 8. évfolyam Matematika 1. félév 1. Gondolkozz és számolj! A természetes szám fogalma, műveleti tulajdonságok Helyiértékek rendszere a tízes számrendszerben: alakiérték, tényleges
RészletesebbenA program a köröket és köríveket az óramutató járásával ellentétes irányban rajzolja meg.
894 11.4. Kör és körív 11.4. Kör és körív A program a köröket és köríveket az óramutató járásával ellentétes irányban rajzolja meg. 11.4.1. Kör/Körív tulajdonságai A kör vagy körív létrehozása előtt állítsa
Részletesebben3D-s számítógépes geometria
3D-s számítógépes geometri. Bevezetés lpfoglmk http://cg.iit.me.h/portl/node/3 https://www.vik.me.h/kepzes/trgk/viiiav0 Dr. Várd Tmás BME Villmosmérnöki és Informtiki Kr Iránítástechnik és Informtik Tnszék
RészletesebbenGÖRBE- ÉS FELÜLETMODELLEZÉS VEGYES TÍPUSÚ SPLINE-FÜGGVÉNYEKKEL Ph.D dolgozat
GÖRBE- ÉS FELÜLETMODELLEZÉS VEGYES TÍPUSÚ SPLINE-FÜGGVÉNYEKKEL Ph.D dolgozat PETHŐNÉ VENDEL TERÉZIA TÉMAVEZETŐ: NAGYNÉ DR. SZILVÁSI MÁRTA BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM TERMÉSZETTUDOMÁNYI
RészletesebbenTextúrák. Szécsi László
Textúrák Szécsi László Textúra interpretációk kép a memóriában ugyanolyan mint a frame buffer pixel helyett texel adatok tömbje 1D, 2D, 3D tömb pl. RGB rekordok függvény diszkrét mintapontjai rácson rekonstrukció:
Részletesebben1 2. Az anyagi pont kinematikája
1. Az anyagi pont kinematikája 1. Ha egy P anyagi pont egyenes vonalú mozgását az x = 1t +t) egyenlet írja le x a megtett út hossza m-ben), határozzuk meg a pont sebességét és gyorsulását az indulás utáni
RészletesebbenKészítette: Enisz Krisztián, Lugossy Balázs, Speiser Ferenc, Ughy Gergely 2010.11.29. 1
Készítette: Enisz Krisztián, Lugossy Balázs, Speiser Ferenc, Ughy Gergely 2010.11.29. 1 /17 Tartalomjegyzék A térinformatikáról általánosságban Célok Felhasznált eszközök Fejlesztés lépései Adatbázis Grafikus
RészletesebbenA hordófelület síkmetszeteiről
1 A hordófelület síkmetszeteiről Előző dolgozatunkban melynek címe: Ismét egy érdekes mechanizmusról azon hiányérzetünknek adtunk hangot, hogy a hordószerű test görbe felülete nem kapott nevet. Itt elneveztük
RészletesebbenLemezalkatrész modellezés. SolidEdge. alkatrészen
A példa megnevezése: A példa száma: A példa szintje: Modellezõ rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: Lemezalkatrész modellezés SZIE-A4 alap közepes - haladó SolidEdge CAD 3D
RészletesebbenTanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes.
Heti 4 óra esetén, 37 tanítási hétre összesen 148 óra áll rendelkezésre. A tanmenet 132 óra beosztását tartalmazza. Heti 5 óra esetén összesen 37-tel több órában dolgozhatunk. Ez összesen 185 óra. Itt
Részletesebben2016/2017. Matematika 9.Kny
2016/2017. Matematika 9.Kny Gondolkodási módszerek 1. Számhalmazok: N, Z, Q, Q*, R a számhalmazok kapcsolata, halmazábra 2. Ponthalmazok: o 4. oldal K I. fejezet: 172-178., 180-185., 191. feladat távolsággal
RészletesebbenSzámítógépes Grafika SZIE YMÉK
Számítógépes Grafika SZIE YMÉK Analóg - digitális Analóg: a jel értelmezési tartománya (idő), és az értékkészletes is folytonos (pl. hang, fény) Diszkrét idejű: az értelmezési tartomány diszkrét (pl. a
RészletesebbenEredmények, objektumok grafikus megjelenítése 3D felületek rajzoló függvényei
Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. MATLAB alapismeretek VII. Eredmények, objektumok grafikus megjelenítése 3D felületek rajzoló függvényei Alkalmazott Informatikai
RészletesebbenAz f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény.
Tartalomjegyzék Kétváltozós függvény integrálszámítása... Primitívfüggvény... Kettősintegrál... A kettősintegrál téglalap tartományon... A kettősintegrál létezésének szükséges feltétele... 3 Illusztráció...
RészletesebbenTanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra
Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra A Kiadó javaslata alapján összeállította: Látta:...... Harmath Lajos munkaközösség vezető tanár Jóváhagyta:... igazgató
Részletesebben2. tétel Egész számok - Műveletek egész számokkal. feleletvázlat
1. tétel Természetes számok tízes számrendszer műveletek és tulajdonságaik Természetes számok, jele, jelölések, ábrázolása számegyenesen műveletek a természetes számok halmazán belül Tízes számrendszer
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
Részletesebben