HLSL programozás. Szécsi László
|
|
- Róbert Fehér
- 6 évvel ezelőtt
- Látták:
Átírás
1 HLSL programozás Szécsi László
2 RESOURCES PIPELINE STAGES RENDER STATES Vertex buffer Instance buffer Constant buffers and textures Index buffer Constant buffers and textures Output buffer Constant buffers and textures Render target Render textures target textures Depth-stencil texture Input Assembler I. input streaming vertex data, instance data Vertex Shader processed vertex data Input Assembler II. primitive setup primitive data Geometry Shader primitive strip data Rasterizer face culling depth bias adjustment clipping homogenous division viewport transformation output filtering fragments with interpolated data Fragment Shader fragment color and depth Output merger stencil test depth test blending Input layout Shader program Uniform parameters Primitive type Shader program Uniform parameters Cull mode Depth bias Viewport Fill mode Filtering Shader program Uniform parameters Depth-stencil state Blending state
3 Vertex shader és környezete Vertex buffer pos normal color tex POSITION, NORMAL, COLOR0, TEXTCOORD0, *MVP *MV *MVIT Illumináció Vertex shader Állapot Transzformációk Fényforrások Anyag POSITION, COLOR1, COLOR0, TEXTCOORD0, háromszögre Vágás: -w<x<w, -w<y<w, -w<z<w, 0<color<1 Homogén osztás: X=X/w, Y=Y/w, Z=Z/w POSITION, COLOR0, COLOR1, TEXTCOORD0, új háromszögre
4 Alap vertex shader float4x4 modelviewprojmatrix; struct StandardInput { float4 pos : POSITION; float4 color : COLOR0; float2 tex : TEXCOORD0; }; struct StandardOutput { float4 hpos : POSITION; float3 color : COLOR0; float2 tex : TEXCOORD0; }; StandardOutput standardvs(standardinput input) { StandardOutput output = StandardOutput(0); output.hpos = mul(input.pos, modelviewprojmatrix); output.tex = input.tex; output.color = input.color; return output; } uniform paraméterek
5 Pixel shader és környezete POSITION, COLOR0, TEXTCOORD0, háromszögekre Háromszög kitöltés és lineáris interpoláció POSITION, COLOR0, TEXTCOORD0 pixelekre Pixel shader Textúrázás: text2d(u,v)*color0 + color1 POSITION, COLOR Pixel műveletek blending, z-bufferelés Állapot Textúra azonosító és paraméterek Textúra memória Rasztertár
6 Alap pixel shader uniform textúra paraméter formailag ugyanaz, mint ami a vertex shader outputja volt, de 3 vertex között interpolált értékek vannak benne sampler2d colorsampler; float4 standardps( StandardOutput input) : COLOR { float4 color = tex2d(colorsampler, input.tex) * input.color; return color; }
7 Effect file szerkesztés VS FX composer syntax highlighting azonnali fordítás és hibajelzés eredmény látható uniform paraméterek kézzel állíthatók fxc.exe megnézni a gépi kódot
8 Effect file globális változók, textúra samplerek HLSL függvények technique definíciók pass definíciók render state vertex shader pixel shader
9 Shader fordítás technique standard{ pass p0{ ZEnable = TRUE; VertexShader = compile vs_2_0 standardvs(); PixelShader = compile ps_2_0 standardps(); } } cél profil
10 Profilok Shader Model 1: vs_1_0, ps_1_0 ps_1_4 pár utasítás, regisztertologatás,... Shader Model 2: vs_2_0, ps_2_0 256 utasítás, swizzle, 16 textúra Shader Model 3 : vs_3_0, ps_3_0 vertex texture, dynamic flow control (if) 512 utasítás, dependent read Shader Model 4: vs_4_0, gs_4_0, ps_4_0 végtelen minden, stream, texture object...
11 Shader Model 3 utasításból nem fogunk kifogyni textúra vertex shaderben is: tex2dlod for: static flow control! előre kell tudni hányszor hajtjuk végre nem lehet benne semmilyen indexelés különben kigörgeti while: dynamic flow control if return feltételes ágból tilos
12 Vektorműveletek minden regiszter, ALU 4 float széles float, float2, float3 nem gyorsabb mint float4 változó definíció, mint C++-ban float4 color inicializálás értékadás numerikus konstruktorral csak float van float4 color = float4(1, 1, 0.3, 1); color = float4(0.1, 0, 0.3, 1);
13 Swizzle float4 color = float4(1, 1, 0.3, 1); color.x = 0.5; float2 twochannels = color.rg; float4 pos; pos.xyz = float3(1, 0, 0); pos.w = 1;
14 Műveletek az összes elemre vonatkoznak float3 v1 = float3(1, 5, 0.3); float3 v2 = float3(0, 0, -0.3); bool3 b1 = v1 < v2; if( all(b1) ) v1 = v2; v1 *= 2; //összes elem * 2 v1 *= v2; //elemenként HLSL intrinsic float scalarprod = dot(v1, v2); float3 crossprod = cross(v1, v2); crossprod = normalize(crossprod);
15 Vektorok különbsége e-x = [e x -x x e y -x y e z -x z ] szempozíció e e-x nézeti irány (nem normalizált) x árnyalt felületi pont pozíciója
16 Vektorok hossza v = (v x *v x + v y *v y + v z *v z ) v v
17 Normalizált nézeti irány e-x = [e x -x x e y -x y e z -x z ] szempozíció e V: nézeti irány (normalizált) V= (e-x)/ e-x x árnyalt felületi pont pozíciója
18 Két vektor skalárszorzata (dot product) skalár (egy szám) a b = a x b x + a y b y + a z b z a a b = a b cos θ b θ
19 Mire jó a skalárszorzat? 1. v-nek n irányú része derékszögű háromszög n = 1 v n = v cos Θ = v n cos Θ = v n v v többi v n = n v n skalárszorzat θ n v n n egységnyi hosszú kell legyen
20 Például: falról visszapattanó labda, tökéletes visszaverődés iránya V = V párhuzamos + V merőleges V: bejövő sebesség V out = V párhuzamos - V merőleges V merőleges = -N(V (-N)) V párhuzamos = V - V merőleges V out = V - 2N(V N) V V párhuzamos Fal N: fal normálvektora N V merőleges V out kimenő sebesség
21 Mire jó a skalárszorzat? 2. a és b közötti szög cosinusa a = b = 1 cos Θ = a b cos Θ = a b a θ b a és b egységnyi hosszú kell legyen
22 Például: diffúz felület árnyalása I out = I in k d cosθ I out = I in k d L N k d : diffúz BRDF paraméter I in : bejövő radiancia Θ: fény beesési szöge L: fényirány (normalizált) L θ N: árnyalt felület normálvektora (normalizált) Fal N I out kimenő radiancia (nem függ a nézeti iránytól, mert diffúz)
23 Két vektor vektoriális szorzata (keresztszorzat, cross product) a b = [a y b z -a z b y a z b x -a x b z a x b y -a y b x ] a b = a b sinθ a b a merőleges a-ra és b-re a a b = 0 b a b = 0 b θ
24 Mire jó a keresztszorzat? Ha valami vektorra kell egy merőleges keresztszorozzuk pl. a felfele vektorral (pl. [0, 0, 1]) Két vektorra is merőleges a két vektor keresztszorzata ha nem 1 hosszúak vagy nem derékszögben állnak ne felejtsünk el normalizálni Példa: paraméteres felület normálvektora egy pontban
25 Példa: felület normálvektora felület paraméteres egyenlete legyen: x(u,v) = u y(u,v) = v z(u,v) = sin(2u + 3v ) Mi a normálvektora a u=v=0 pontban? x(u,v) / u = 1 y(u,v) / u = 0 z(u,v) / u = cos(2u + 3v) 2 = 2 x(u,v) / v = 0 y(u,v) / v = 1 z(u,v) / v = cos(2u + 3v) 3 = 3 N = B T = [ ] = [-2-3 1] T érintő (tangens) B érintő (binormál) normalizálás: / sqrt(14)
HLSL programozás. Grafikus játékok fejlesztése Szécsi László t06-hlsl
HLSL programozás Grafikus játékok fejlesztése Szécsi László 2013.02.16. t06-hlsl RESOURCES PIPELINE STAGES RENDER STATES Vertex buffer Instance buffer Constant buffers and textures Index buffer Constant
Direct3D pipeline. Grafikus játékok fejlesztése Szécsi László t03-pipeline
Direct3D pipeline Grafikus játékok fejlesztése Szécsi László 2013.02.12. t03-pipeline RESOURCES PIPELINE STAGES RENDER STATES Vertex buffer Instance buffer Constant buffers and textures Index buffer Constant
D3D, DXUT primer. Grafikus játékok fejlesztése Szécsi László t01-system
D3D, DXUT primer Grafikus játékok fejlesztése Szécsi László 2013.02.13. t01-system Háromszögháló reprezentáció Mesh Vertex buffer Index buffer Vertex buffer csúcs-rekordok tömbje pos normal tex pos normal
Textúrák. Szécsi László
Textúrák Szécsi László Textúra interpretációk kép a memóriában ugyanolyan mint a frame buffer pixel helyett texel adatok tömbje 1D, 2D, 3D tömb pl. RGB rekordok függvény diszkrét mintapontjai rácson rekonstrukció:
Geometriai modellezés. Szécsi László
Geometriai modellezés Szécsi László Adatáramlás vezérlés Animáció világleírás Modellezés kamera Virtuális világ kép Képszintézis A modellezés részfeladatai Geometria megadása [1. előadás] pont, görbe,
A számítógépes grafika inkrementális képszintézis algoritmusának hardver realizációja Teljesítménykövetelmények:
Beveetés A sámítógépes grafika inkrementális képsintéis algoritmusának hardver realiációja Teljesítménykövetelmények: Animáció: néhány nsec/ képpont Massívan párhuamos Pipeline(stream processor) Párhuamos
Plakátok, részecskerendszerek. Szécsi László
Plakátok, részecskerendszerek Szécsi László Képalapú festés Montázs: képet képekből 2D grafika jellemző eszköze modell: kép [sprite] 3D 2D képével helyettesítsük a komplex geometriát Image-based rendering
Árnyalás, env mapping. Szécsi László 3D Grafikus Rendszerek 3. labor
Árnyalás, env mapping Szécsi László 3D Grafikus Rendszerek 3. labor Egyszerű árnyaló FS legyen egy fényirány-vektor normálvektor és fényirány közötti szög koszinusza az irradiancia textúrából olvasott
2. Generáció (1999-2000) 3. Generáció (2001) NVIDIA TNT2, ATI Rage, 3dfx Voodoo3. Klár Gergely tremere@elte.hu
1. Generáció Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2010/2011. őszi félév NVIDIA TNT2, ATI Rage, 3dfx Voodoo3 A standard 2d-s videokártyák kiegészítése
2D képszintézis. Szirmay-Kalos László
2D képszintézis Szirmay-Kalos László 2D képszintézis Modell szín (200, 200) Kép Kamera ablak (window) viewport Unit=pixel Saját színnel rajzolás Világ koordinátarendszer Pixel vezérelt megközelítés: Tartalmazás
Klár Gergely 2010/2011. tavaszi félév
Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2010/2011. tavaszi félév Tartalom Generációk Shader Model 3.0 (és korábban) Shader Model 4.0 Shader Model
Számítógépes Graka - 4. Gyak
Számítógépes Graka - 4. Gyak Jámbori András andras.jambori@gmail.com 2012.03.01 Jámbori András andras.jambori@gmail.com Számítógépes Graka - 4. Gyak 1/17 Emlékeztet A múlt órákon tárgyaltuk: WinAPI programozás
Számítógépes Grafika mintafeladatok
Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk
Számítógépes grafika
Számítógépes grafika XX. rész A GPU programozása a GLSL nyelv Az OpenGL árnyaló nyelve a GLSL (OpenGL Shading Language), amely segítségével vertex- és pixel- (fragment) shaderek által programozhatjuk a
Transzformációk. Grafikus játékok fejlesztése Szécsi László 2013.02.26. t05-transform
Transzformációk Grafikus játékok fejlesztése Szécsi László 2013.02.26. t05-transform Koordinátarendszerek: modelltér Koordinátarendszerek: világtér Koordinátarendszerek: kameratér up right z eye ahead
Direct3D interface. Grafikus játékok fejlesztése Szécsi László t04-pipecontrol
Direct3D interface Grafikus játékok fejlesztése Szécsi László 2011.02.23. t04-pipecontrol A pipeline vezérlése erőforrások allokálása vertex buffer, index buffer, textúrák rajzolási állapot beállítása...,
x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?
. Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs
Grafikus csővezeték és az OpenGL függvénykönyvtár
Grafikus csővezeték és az OpenGL függvénykönyvtár 1 / 32 A grafikus csővezeték 3D-s színtér objektumainak leírása primitívekkel: pontok, élek, poligonok. Primitívek szögpontjait vertexeknek nevezzük Adott
Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter
Információ megjelenítés Számítógépes ábrázolás Dr. Iványi Péter (adat szerkezet) float x,y,z,w; float r,g,b,a; } vertex; glcolor3f(0, 0.5, 0); glvertex2i(11, 31); glvertex2i(37, 71); glcolor3f(0.5, 0,
Grafikus csővezeték 1 / 44
Grafikus csővezeték 1 / 44 Grafikus csővezeték Vertex feldolgozás A vertexek egyenként a képernyő térbe vannak transzformálva Primitív feldolgozás A vertexek primitívekbe vannak szervezve Raszterizálás
Transzformációk. Szécsi László
Transzformációk Szécsi László A feladat Adott a 3D modell háromszögek csúcspontjai [modellezési koordináták] Háromszögkitöltő algoritmus pixeleket színez be [viewport koordináták] A feladat: számítsuk
Párhuzamos és Grid rendszerek
Párhuzamos és Grid rendszerek (10. ea) GPGPU Szeberényi Imre BME IIT Az ábrák egy része az NVIDIA oktató anyagaiból és dokumentációiból származik. Párhuzamos és Grid rendszerek BME-IIT
Realisztikus színtér 1 / 59
Realisztikus színtér 1 / 59 Környezet leképezés 2 / 59 Környezet leképezés Hatékony módszer görbe felületeken való tükröződés megjelenítésére Egy sugarat indít a nézőpontból a tükröződő objektum egy pontjába
2012.11.27. Maga a tématerület így nagyon nagy. A fények pontos fizikai szimulációja kimondottan számításigényes
Fények a számítógépes grafikában Dr. Mileff Péter A fények és árnyékok területe különösen frekventált terület a számítógépes vizualizációban. Az utóbbi években ez tovább fokozódott Oka a hardver folyamatos
Tartalomjegyzék. Köszönetnyilvánítás... xv. Előszó... xvii. 1. Bevezető... 1. 2. 3D-történelem... 3. 3. Matematikai alapok... 7
Köszönetnyilvánítás... xv Előszó... xvii 1. Bevezető... 1 2. 3D-történelem... 3 3. Matematikai alapok... 7 3.1. Trigonometriai gyorstalpaló... 7 3.1.1. A szög. Fok és radián... 7 3.1.2. Szögfüggvények
Python tanfolyam Python bevezető I. rész
Python tanfolyam Python bevezető I. rész Mai tematika Amiről szó lesz (most): Interpretált vs. fordított nyelvek, GC Szintakszis Alaptípusok Control flow: szekvencia, szelekció, iteráció... Függvények
Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter
Információ megjelenítés Számítógépes ábrázolás Dr. Iványi Péter Raszterizáció OpenGL Mely pixelek vannak a primitíven belül fragment generálása minden ilyen pixelre Attribútumok (pl., szín) hozzárendelése
Összeállította: dr. Leitold Adrien egyetemi docens
Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális
Fraktálok és káosz. Szirmay-Kalos László
Fraktálok és káosz Szirmay-Kalos László A természet geometriája Euklideszi geometria metrikus Sima egyenesre/síkra épít (analízis: differenciálás) Kicsiben mindenki lineáris: Skálafüggőség Méret lényeges
1. Bevezetés 1. Köszönetnyilvánítás 1. 2. A számítógépes játékfejlesztésről 3
1. Bevezetés 1 Köszönetnyilvánítás 1 2. A számítógépes játékfejlesztésről 3 2.1. Néhány tanács játékfejlesztőknek 3 2.2. Hogyan fogjunk saját játék írásához? 4 2.3. A számítógépes játék főbb elemei 9 3.
Valasek Gábor
Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2011/2012. őszi félév Tartalom 1 Textúrázás Bevezetés Textúra leképezés Paraméterezés Textúra szűrés Procedurális textúrák
Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető
Optika gyakorlat. Geometriai optika: planparalel lemez, prizma, hullámvezető. példa: Fényterjedés planparalel lemezen keresztül A plánparalel lemezen történő fényterjedés hatására a fénysugár újta távolsággal
Véletlen szám generálás Labirintus felépítése 1x1-es felbontástól a teljes méretig
Véletlen szám generálás Labirintus felépítése 1x1-es felbontástól a teljes méretig Labirintusban egy kiindulási pontból az összes pontba legrövidebb út keresése Egy végállomásból elindulva visszafejteni
Koordinátarendszerek
Koordinátarendszerek KO 1 Koordinátarendszerek Ponthalmazok előállításai Koordinátarendszerek KO Két gyakran alkalmazott síkbeli koordinátarendszer Derékszögű (Descartes féle) koordinátarendszer Síkbeli
2018/2019. Matematika 10.K
Egész éves dolgozat szükséges felszerelés: toll, ceruza, radír, vonalzó, körző, számológép, függvénytáblázat 2 órás, 4 jegyet ér 2019. május 27-31. héten Aki hiányzik, a következő héten írja meg, e nélkül
Farkas Gyula Szakkollégium Bit- és számtologatók. DirectX9 1. Szín, fény, textúra 2. Stencil buffer használata (tükörkép, hamis árnyék)
Farkas Gyula Szakkollégium Bit- és számtologatók DirectX9 1. Szín, fény, textúra 2. Stencil buffer használata (tükörkép, hamis árnyék) 2006. május 10., 23. Róth Ágoston Vertex vs ColorVertex exe Eddig:
Számítógépes Grafika mintafeladatok
Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk
OpenGL Compute Shader-ek. Valasek Gábor
OpenGL Compute Shader-ek Valasek Gábor Compute shader OpenGL 4.3 óta része a Core specifikációnak Speciális shaderek, amikben a szokásos GLSL parancsok (és néhány új) segítségével általános számítási feladatokat
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4
Felvételi vizsga mintatételsor Informatika írásbeli vizsga
BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) Felvételi vizsga mintatételsor Informatika írásbeli vizsga 1. (5p) Egy x biten tárolt egész adattípus (x szigorúan pozitív
Programok értelmezése
Programok értelmezése Kód visszafejtés. Izsó Tamás 2016. szeptember 22. Izsó Tamás Programok értelmezése/ 1 Section 1 Programok értelmezése Izsó Tamás Programok értelmezése/ 2 programok szemantika értelmezése
Szoftvertechnológia alapjai Java előadások
Szoftvertechnológia alapjai Java előadások Förhécz András, doktorandusz e-mail: fandrew@mit.bme.hu tárgy honlap: http://home.mit.bme.hu/~fandrew/szofttech_hu.html A mai előadás tartalma: Miért pont Java?
Fejlett programozási nyelvek C++ Iterátorok
Fejlett programozási nyelvek C++ Iterátorok 10. előadás Antal Margit 2009 slide 1 Témakörök I. Bevezetés II. Iterátor definíció III. Iterátorok jellemzői IV. Iterátorkategóriák V. Iterátor adapterek slide
= Y y 0. = Z z 0. u 1. = Z z 1 z 2 z 1. = Y y 1 y 2 y 1
Egyenes és sík a térben Elméleti áttekintés Az egyenes paraméteres egyenlete: X = u 1 λ + x 0 Y = u λ + y 0, Z = u λ + z 0 ahol a λ egy valós paraméter Az u = (u 1, u, u ) az egyenes irányvektora és P
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,
Számítástechnika II. BMEKOKAA Előadás. Dr. Bécsi Tamás
Számítástechnika II. BMEKOKAA153 2. Előadás Dr. Bécsi Tamás Tömbök (Arrays) Definíció: típus[] név; (pld. int[] szamok; ) Inicializálás: int[] szamok = new int[4]; int[] szamok = 1,2,4,3,5}; int[] szamok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Matematika tanmenet 10. évfolyam 2018/2019
Matematika tanmenet 10. évfolyam 2018/2019 Műveltségi terület: MATEMATIKA Iskola, osztályok: Vetési Albert Gimnázium, 10.A, 10.B, 10.C, 10.D Tantárgy: MATEMATIKA Heti óraszám: 3 óra Készítette: a matematika
A számítógépes grafika alapjai kurzus, vizsgatételek és tankönyvi referenciák 2014
Pázmány Péter Katolikus Egyetem Információs Technológiai Kar A számítógépes grafika alapjai kurzus, vizsgatételek és tankönyvi referenciák 2014 Benedek Csaba A vizsga menete: a vizsgázó egy A illetve egy
Bevezetés a programozásba II. 5. Előadás: Másoló konstruktor, túlterhelés, operátorok
Bevezetés a programozásba II 5. Előadás: Másoló konstruktor, túlterhelés, operátorok Emlékeztető struct Vektor { int meret, *mut; Vektor(int meret); int szamlal(int mit); }; int Vektor::szamlal(int mit)
Informatika terméktervezőknek
Informatika terméktervezőknek C# alapok Névterület (namespace) using Osztály (class) és Obejtumok Metódus (function, procedure, method) main() static void string[] arg Szintaxis // /* */ \n \t Névadások
Alapok. tisztán funkcionális nyelv, minden függvény (a konstansok is) nincsenek hagyományos változók, az első értékadás után nem módosíthatók
Haskell 1. Alapok tisztán funkcionális nyelv, minden függvény (a konstansok is) nincsenek hagyományos változók, az első értékadás után nem módosíthatók elég jól elkerülhetők így a mellékhatások könnyebben
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Koordinátageometria Megoldások
005-0XX Középszint Koordinátageometria Megoldások 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. és B 3 1; Írja fel az AB szakasz 1 3 + 4 + 1 3 F ; = F ;1 ) Egy kör sugarának
Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
Koordináta-geometria feladatok (középszint)
Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy
SZE, Doktori Iskola. Számítógépes grafikai algoritmusok. Összeállította: Dr. Gáspár Csaba. Felületmegjelenítés
Felületmegjelenítés Megjelenítés paramétervonalakkal Drótvázas megjelenítés Megjelenítés takarással Triviális hátsólap eldobás A z-puffer algoritmus Megvilágítás és árnyalás Megjelenítés paramétervonalakkal
... S n. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak.
Párhuzamos programok Legyen S parbegin S 1... S n parend; program. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak. Folyamat
Gyakorló feladatok Gyakorló feladatok
Gyakorló feladatok előző foglalkozás összefoglalása, gyakorlató feladatok a feltételes elágazásra, a while ciklusra, és sokminden másra amit eddig tanultunk Változók elnevezése a változók nevét a programozó
Grafikus csővezeték 2 / 77
Bevezetés 1 / 77 Grafikus csővezeték 2 / 77 Grafikus csővezeték Vertex feldolgozás A vertexek egyenként a képernyő térbe vannak transzformálva Primitív feldolgozás A vertexek primitívekbe vannak szervezve
Hajder Levente 2017/2018. II. félév
Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév Tartalom 1 A fény elektromágneses hullám Az anyagokat olyan színűnek látjuk, amilyen színű fényt visszavernek
Tartalom. Tartalom. Anyagok Fényforrás modellek. Hajder Levente Fényvisszaverési modellek. Színmodellek. 2017/2018. II.
Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév 1 A fény elektromágneses hullám Az anyagokat olyan színűnek látjuk, amilyen színű fényt visszavernek
Tanács Attila. Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem
Tanács Attila Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem Direct3D, DirectX o Csak Microsoft platformon OpenGL o Silicon Graphics: IRIS GL (zárt kód) o OpenGL (1992) o Nyílt
Tanmenet a Matematika 10. tankönyvhöz
Tanmenet a Matematika 10. tankönyvhöz (111 óra, 148 óra, 185 óra) A tanmenetben olyan órafelosztást adunk, amely alkalmazható mind a középszintû képzés (heti 3 vagy heti 4 óra), mind az emelt szintû képzés
Számítógépes geometria (mester kurzus)
2010 sz, Debreceni Egyetem Csuklós szerkezetek animációja (Kép 1985-b l: Tony de Peltrie) Csontváz-modellek Csuklós szerkezet (robotkar) A robotkar részei: csuklók (joints) rotációs prizmatikus (transzlációs)
2014/2015. tavaszi félév
Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés
Farkas Gyula Szakkollégium Bit- és számtologatók. Parametrikus görbék és felületek ábrázolása március 8., 22. Róth Ágoston
Farkas Gyula Szakkollégium Bit- és számtologatók Parametrikus görbék és felületek ábrázolása 2006. március 8. 22. Róth Ágoston vectors2d.h class CSquare2D; // később jelenik meg a leírása class CMesh2D;
Hajder Levente 2016/2017.
Hajder Levente hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2016/2017. Tartalom 1 Tartalom Motiváció 2 Grafikus szerelőszalag Áttekintés Modellezési transzformácó Nézeti
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA
Tartalom. Hajder Levente 2016/2017. I. félév
Tartalom Hajder Levente hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2016/2017. I. félév 1 Tartalom Motiváció 2 Grafikus szerelőszalag Modellezési transzformácó Nézeti transzformácó
Haladó Grafika EA. Inkrementális képszintézis GPU-n
Haladó Grafika EA Inkrementális képszintézis GPU-n Pipeline Az elvégzendő feladatot részfeladatokra bontjuk Mindegyik részfeladatot más-más egység dolgozza fel (ideális esetben) Minden egység inputja,
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
Programozás II. 2. Dr. Iványi Péter
Programozás II. 2. Dr. Iványi Péter 1 C++ Bjarne Stroustrup, Bell Laboratórium Első implementáció, 1983 Kezdetben csak precompiler volt C++ konstrukciót C-re fordította A kiterjesztés alapján ismerte fel:.cpp.cc.c
Az UPPAAL egyes modellezési lehetőségeinek összefoglalása. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Az UPPAAL egyes modellezési lehetőségeinek összefoglalása Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Résztvevők együttműködése (1) Automaták interakciói üzenetküldéssel Szinkron
GPU Lab. 14. fejezet. OpenCL textúra használat. Grafikus Processzorok Tudományos Célú Programozása. Berényi Dániel Nagy-Egri Máté Ferenc
14. fejezet OpenCL textúra használat Grafikus Processzorok Tudományos Célú Programozása Textúrák A textúrák 1, 2, vagy 3D-s tömbök kifejezetten szín információk tárolására Főbb különbségek a bufferekhez
KÉPFELDOLGOZÁS A DIRECTX 9 MAGAS SZINTŰ ÁRNYALÓ NYELVÉNEK SEGÍTSÉGÉVEL
Budapesti Műszaki Főiskola Neumann János Informatikai Főiskolai Kar Szoftvertechnológia Intézet TUDOMÁNYOS DIÁKKÖRI DOLGOZAT KÉPFELDOLGOZÁS A DIRECTX 9 MAGAS SZINTŰ ÁRNYALÓ NYELVÉNEK SEGÍTSÉGÉVEL Szerzők:
A MATLAB alapjai. Kezdő lépések. Változók. Aktuális mappa Parancs ablak. Előzmények. Részei. Atomerőművek üzemtana
A MATLAB alapjai Kezdő lépések - Matlab Promt: >> - Help: >> help sqrt >> doc sqrt - Kilépés: >> quit >> exit >> Futó script leállítása: >> ctrl+c - Változók listásása >> who >> whos - Változók törlése
Mechatronika és mikroszámítógépek 2017/2018 I. félév. Bevezetés a C nyelvbe
Mechatronika és mikroszámítógépek 2017/2018 I. félév Bevezetés a C nyelvbe A C programozási nyelv A C egy általános célú programozási nyelv, melyet Dennis Ritchie fejlesztett ki Ken Thompson segítségével
λ 1 u 1 + λ 2 v 1 + λ 3 w 1 = 0 λ 1 u 2 + λ 2 v 2 + λ 3 w 2 = 0 λ 1 u 3 + λ 2 v 3 + λ 3 w 3 = 0
Vektorok a térben Egy (v 1,v 2,v 3 ) valós számokból álló hármast vektornak nevezzünk a térben (R 3 -ban). Használni fogjuk a v = (v 1,v 2,v 3 ) jelölést. A v 1,v 2,v 3 -at a v vektor komponenseinek nevezzük.
A bemutatott példa a Phong modell egy egyszerűsített változatát alkalmazza a Blinn-Phong-féle megközelítést
Dr. Mileff Péter 2 Pontosabb vertex shader alapú árnyalás Phong-féle Cél: A korábbi modelltől komplexebb árnyalási modell áttekintése és megvalósítása, ahol már felhasználjuk a felület anyagtulajdonságait
Lin.Alg.Zh.1 feladatok
Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?
A MATLAB alapjai. Kezdő lépések. Változók. Aktuális mappa Parancs ablak. Előzmények. Részei
A MATLAB alapjai Atomerőművek üzemtanának fizikai alapjai - 2016. 03. 04. Papp Ildikó Kezdő lépések - Matlab Promt: >> - Help: >> help sqrt >> doc sqrt - Kilépés: >> quit >> exit - Változók listásása >>
I. Vektorok. Adott A (2; 5) és B ( - 3; 4) pontok. (ld. ábra) A két pont által meghatározott vektor:
I. Vektorok 1. Vektorok összege Általánosan: Az ábra alapján Adott: a(4; 1) és b(; 3) a + b (4 + ; 1 + 3) = (6; ) a(a 1 ; a ) és b(b 1 ; b ) a + b(a 1 + b 1 ; a + b ). Vektorok különbsége Általánosan:
Hajder Levente 2017/2018. II. félév
Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév Tartalom 1 Sugár és sík metszéspontja Sugár és háromszög metszéspontja Sugár és poligon metszéspontja
Java II. I A Java programozási nyelv alapelemei
Java2 / 1 Java II. I A Java programozási nyelv alapelemei Miskolci Egyetem Általános Informatikai Tanszék Utolsó módosítás: 2009. 02. 09. Java II.: Alapelemek JAVA2 / 1 A Java formalizmusa A C, illetve
BASH script programozás II. Vezérlési szerkezetek
06 BASH script programozás II. Vezérlési szerkezetek Emlékeztető Jelölésbeli különbség van parancs végrehajtása és a parancs kimenetére való hivatkozás között PARANCS $(PARANCS) Jelölésbeli különbség van
1. Milyen parciális törtekre bontaná az alábbi racionális törtfüggvényt:
Matematika (Lineáris algebra és többváltozós függvények), NGB_MA002_2, 1. zárthelyi 2016. 10. 19., 2A-csoport 1. Milyen parciális törtekre bontaná az alábbi racionális törtfüggvényt: x 2x 2 4x + 1 (x 2
A C programozási nyelv I. Bevezetés
A C programozási nyelv I. Bevezetés Miskolci Egyetem Általános Informatikai Tanszék A C programozási nyelv I. (bevezetés) CBEV1 / 1 A C nyelv története Dennis M. Ritchie AT&T Lab., 1972 rendszerprogramozás,
Java II. I A Java programozási nyelv alapelemei
Java II. I A Java programozási nyelv alapelemei Miskolci Egyetem Általános Informatikai Tanszék Utolsó módosítás: 2008. 02. 19. Java II.: Alapelemek JAVA2 / 1 A Java formalizmusa A C, illetve az annak
A C programozási nyelv I. Bevezetés
A C programozási nyelv I. Bevezetés Miskolci Egyetem Általános Informatikai Tanszék A C programozási nyelv I. (bevezetés) CBEV1 / 1 A C nyelv története Dennis M. Ritchie AT&T Lab., 1972 rendszerprogramozás,
Vektorok összeadása, kivonása, szorzás számmal, koordináták
Vektorok összeadása, kivonása, szorzás számmal, koordináták 1. Mik lesznek a P (3, 4, 8) pont C (3, 7, 2) pontra vonatkozó tükörképének a koordinátái? 2. Egy szabályos hatszög középpontja K (4, 1, 4),
Összeállította: dr. Leitold Adrien egyetemi docens
Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b
Csuklós mechanizmus tervezése és analízise
Csuklós mechanizmus tervezése és analízise Burmeister Dániel 1. Feladatkitűzés Megtervezendő egy többláncú csuklós mechanizmus, melynek ABCD láncában található hajtórúd (2-es tag) mozgása során három előírt
Modellezési transzformáció: [r lokális,1] T M = [r világ,1] Nézeti transzformáció: [r világ,1] T v = [r képernyo,1]
Inkrementális képsintéis Inkrementális 3D képsintéis Sirma-Kalos Lásló Árnalás, láthatóság nehé, különösen általános heletu objektumokra koherencia: oldjuk meg nagobb egségekre feleslegesen ne sámoljunk:
Az egyenes és a sík analitikus geometriája
Az egyenes és a sík analitikus geometriája Az egyenes a kétdimenziós koordinátarendszerben A kétdimenziós koordinátarendszerben az egyenest egy n(a, B) normálvektorával és egy r 0 helyvektorú P(x 0,y 0
Programozás alapjai. 2. előadás
2. előadás Általános Informatikai Tanszék A számítógépes feladatmegoldás eszközei Adatok (Amiken utasításokat hajtunk végre) Utasítások (Amiket végrehajtunk) Program struktúra Adatok Konstans (a programon
O ( 0, 0, 0 ) A ( 4, 0, 0 ) B ( 4, 3, 0 ) C ( 0, 3, 0 ) D ( 4, 0, 5 ) E ( 4, 3, 5 ) F ( 0, 3, 5 ) G ( 0, 0, 5 )
1. feladat Írjuk föl a következő vektorokat! AC, BF, BG, DF, BD, AG, GB Írjuk föl ezen vektorok egységvektorát is! a=3 m b= 4 m c= m Írjuk föl az egyes pontok koordinátáit: O ( 0, 0, 0 ) A ( 4, 0, 0 )
Bevezetés a CGI-be. 1. Történelem
Bevezetés a CGI-be 1. Történelem 1.1 Úttörők Euklidész (ie.. 300-250) - A számítógépes grafika geometriai hátterének a megteremtője Bresenham (60 évek) - Első vonalrajzolás raster raster készüléken, később
INFORMATIKA javítókulcs 2016
INFORMATIKA javítókulcs 2016 ELMÉLETI TÉTEL: Járd körbe a tömb fogalmát (Pascal vagy C/C++): definíció, egy-, két-, több-dimenziós tömbök, kezdőértékadás definíciókor, tömb típusú paraméterek átadása alprogramoknak.