Textúrák. Szécsi László
|
|
- Virág Bognár
- 6 évvel ezelőtt
- Látták:
Átírás
1 Textúrák Szécsi László
2 Textúra interpretációk kép a memóriában ugyanolyan mint a frame buffer pixel helyett texel adatok tömbje 1D, 2D, 3D tömb pl. RGB rekordok függvény diszkrét mintapontjai rácson rekonstrukció: szűrés függvény a 3D felületi pontok felett? R G B R G B R G B R G B R G B R G B
3 Textúra formátum egy texel hány bit, hogyan elosztva pl. D3DFMT_R5G6B5 3 csatornás, 16 bites lehet floating point pl. D3DFMT_A32B32G32R32F 16 byte/texel! depth-stencil buffer is lehet textúra D3DFMT_D24S8 depth stencil
4 Textúra leképezés 3D felületi pont 2D textúratérbeli pont u = T(x) tetszőleges f(x) tárolható textúrában f(x) = f(u) = f(t(x)) megkeressük a pont textúrakoordinátáját értéket kiolvassuk a textúra megfelelő texeléből árnyaláshoz a felületi jellemzőket tárolhatjuk BRDF paraméterek: kd, ks, shininess, kr normálvektor: bump map, normal map
5 Textúra leképezés T(x) legyen könnyen számítható csúcsokban adott modellezéskor u,v koordinátákat rendelünk a vertexekhez háromszögeken interpoláljuk a felületen NEM a képernyőn
6 Perspektív helyes interpoláció ha a világban lineáris, akkor a képernyőn nem textúráknál látszik persp. helyes textúrázás de ma már mélység szín
7 Modellezés textúrákkal UV koordináták hozzárendelése 2D festés 2D-ben az élek megrajzolása (szabásminta) rajzolóprogrammal 2D-ben 3D festés 3D modellen kijelölt pont felület textúratér részletes geometriai modell alapján egyszerű modell + részletek textúrában
8 Textúrázás Mayában (0,0) (1,1)
9 Textúrázás Mayában
10 UV atlas általában megengedett, hogy több felületi ponthoz ugyanaz a textúrakoordináta tartozzon model bal és jobb oldala nem kell kétszer de 3D festés (máshol ne legyen változás csak ahova festek) számított textúra (pl. light map)
11 UV atlas = átfedés nélküli kiterítés
12 Textúrák szűrése texel > pixel (közeli felület) texel-értékek egy folytonos függvény mintapontjai nearest a legközelebbi texel értékét használjuk bilineáris 4 legközelebbi között interpolálunk elkeni a texel-éleket a felületen
13 Textúrák szűrése texel < pixel (távoli felület) egy pixelbe sok texel esik, átlagolni kellene ha a pixelközép textúrakooriniátájához legközelebbit vesszük, akkor gyakorlatilag véletlenül választunk egy texelt az átlag helyett kameramozgásnál változik, melyiket megoldás átlagok előre kiszámolása: mipmappek
14 Mipmap u, v, m trilineáris szűrés u,v két szinten kettő között interpolálás
15 Példa: diffuse map (k d ) IDirect3DTexture9 interface létrehozás fileból: D3DXCreateTextureFromFile( device, texturefilepath, &texture);
16 Textúra effect fileban texture kdmap; sampler2d kdmapsampler = sampler_state{ texture = < kdmap >; MinFilter = LINEAR; MagFilter = LINEAR; MipFilter = LINEAR; AddressU = Wrap; AddressV = Wrap; }; globális textúra változó ehhez kell kötni amit betöltöttünk textúrázási állapotleíró egy textúrához több is lehet ebből tudunk HLSL-ben olvasni
17 Pixel shader float3 lightradiance; float3 lightdir; irányfényforrás float4 psdiffuse(trafooutput input) : COLOR0 { } // diffúz árnyalás: I L L N k d return lightradiance * dot(input.normal, lightdir) * tex2d(kdmapsampler, input.tex);
18 B N T Normal map a felületi normált adjuk meg textúrában modelltérben model mátrix inverz transzponáltjával átvihető a világba tangenstérben pl. ismétlődő fakéregminta szabálytalan felületen érintősíkhoz képest
19 Cube map 6 db 2D textúra kocka felületén a benne vagyunk a kocka közepén minden irányt lefed irány függvényében is tudunk tárolni valamit HW: a textúra irányvektorral címezhető kiszámítja melyik lap milyen u,v
20 Environment map nem a felületi jellemzőket, hanem a megvilágítást tároljuk textúrában I(ω) bejövő radiancia az irány függvényében nem függ a felületi pont pozíciójától végtelen távoli környezet minden irányból jön be fény összes texelre kellene összegezni DE: ideális tükör: csak 1 irányból érdekes mi jön be
21 Cube map effectben texturecube environmentcubetexture; samplercube environmentcubesampler = sampler_state { texture = <environmentcubetexture>; MipFilter = Linear; MagFilter = Linear; MinFilter = Linear; };
22 Env map pixel shader float3 kr; //ideális visszaverődés paraméter float4 psenvmap(trafooutput input) : COLOR0 { float3 refldir = reflect( -viewdir, input.normal); return kr * texcube(envmapsampler, refldir); }
23 Hogyan rajzoljuk magát a környezetet nagy valamire feszítve sky box sky dome full screen quad teljes képernyőt lefedő négyszög a pixel shaderben megkeressük az irányt Z bufferelés: mindennél hátrább van ezt rajzoljuk elöször VAGY a full-screen quad Z-je legyen (norm. képenyőkoordinátában)
24 full screen quad vertex shader vsenvironmentoutput vsenvironment(vsenvironmentinput input) { vsenvironmentoutput output = (vsenvironmentoutput)0; output.pos = input.pos; // képből vissza világba float4 hworldpos = mul(viewprojinversematrix, input.pos); // homogén osztás kézzel kell hworldpos /= hworldpos.w; }; // pixel shadernek megvan a világpozíció output.worldpos = hworldpos.xyz; return output;
25 pixel shader float4 psenvironment(vsenvironmentoutput input) : COLOR0 { float3 viewdir = normalize(input.worldpos.xyz - eyeposition.xyz); }; return texcube(environmentcubesampler, viewdir);
HLSL programozás. Grafikus játékok fejlesztése Szécsi László t06-hlsl
HLSL programozás Grafikus játékok fejlesztése Szécsi László 2013.02.16. t06-hlsl RESOURCES PIPELINE STAGES RENDER STATES Vertex buffer Instance buffer Constant buffers and textures Index buffer Constant
Árnyalás, env mapping. Szécsi László 3D Grafikus Rendszerek 3. labor
Árnyalás, env mapping Szécsi László 3D Grafikus Rendszerek 3. labor Egyszerű árnyaló FS legyen egy fényirány-vektor normálvektor és fényirány közötti szög koszinusza az irradiancia textúrából olvasott
HLSL programozás. Szécsi László
HLSL programozás Szécsi László RESOURCES PIPELINE STAGES RENDER STATES Vertex buffer Instance buffer Constant buffers and textures Index buffer Constant buffers and textures Output buffer Constant buffers
Plakátok, részecskerendszerek. Szécsi László
Plakátok, részecskerendszerek Szécsi László Képalapú festés Montázs: képet képekből 2D grafika jellemző eszköze modell: kép [sprite] 3D 2D képével helyettesítsük a komplex geometriát Image-based rendering
Direct3D pipeline. Grafikus játékok fejlesztése Szécsi László t03-pipeline
Direct3D pipeline Grafikus játékok fejlesztése Szécsi László 2013.02.12. t03-pipeline RESOURCES PIPELINE STAGES RENDER STATES Vertex buffer Instance buffer Constant buffers and textures Index buffer Constant
Valasek Gábor
Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2011/2012. őszi félév Tartalom 1 Textúrázás Bevezetés Textúra leképezés Paraméterezés Textúra szűrés Procedurális textúrák
Grafikus csővezeték és az OpenGL függvénykönyvtár
Grafikus csővezeték és az OpenGL függvénykönyvtár 1 / 32 A grafikus csővezeték 3D-s színtér objektumainak leírása primitívekkel: pontok, élek, poligonok. Primitívek szögpontjait vertexeknek nevezzük Adott
1. Bevezetés 1. Köszönetnyilvánítás 1. 2. A számítógépes játékfejlesztésről 3
1. Bevezetés 1 Köszönetnyilvánítás 1 2. A számítógépes játékfejlesztésről 3 2.1. Néhány tanács játékfejlesztőknek 3 2.2. Hogyan fogjunk saját játék írásához? 4 2.3. A számítógépes játék főbb elemei 9 3.
Számítógépes Graka - 4. Gyak
Számítógépes Graka - 4. Gyak Jámbori András andras.jambori@gmail.com 2012.03.01 Jámbori András andras.jambori@gmail.com Számítógépes Graka - 4. Gyak 1/17 Emlékeztet A múlt órákon tárgyaltuk: WinAPI programozás
2D képszintézis. Szirmay-Kalos László
2D képszintézis Szirmay-Kalos László 2D képszintézis Modell szín (200, 200) Kép Kamera ablak (window) viewport Unit=pixel Saját színnel rajzolás Világ koordinátarendszer Pixel vezérelt megközelítés: Tartalmazás
x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?
. Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs
Transzformációk. Grafikus játékok fejlesztése Szécsi László 2013.02.26. t05-transform
Transzformációk Grafikus játékok fejlesztése Szécsi László 2013.02.26. t05-transform Koordinátarendszerek: modelltér Koordinátarendszerek: világtér Koordinátarendszerek: kameratér up right z eye ahead
Transzformációk. Szécsi László
Transzformációk Szécsi László A feladat Adott a 3D modell háromszögek csúcspontjai [modellezési koordináták] Háromszögkitöltő algoritmus pixeleket színez be [viewport koordináták] A feladat: számítsuk
A bemutatott példa a Phong modell egy egyszerűsített változatát alkalmazza a Blinn-Phong-féle megközelítést
Dr. Mileff Péter 2 Pontosabb vertex shader alapú árnyalás Phong-féle Cél: A korábbi modelltől komplexebb árnyalási modell áttekintése és megvalósítása, ahol már felhasználjuk a felület anyagtulajdonságait
Geometriai modellezés. Szécsi László
Geometriai modellezés Szécsi László Adatáramlás vezérlés Animáció világleírás Modellezés kamera Virtuális világ kép Képszintézis A modellezés részfeladatai Geometria megadása [1. előadás] pont, görbe,
Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter
Információ megjelenítés Számítógépes ábrázolás Dr. Iványi Péter (adat szerkezet) float x,y,z,w; float r,g,b,a; } vertex; glcolor3f(0, 0.5, 0); glvertex2i(11, 31); glvertex2i(37, 71); glcolor3f(0.5, 0,
GPU Lab. 14. fejezet. OpenCL textúra használat. Grafikus Processzorok Tudományos Célú Programozása. Berényi Dániel Nagy-Egri Máté Ferenc
14. fejezet OpenCL textúra használat Grafikus Processzorok Tudományos Célú Programozása Textúrák A textúrák 1, 2, vagy 3D-s tömbök kifejezetten szín információk tárolására Főbb különbségek a bufferekhez
2. Generáció (1999-2000) 3. Generáció (2001) NVIDIA TNT2, ATI Rage, 3dfx Voodoo3. Klár Gergely tremere@elte.hu
1. Generáció Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2010/2011. őszi félév NVIDIA TNT2, ATI Rage, 3dfx Voodoo3 A standard 2d-s videokártyák kiegészítése
Véletlen szám generálás Labirintus felépítése 1x1-es felbontástól a teljes méretig
Véletlen szám generálás Labirintus felépítése 1x1-es felbontástól a teljes méretig Labirintusban egy kiindulási pontból az összes pontba legrövidebb út keresése Egy végállomásból elindulva visszafejteni
Számítógépes Grafika mintafeladatok
Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk
Láthatósági kérdések
Láthatósági kérdések Láthatósági algoritmusok Adott térbeli objektum és adott nézőpont esetén el kell döntenünk, hogy mi látható az adott alakzatból a nézőpontból, vagy irányából nézve. Az algoritmusok
OpenGL Compute Shader-ek. Valasek Gábor
OpenGL Compute Shader-ek Valasek Gábor Compute shader OpenGL 4.3 óta része a Core specifikációnak Speciális shaderek, amikben a szokásos GLSL parancsok (és néhány új) segítségével általános számítási feladatokat
Farkas Gyula Szakkollégium Bit- és számtologatók. DirectX9 1. Szín, fény, textúra 2. Stencil buffer használata (tükörkép, hamis árnyék)
Farkas Gyula Szakkollégium Bit- és számtologatók DirectX9 1. Szín, fény, textúra 2. Stencil buffer használata (tükörkép, hamis árnyék) 2006. május 10., 23. Róth Ágoston Vertex vs ColorVertex exe Eddig:
Bevezetés a CGI-be. 1. Történelem
Bevezetés a CGI-be 1. Történelem 1.1 Úttörők Euklidész (ie.. 300-250) - A számítógépes grafika geometriai hátterének a megteremtője Bresenham (60 évek) - Első vonalrajzolás raster raster készüléken, később
Hajder Levente 2016/2017.
Hajder Levente hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2016/2017. Tartalom 1 Tartalom Motiváció 2 Grafikus szerelőszalag Áttekintés Modellezési transzformácó Nézeti
Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter
Információ megjelenítés Számítógépes ábrázolás Dr. Iványi Péter Raszterizáció OpenGL Mely pixelek vannak a primitíven belül fragment generálása minden ilyen pixelre Attribútumok (pl., szín) hozzárendelése
Hajder Levente 2017/2018. II. félév
Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév Tartalom 1 A fény elektromágneses hullám Az anyagokat olyan színűnek látjuk, amilyen színű fényt visszavernek
Tartalom. Tartalom. Anyagok Fényforrás modellek. Hajder Levente Fényvisszaverési modellek. Színmodellek. 2017/2018. II.
Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév 1 A fény elektromágneses hullám Az anyagokat olyan színűnek látjuk, amilyen színű fényt visszavernek
Tartalom. Hajder Levente 2016/2017. I. félév
Tartalom Hajder Levente hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2016/2017. I. félév 1 Tartalom Motiváció 2 Grafikus szerelőszalag Modellezési transzformácó Nézeti transzformácó
2012.11.27. Maga a tématerület így nagyon nagy. A fények pontos fizikai szimulációja kimondottan számításigényes
Fények a számítógépes grafikában Dr. Mileff Péter A fények és árnyékok területe különösen frekventált terület a számítógépes vizualizációban. Az utóbbi években ez tovább fokozódott Oka a hardver folyamatos
Klár Gergely 2010/2011. tavaszi félév
Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2010/2011. tavaszi félév Tartalom Generációk Shader Model 3.0 (és korábban) Shader Model 4.0 Shader Model
Realisztikus színtér 1 / 59
Realisztikus színtér 1 / 59 Környezet leképezés 2 / 59 Környezet leképezés Hatékony módszer görbe felületeken való tükröződés megjelenítésére Egy sugarat indít a nézőpontból a tükröződő objektum egy pontjába
Tanács Attila. Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem
Tanács Attila Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem Direct3D, DirectX o Csak Microsoft platformon OpenGL o Silicon Graphics: IRIS GL (zárt kód) o OpenGL (1992) o Nyílt
Grafikus csővezeték 2 / 77
Bevezetés 1 / 77 Grafikus csővezeték 2 / 77 Grafikus csővezeték Vertex feldolgozás A vertexek egyenként a képernyő térbe vannak transzformálva Primitív feldolgozás A vertexek primitívekbe vannak szervezve
SZE, Doktori Iskola. Számítógépes grafikai algoritmusok. Összeállította: Dr. Gáspár Csaba. Felületmegjelenítés
Felületmegjelenítés Megjelenítés paramétervonalakkal Drótvázas megjelenítés Megjelenítés takarással Triviális hátsólap eldobás A z-puffer algoritmus Megvilágítás és árnyalás Megjelenítés paramétervonalakkal
Tartalom. Tartalom. Hajder Levente 2018/2019. I. félév
Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2018/2019. I. félév Emlékeztető Múlt órán megismerkedtünk a sugárkövetéssel Előnyei: A színtér benépesítésére minden használható,
Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz
Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 5-7. ea. 2017 ősz 5. Előadás témái Fourier transzformációk és kapcsolataik: FS, FT, DTFT, DFT, DFS Mintavételezés, interpoláció Folytonos
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás ek - 2019. április 2. http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME,
Grafikus csővezeték 1 / 44
Grafikus csővezeték 1 / 44 Grafikus csővezeték Vertex feldolgozás A vertexek egyenként a képernyő térbe vannak transzformálva Primitív feldolgozás A vertexek primitívekbe vannak szervezve Raszterizálás
A számítógépes grafika alapjai kurzus, vizsgatételek és tankönyvi referenciák 2014
Pázmány Péter Katolikus Egyetem Információs Technológiai Kar A számítógépes grafika alapjai kurzus, vizsgatételek és tankönyvi referenciák 2014 Benedek Csaba A vizsga menete: a vizsgázó egy A illetve egy
Diszkréten mintavételezett függvények
Diszkréten mintavételezett függvények A függvény (jel) értéke csak rögzített pontokban ismert, de köztes pontokban is meg akarjuk becsülni időben mintavételezett jel pixelekből álló műholdkép rácson futtatott
D3D, DXUT primer. Grafikus játékok fejlesztése Szécsi László t01-system
D3D, DXUT primer Grafikus játékok fejlesztése Szécsi László 2013.02.13. t01-system Háromszögháló reprezentáció Mesh Vertex buffer Index buffer Vertex buffer csúcs-rekordok tömbje pos normal tex pos normal
Klár Gergely 2010/2011. tavaszi félév
Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2010/2011. tavaszi félév Tartalom Virtuális világ tárolása 1 Virtuális világ tárolása 2 3 4 Virtuális világ
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás Önálló projektek - 2017. április 7. http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr.
Modellezési transzformáció: [r lokális,1] T M = [r világ,1] Nézeti transzformáció: [r világ,1] T v = [r képernyo,1]
Inkrementális képsintéis Inkrementális 3D képsintéis Sirma-Kalos Lásló Árnalás, láthatóság nehé, különösen általános heletu objektumokra koherencia: oldjuk meg nagobb egségekre feleslegesen ne sámoljunk:
KÉPFELDOLGOZÁS A DIRECTX 9 MAGAS SZINTŰ ÁRNYALÓ NYELVÉNEK SEGÍTSÉGÉVEL
Budapesti Műszaki Főiskola Neumann János Informatikai Főiskolai Kar Szoftvertechnológia Intézet TUDOMÁNYOS DIÁKKÖRI DOLGOZAT KÉPFELDOLGOZÁS A DIRECTX 9 MAGAS SZINTŰ ÁRNYALÓ NYELVÉNEK SEGÍTSÉGÉVEL Szerzők:
A számítógépes grafika inkrementális képszintézis algoritmusának hardver realizációja Teljesítménykövetelmények:
Beveetés A sámítógépes grafika inkrementális képsintéis algoritmusának hardver realiációja Teljesítménykövetelmények: Animáció: néhány nsec/ képpont Massívan párhuamos Pipeline(stream processor) Párhuamos
Direct3D interface. Grafikus játékok fejlesztése Szécsi László t04-pipecontrol
Direct3D interface Grafikus játékok fejlesztése Szécsi László 2011.02.23. t04-pipecontrol A pipeline vezérlése erőforrások allokálása vertex buffer, index buffer, textúrák rajzolási állapot beállítása...,
Számítógépes Grafika mintafeladatok
Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk
Tartalomjegyzék. Köszönetnyilvánítás... xv. Előszó... xvii. 1. Bevezető... 1. 2. 3D-történelem... 3. 3. Matematikai alapok... 7
Köszönetnyilvánítás... xv Előszó... xvii 1. Bevezető... 1 2. 3D-történelem... 3 3. Matematikai alapok... 7 3.1. Trigonometriai gyorstalpaló... 7 3.1.1. A szög. Fok és radián... 7 3.1.2. Szögfüggvények
SDL_Universe SDL, C++, 3D szoftver renderelő
SDL_Universe SDL, C++, 3D szoftver renderelő Boros László, harmadéves mérnökinformatikus I C what you did last summer Programozói Konferencia 2014 iamsemmu@gmail.com http://progkonf.eet.bme.hu SDL_Universe
Eddig csak a polinom x-ben felvett értékét kerestük
Interpolációs polinom együtthatói Eddig csak a polinom x-ben felvett értékét kerestük Ez jó, ha kevés x-re kell kiértékelni Ha sok ismeretlen f (x)-et keresünk, akkor jobb kiszámolni az együtthatókat,
Mesh generálás. IványiPéter
Mesh generálás IványiPéter drview Grafikus program MDF file-ok szerkesztéséhez. A mesh generáló program bemenetét itt szerkesztjük meg. http://www.hexahedron.hu/personal/peteri/sx/index.html Pont létrehozásához
Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit
Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,
3D-s számítógépes geometria és alakzatrekonstrukció
3D-s számítógépes geometria és alakzatrekonstrukció Tesztkörnyezet III http://cg.iit.bme.hu/portal/node/312 https://portal.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki
A játékfejlesztés több területből áll. A kódolás csupán egy része a munkáknak.
1 A játékfejlesztés több területből áll. A kódolás csupán egy része a munkáknak. Példák az elvégzendő feladatokra: Tervezés Kódolás Modellezés Textúrázás Pályaszerkesztés Animálás... Többnyire minden terület
Lineáris algebra. (közgazdászoknak)
Lineáris algebra (közgazdászoknak) 10A103 FELADATOK A GYAKORLATRA (3.) 2018/2019. tavaszi félév Lineáris egyenletrendszerek 3.1. Feladat. Oldjuk meg az alábbi lineáris egyenletrendszereket Gauss-eliminációval
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,
Kép mátrix. Feladat: Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 2/35
Grafika I. Kép mátrix Feladat: Egy N*M-es raszterképet nagyítsunk a két-szeresére pontsokszorozással: minden régi pont helyébe 2*2 azonos színű pontot rajzolunk a nagyított képen. Pap Gáborné-Zsakó László:
7. Régió alapú szegmentálás
Digitális képek szegmentálása 7. Régió alapú szegmentálás Kató Zoltán http://www.cab.u-szeged.hu/~kato/segmentation/ Szegmentálási kritériumok Particionáljuk a képet az alábbi kritériumokat kielégítő régiókba
Híradástechikai jelfeldolgozás
Híradástechikai jelfeldolgozás 13. Előadás 015. 04. 4. Jeldigitalizálás és rekonstrukció 015. április 7. Budapest Dr. Gaál József docens BME Hálózati Rendszerek és SzolgáltatásokTanszék gaal@hit.bme.hu
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 15. Digitális Alakzatrekonstrukció Méréstechnológia, Ponthalmazok regisztrációja http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav54
Számítógépes grafika
Számítógépes grafika XX. rész A GPU programozása a GLSL nyelv Az OpenGL árnyaló nyelve a GLSL (OpenGL Shading Language), amely segítségével vertex- és pixel- (fragment) shaderek által programozhatjuk a
Programozás alapjai C nyelv 8. gyakorlat. Mutatók és címek (ism.) Indirekció (ism)
Programozás alapjai C nyelv 8. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.11.07. -1- Mutatók és címek (ism.) Minden változó és függvény
3D Számítógépes Geometria II.
3D Számítógépes Geometria II. 1. Bevezetés http://cg.iit.bme.hu/portal/3dgeo2 https://www.vik.bme.hu/kepzes/targyak/viiiav16 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki és Informatikai Kar Irányítástechnika
1.4 fejezet. RGB színrendszerek
1 1.4 fejezet. RGB színrendszerek 1. sz. ábra. Számítógépes monitorról készült nagyítás Az RGB színrendszer a katódsugárcso képernyo összeadó színképzéséhez igazodik, amely a vörös, zöld és kék színeket
Fraktálok és káosz. Szirmay-Kalos László
Fraktálok és káosz Szirmay-Kalos László A természet geometriája Euklideszi geometria metrikus Sima egyenesre/síkra épít (analízis: differenciálás) Kicsiben mindenki lineáris: Skálafüggőség Méret lényeges
INFORMATIKA javítókulcs 2016
INFORMATIKA javítókulcs 2016 ELMÉLETI TÉTEL: Járd körbe a tömb fogalmát (Pascal vagy C/C++): definíció, egy-, két-, több-dimenziós tömbök, kezdőértékadás definíciókor, tömb típusú paraméterek átadása alprogramoknak.
3D számítógépes geometria és alakzatrekonstrukció
3D számítógépes geometria és alakzatrekonstrukció 15. Digitális Alakzatrekonstrukció Méréstechnológia, Ponthalmazok regisztrációja http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01
openbve objektumkészítés Leírás az objektumkészítéshez használható parancsokról
Leírás az openbve-vel kompatibilis objektumkészítéshez használható parancsokról 1. oldal openbve objektumkészítés Leírás az objektumkészítéshez használható parancsokról A leírás az openbve-hez készíthető
Hozzárendelés, lineáris függvény
Hozzárendelés, lineáris függvény Feladat 1 A ménesben a lovak száma és a lábaik száma közötti összefüggést vizsgáljuk. Hány lába van 0; 1; 2; 3; 5; 7... lónak? Készíts értéktáblázatot, és ábrázold derékszögű
Google Summer of Code OpenCL image support for the r600g driver
Google Summer of Code 2015 OpenCL image support for the r600g driver Képek: http://www.google-melange.com a Min szeretnék dolgozni? Kapcsolatfelvétel a mentorral Project proposal Célok Miért jó ez? Milestone-ok
1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0
I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)
Tartalom. Tartalom. Hajder Levente Szakasz raszterizálása. 2017/2018. II. félév. Poligon raszterizáció.
Tartalom Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév 1 Emlékeztető 2 Vágás 3 Raszterizálás Inkrementális képszintézis Tartalom 1 Emlékeztető Inkrementális
A 3D-2D leképezés alatt melyek maradnak robusztus képjellemzők?
A 3D-2D leképezés alatt melyek maradnak robusztus képjellemzők? Vagyis mely képjellemzőket érdemes a vetületképekből kihámozni? Az attól függ Térbeli viszonyok egyenes méret párh. / szög alak síkok helyzete
Mintavételes szabályozás mikrovezérlő segítségével
Automatizálási Tanszék Mintavételes szabályozás mikrovezérlő segítségével Budai Tamás budai.tamas@sze.hu http://maxwell.sze.hu/~budait Tartalom Mikrovezérlőkről röviden Programozási alapismeretek ismétlés
1. Képalkotás. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)
1. Képalkotás Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Képalkotás fizikai paraméterei Geometriai Vetítés típusa (perspectív) Kamera
Diszkrét matematika II. feladatok
Diszkrét matematika II. feladatok 1. Gráfelmélet 1.1. Könnyebb 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot! 2. Van-e olyan (legalább kétpontú) gráf, melyben minden
016 - Bonyolultabb objektumok kiterítése és textúrázásra előkészítése
016 - Bonyolultabb objektumok kiterítése és textúrázásra előkészítése A textúrázással és az UV-térképek (UV-map) elkészítésével kapcsolatban, akár kiegészítésnek is tekinthetően, akad még egy-két dolog,
Számítógépes Grafika SZIE YMÉK
Számítógépes Grafika SZIE YMÉK Analóg - digitális Analóg: a jel értelmezési tartománya (idő), és az értékkészletes is folytonos (pl. hang, fény) Diszkrét idejű: az értelmezési tartomány diszkrét (pl. a
Algoritmusok raszteres grafikához
Algoritmusok raszteres grafikához Egyenes rajzolása Kör rajzolása Ellipszis rajzolása Algoritmusok raszteres grafikához Feladat: Grafikai primitíveket (pl. vonalat, síkidomot) ábrázolni kép-mátrixszal,
Wavelet transzformáció
1 Wavelet transzformáció Más felbontás: Walsh, Haar, wavelet alapok! Eddig: amplitúdó vagy frekvencia leírás: Pl. egy rövid, Dirac-delta jellegű impulzus Fourier-transzformált: nagyon sok, kb. ugyanolyan
Mesh from file, OrthoCamera, PerspectiveCamera. Szécsi László 3D Grafikus Rendszerek 3. labor
Mesh from file, OrthoCamera, PerspectiveCamera Szécsi László 3D Grafikus Rendszerek 3. labor OrthoCamera.js const OrthoCamera = function() { this.position = new Vec2(0.5, 0); this.rotation = 0; this.windowsize
I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)
I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =
Mutatók és címek (ism.) Programozás alapjai C nyelv 8. gyakorlat. Indirekció (ism) Néhány dolog érthetőbb (ism.) Változók a memóriában
Programozás alapjai C nyelv 8. gyakorlat Szeberényi mre BME T Programozás alapjai. (C nyelv, gyakorlat) BME-T Sz.. 2005.11.07. -1- Mutatók és címek (ism.) Minden változó és függvény
Transzformációk síkon, térben
Transzformációk síkon, térben Leképezés, transzformáció Leképezés: Ha egy A ponttér pontjaihoz egy másik B ponttér pontjait kölcsönösen egyértelműen rendeljük hozzá, akkor ezt a hozzárendelést leképezésnek
Hajder Levente 2018/2019. II. félév
Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2018/2019. II. félév Tartalom 1 2 3 4 5 Albrecht Dürer, 1525 Motiváció Tekintsünk minden pixelre úgy, mint egy kis ablakra
Geometria brute force tárolása
Virtuális világ tárolása - kérdések Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar Hol táruljuk az adatokat? Mem. vagy HDD? Mire optimalizálunk? Rajzolás
Kereső algoritmusok a diszkrét optimalizálás problémájához
Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások
Hajder Levente 2014/2015. tavaszi félév
Hajder Levente hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom 1 2 3 4 5 Albrecht Dürer, 1525 Motiváció Tekintsünk minden pixelre úgy, mint
Felületek differenciálgeometriai vizsgálata
Felületek differenciálgeometriai vizsgálata Felületek differenciálgeometriai értelemben Felület: Olyan alakzat, amely előállítható az (u,v) sík egy összefüggő tartományán értelmezett r(u,v) kétparaméteres
Eredmények, objektumok grafikus megjelenítése 3D felületek rajzoló függvényei.. Beépített 3D felületek rajzoló függvényei
Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. MATLAB alapismeretek VIII. Eredmények, objektumok grafikus megjelenítése 3D felületek rajzoló függvényei.. Beépített 3D
Számítógépes geometria (mester kurzus)
2010 sz, Debreceni Egyetem Csuklós szerkezetek animációja (Kép 1985-b l: Tony de Peltrie) Csontváz-modellek Csuklós szerkezet (robotkar) A robotkar részei: csuklók (joints) rotációs prizmatikus (transzlációs)
Párhuzamos és Grid rendszerek
Párhuzamos és Grid rendszerek (10. ea) GPGPU Szeberényi Imre BME IIT Az ábrák egy része az NVIDIA oktató anyagaiból és dokumentációiból származik. Párhuzamos és Grid rendszerek BME-IIT
2014. szeptember 24. és 26. Dr. Vincze Szilvia
2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai
C programozás. 6 óra Függvények, függvényszerű makrók, globális és
C programozás 6 óra Függvények, függvényszerű makrók, globális és lokális változók 1.Azonosítók A program bizonyos összetevőire névvel (azonosító) hivatkozunk Első karakter: _ vagy betű (csak ez lehet,
Véletlenszám generátorok és tesztelésük. Tossenberger Tamás
Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél
Használati Útmutató. KeyShot alapok
Használati Útmutató KeyShot alapok Ön a graphit Kft által készített KeyShot oktatási anyagát olvassa. Lépésről lépésre végignézzük egy alkatrész alapvető renderelési folyamatát, hogy mindenki elsajátíthassa
Lemezalkatrész modellezés. SolidEdge. alkatrészen
A példa megnevezése: A példa száma: A példa szintje: Modellezõ rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: Lemezalkatrész modellezés SZIE-A4 alap közepes - haladó SolidEdge CAD 3D