Eredmények, objektumok grafikus megjelenítése 3D felületek rajzoló függvényei.. Beépített 3D felületek rajzoló függvényei

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Eredmények, objektumok grafikus megjelenítése 3D felületek rajzoló függvényei.. Beépített 3D felületek rajzoló függvényei"

Átírás

1 Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. MATLAB alapismeretek VIII. Eredmények, objektumok grafikus megjelenítése 3D felületek rajzoló függvényei.. Beépített 3D felületek rajzoló függvényei

2 Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 1. Eredmények, objektumok grafikus megjelenítése - surfl Összetett megvilágítású felület rejzolása - surfnorm Felületi normális megjelenítése - mesh Felület ábrázolása hálóvonalakkal - meshc Felület ábrázolása hálóvonalakkal plusz vetített szintvonalak - meshz Felület ábrázolása a tartományszéleken függönnyel - waterfall Felület ábrázolása a tengellyel párhuzamos metszetgörbékkel - ribbon Felület ábrázolása csíkokkal - contour3 Felület ábrázolása szintvonalakkal Beépített 3D felületek rajzoló függvényei - cylinder Hengerfelület forgásfelület - rajzolása - ellipsoid Ellipszoid rajzolása - sphere Gömb rajzolása Forrás: Matlab Help Mosolygó: Varga Jenő Magyarerő.hu

3 Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 2. Összetett megvilágítású felület rejzolása surfl - surfl(z) Egy árnyalt felületet jelenít meg a szórt (ambient), a párhuzamos (diffuse) és a pontszerű fényforrásból jövő (specular) fények és a felület anyagjellemzőinek figyelembevételével. Az anyagjellemzők hatását a fény visszaverésére a surfl( X,Y,Z,s,k) paraméterezéssel, a k = [ka, kd, ks, shine] ambient, diffúz, specular és a specular shine, azaz a csillogási folt mérete együtthatókkal adhatjuk meg, mint anyagjellemzőkkel. Ezek egymásra hatnak a külső megvilágítás hasonló paramétereivel és így adódik ki a felület színe egy adott pontjában. Forrás: Matlab Help

4 Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 3. Összetett megvilágítású felület rejzolása.. surfl Nézzük meg a peaks() felületet colormap-alapú megjelenítéssel! [X,Y]= meshgrid(-3 : 1/8 : 3); Z = peaks(x,y); surfl(x,y,z); shading interp colormap (gray); % szürke axis([-3, 3, -3, 3, -8, 8]) Forrás: Matlab Help

5 Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 4. Összetett megvilágítású felület rejzolása.. surfl Nézzük meg a peaks() felületet anyag megadással! [X,Y]= meshgrid(-3 : 1/8 : 3); Z = peaks(x,y); surfl(x,y,z); shading interp colormap copper; % réz axis([-3, 3, -3, 3, -8, 8]) Forrás: Matlab Help

6 Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 5. Összetett megvilágítású felület rejzolása.. surfl Számtalan beépített colormap színkészlet közül választhatunk a felület színének megadásához: Forrás: Matlab Help

7 Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 6. Összetett megvilágítású felület rejzolása.. surfl A shading árnyalás jellemzővel különféle hatások érhetők el: shading faceted shading flat shading interp Forrás: Matlab Help

8 Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 7. Felületi normális megjelenítése surfnorm [X,Y]= meshgrid(-3 : 1/8 : 3); Z = peaks(x,y); surfnorm(x,y,z); shading interp colormap pink; axis([-3, 3, -3, 3, -8, 8])

9 Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 8. Felület ábrázolása hálóvonalakkal mesh [X,Y]= meshgrid(-3 : 1/8 : 3); Z = peaks(x,y); mesh(x,y,z); axis([-3, 3, -3, 3, -8, 8])

10 Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 9. Felület ábrázolása hálóvonalakkal.. mesh [X,Y]= meshgrid(-3 : 1/4 : 3); Z = peaks(x,y); mesh(x,y,z, 'LineWidth', 3); axis([-3, 3, -3, 3, -8, 8])

11 Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 10. Felület ábrázolása hálóvonalakkal plusz vetített szintvonalak meshc [X,Y]= meshgrid(-3 : 1/8 : 3); Z = peaks(x,y); meshc(x,y,z); axis([-3, 3, -3, 3, -8, 8]) Nem hibás ez a MATLAB? A szintvonalgörbék kiesnek az alaptartományból.

12 Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 11. Felület ábrázolása a tartományszéleken függönnyel meshz [X,Y]= meshgrid(-3 : 1/8 : 3); Z = peaks(x,y); meshz(x,y,z); axis([-3, 3, -3, 3, -8, 8])

13 Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 12. Felület ábrázolása a tengellyel párhuzamos metszetgörbékkel waterfall % vízesés [X,Y]= meshgrid(-3 : 1/4 : 3); Z = peaks(x,y); waterfall(x,y,z); axis([-3, 3, -3, 3, -8, 8])

14 Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 13. Felület ábrázolása a tengellyel párhuzamos metszetgörbékkel.. waterfall % vízesés Gyenge a vonalvastagság. Próbáljuk meg vastagabbal! [X,Y]= meshgrid(-3 : 1/4 : 3); Z = peaks(x,y); waterfall(x,y,z,'linewidth', 3); axis([-3, 3, -3, 3, -8, 8]) Error using waterfall (line 3) Too many input arguments.

15 Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 14. Felület ábrázolása csíkokkal ribbon % szalag, sáv Csak Y irányú szalagokkal működik és X irányban színez. [X,Y]= meshgrid(-3 : 1/2 : 3, -3 : 1/10 : 3); Z = peaks(x,y); ribbon(y,z); % szélesség: 0.75 ylabel( Y ) colormap hsv % szélesség: 0.2 ribbon(y,z, 0.2);

16 Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 15. Felület ábrázolása szintvonalakkal contour3 x = -2 : 0.25 : 2; [X,Y]= meshgrid(x); Z = X.* exp(-x.^ 2 - Y.^ 2) ; % szintek száma 30: contour3(x,y,z, 30)

17 Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 16. Felület ábrázolása szintvonalakkal contour3 x = -2 : 0.25 : 2; [X,Y]= meshgrid(x); Z = X.* exp(-x.^ 2 - Y.^ 2) ; % szintek száma 30: contour3(x,y,z, 30)

18 Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 17. Beépített 3D felületek rajzoló függvényei Hengerfelület forgásfelület - rajzolása cylinder cylinder (r,n) r sugarú, egységnyi magas forgásfelületet rajzol n osztással a körön, r egy lehetséges profilgörbe. Ha n elmarad, 20 osztás lesz. Ha r elmarad, egységnyi sugarú hengert rajzol. cylinder % r= 1, n= cylinder(4) % r= 4, n= cylinder(5,4) % r=5, n= r= 2: 0.2 : 4 cylinder(r, 30)

19 Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 18. Beépített 3D felületek rajzoló függvényei.. Hengerfelület forgásfelület rajzolása.. cylinder cylinder (r,n) r sugarú, egységnyi magas forgásfelületet rajzol n osztással a körön, r egy lehetséges profilgörbe. Ha n elmarad, 20 osztás lesz. Ha r elmarad, egységnyi sugarú hengert rajzol. h= 0 : pi/20 : 2*pi; cylinder(4+2*sin(h)+cos(8*h)/3)

20 Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 19. Beépített 3D felületek rajzoló függvényei.. Ellipszoid rajzolása ellipsoid ellipsoid(x,y,z,xr,yr,zr,n) x,y,z középpontú, xr,yr,zr féltengelyű n*n osztásközű ellipsoidot rajzol. Ha n elmarad, 20-at helyettesít. ellipsoid(0,0,0,5,3,1,25); axis equal

21 Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 20. Beépített 3D felületek rajzoló függvényei.. Gömb rajzolása sphere sphere(n) 0,0,0 középpontú, 1 sugarú, n*n osztásközű gömböt rajzol. Ha n elmarad, 20-at helyettesít. sphere; axis equal

Eredmények, objektumok grafikus megjelenítése 3D felületek rajzoló függvényei

Eredmények, objektumok grafikus megjelenítése 3D felületek rajzoló függvényei Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. MATLAB alapismeretek VII. Eredmények, objektumok grafikus megjelenítése 3D felületek rajzoló függvényei Alkalmazott Informatikai

Részletesebben

MATLAB alapismeretek X. Egy összetettebb példa grafikus felhasználói felület (GUI) létrehozására

MATLAB alapismeretek X. Egy összetettebb példa grafikus felhasználói felület (GUI) létrehozására Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. MATLAB alapismeretek X. Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 1. Készítsük el az

Részletesebben

MATLAB alapismeretek IV. Eredmények grafikus megjelenítése: vonalgrafikonok

MATLAB alapismeretek IV. Eredmények grafikus megjelenítése: vonalgrafikonok Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. MATLAB alapismeretek IV. Eredmények grafikus megjelenítése: vonalgrafikonok Forrás: İ.Yücel Özbek: Introduction to Matlab

Részletesebben

Lengyelné Dr. Szilágyi Szilvia április 7.

Lengyelné Dr. Szilágyi Szilvia április 7. ME, Anaĺızis Tanszék 2010. április 7. , alapfogalmak 2.1. Definíció A H 1, H 2,..., H n R (ahol n 2 egész szám) nemüres valós számhalmazok H 1 H 2... H n Descartes-szorzatán a következő halmazt értjük:

Részletesebben

MATLAB alapismeretek V. Eredmények grafikus megjelenítése: oszlopdiagramok, hisztogramok, tortadiagramok

MATLAB alapismeretek V. Eredmények grafikus megjelenítése: oszlopdiagramok, hisztogramok, tortadiagramok Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. MATLAB alapismeretek V. Eredmények grafikus megjelenítése: oszlopdiagramok, hisztogramok, tortadiagramok Alkalmazott Informatikai

Részletesebben

MATLAB alapismeretek III.

MATLAB alapismeretek III. Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. MATLAB alapismeretek III. Z= F(x,y) alakú kétváltozós függvények rajzolása Több objektum rajzolása egy ábrába Kombináljuk

Részletesebben

MATLAB alapismeretek I.

MATLAB alapismeretek I. Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. MATLAB alapismeretek I. A MATLAB bemutatása MATLAB filozófia MATLAB modulok A MATLAB felhasználói felülete MATLAB tulajdonságok

Részletesebben

MATLAB alapismeretek II.

MATLAB alapismeretek II. Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. MATLAB alapismeretek II. Feladat: Plottoljuk a sin(x) függvényt a 0 x 4π tartományban Rajzoltassuk az e -x/3 sin(x) függvényt

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás ek - 2019. április 2. http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME,

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás Önálló projektek - 2017. április 7. http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr.

Részletesebben

Számítógépes geometria (mester kurzus) III

Számítógépes geometria (mester kurzus) III 2010 sz, Debreceni Egyetem Felületek A felület megadása implicit: F : R 3 R, F (x, y, z) = 0 Euler-Monge: f : [a, b] [c, d] R, z = f (x, y) paraméteres: r : [a, b] [c, d] R 3 trianguláris háló direkt megadása

Részletesebben

Grafikus felhasználói felület (GUI) létrehozása A GUI jelentése Egy egyszerű GUI mintaalkalmazás létrehozása

Grafikus felhasználói felület (GUI) létrehozása A GUI jelentése Egy egyszerű GUI mintaalkalmazás létrehozása Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. MATLAB alapismeretek IX. A GUI jelentése Egy egyszerű GUI mintaalkalmazás létrehozása Alkalmazott Informatikai Intézeti

Részletesebben

SZE, Doktori Iskola. Számítógépes grafikai algoritmusok. Összeállította: Dr. Gáspár Csaba. Felületmegjelenítés

SZE, Doktori Iskola. Számítógépes grafikai algoritmusok. Összeállította: Dr. Gáspár Csaba. Felületmegjelenítés Felületmegjelenítés Megjelenítés paramétervonalakkal Drótvázas megjelenítés Megjelenítés takarással Triviális hátsólap eldobás A z-puffer algoritmus Megvilágítás és árnyalás Megjelenítés paramétervonalakkal

Részletesebben

1. Bevezetés 1. Köszönetnyilvánítás 1. 2. A számítógépes játékfejlesztésről 3

1. Bevezetés 1. Köszönetnyilvánítás 1. 2. A számítógépes játékfejlesztésről 3 1. Bevezetés 1 Köszönetnyilvánítás 1 2. A számítógépes játékfejlesztésről 3 2.1. Néhány tanács játékfejlesztőknek 3 2.2. Hogyan fogjunk saját játék írásához? 4 2.3. A számítógépes játék főbb elemei 9 3.

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,

Részletesebben

Renderelés megjelenésmódok, fények, anyagjellemzők

Renderelés megjelenésmódok, fények, anyagjellemzők Építész-informatika 2 Előadási anyag BME Építészmérnöki kar Építészeti Ábrázolás Tanszék Renderelés megjelenésmódok, fények, anyagjellemzők BMEEPAGA401 Építész-informatika 2 6. előadás Strommer László

Részletesebben

6. Előadás. Matlab grafikus lehetőségei, Salamon Júlia. Előadás I. éves mérnök hallgatók számára

6. Előadás. Matlab grafikus lehetőségei, Salamon Júlia. Előadás I. éves mérnök hallgatók számára 6. Előadás Matlab grafikus lehetőségei, 2D, 3D-s grafikák. Salamon Júlia Előadás I. éves mérnök hallgatók számára Grafikák A Matlab programcsomag egyik nagy erőssége az igen hatékony és rugalmas grafikai

Részletesebben

Matlab alapok. Baran Ágnes. Grafika. Baran Ágnes Matlab alapok Grafika 1 / 21

Matlab alapok. Baran Ágnes. Grafika. Baran Ágnes Matlab alapok Grafika 1 / 21 Matlab alapok Baran Ágnes Grafika Baran Ágnes Matlab alapok Grafika / 2 Vonalak, pontok síkon figure nyit egy új grafikus ablakot plot(x,y) ahol x és y ugyanolyan méretű vektorok, ábrázolja az (x i,y i

Részletesebben

4. Felületek Forgásfelületek. Felületek 1. Legyen adott egy paramétersíkbeli T tartomány. A paramétersíkot az u és v koordinátatengelyekkel

4. Felületek Forgásfelületek. Felületek 1. Legyen adott egy paramétersíkbeli T tartomány. A paramétersíkot az u és v koordinátatengelyekkel Felületek 1 4. Felületek Legyen adott egy paramétersíkbeli T tartomány. A paramétersíkot az u és v koordinátatengelyekkel adjuk meg. Ekkor egy F felületet az (u, v) r(u, v), (u, v) T kétváltozós vektor-vektor

Részletesebben

Többváltozós függvények Feladatok

Többváltozós függvények Feladatok Többváltozós függvények Feladatok 2. szeptember 3. Határozzuk meg az alábbi sorozatok határértékét illetve torlódási pontjait!. ( n n2 + n n 3 2. ( n + n n5 n2 +2n+ 5 n n+ 3. ( sin(nπ/2 n n! Határozzuk

Részletesebben

Mechatronika segédlet 1. gyakorlat

Mechatronika segédlet 1. gyakorlat Mechatronika segédlet 1. gyakorlat 2017. február 6. Tartalom Vadai Gergely, Faragó Dénes Indítás, kezelőfelület... 2 Négyzet... 4 Négyzet rajzolásának lépései abszolút koordinátákkal... 4 Kocka, 3D eszközök...

Részletesebben

Bevezetés a MATLAB programba

Bevezetés a MATLAB programba Bevezetés a MATLAB programba 1. Mi az a MATLAB? A MATLAB egy olyan matematikai programcsomag, amely mátrix átalakításokat használ a komplex numerikus számítások elvégzésére. A Mathematica és Maple programokkal

Részletesebben

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan! Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén

Részletesebben

Koordinátarendszerek

Koordinátarendszerek Koordinátarendszerek KO 1 Koordinátarendszerek Ponthalmazok előállításai Koordinátarendszerek KO Két gyakran alkalmazott síkbeli koordinátarendszer Derékszögű (Descartes féle) koordinátarendszer Síkbeli

Részletesebben

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx = Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!

Részletesebben

A dinamikus geometriai rendszerek használatának egy lehetséges területe

A dinamikus geometriai rendszerek használatának egy lehetséges területe Fejezetek a matematika tanításából A dinamikus geometriai rendszerek használatának egy lehetséges területe Készítette: Harsányi Sándor V. matematika-informatika szakos hallgató Porcsalma, 2004. december

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben? . Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs

Részletesebben

Szirmay-Kalos László. L(x, ω)=l e (x,ω)+ L(h(x,-ω),ω) f r (ω,x, ω) cos θ dω A jobb oldali radiancia:

Szirmay-Kalos László. L(x, ω)=l e (x,ω)+ L(h(x,-ω),ω) f r (ω,x, ω) cos θ dω A jobb oldali radiancia: Képszintézis -casting, -tracing Szirmay-Kalos László Lokális illuminációs módszer L(, ω)=l e (,ω)+ L(h(,-ω),ω) f r (ω,, ω) cos θ dω A jobb oldali radiancia: fényforrások emissziója Fényforrások fényének

Részletesebben

Függvények ábrázolása

Függvények ábrázolása Függvények ábrázolása Matematikai függvényeket analitikusan nem tudunk a matlabban megadni (tudunk, de ilyet még nem tanulunk). Ahhoz, hogy egy függvényt ábrázoljuk, hasonlóan kell eljárni, mint a házi

Részletesebben

Excel IV. Haladó ismeretek. További fontos függvények Függvényhasználat ellenőrzése

Excel IV. Haladó ismeretek. További fontos függvények Függvényhasználat ellenőrzése Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. Excel IV. Haladó ismeretek További fontos függvények Függvényhasználat ellenőrzése Alkalmazott Informatikai Intézeti Tanszék

Részletesebben

Excel III. Haladó ismeretek

Excel III. Haladó ismeretek Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. Excel III. Haladó ismeretek Haladó szerkesztési ismeretek Az Excel számolótábla méretei Munkafüzet lap felosztása Sorok,

Részletesebben

Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához

Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához Dr. Nagy Gábor, Geometria Tanszék 2010. szeptember 16. Görbék paraméterezése 1. feladat. (A) Bizonyítsuk be a vektoriális szorzatra vonatkozó

Részletesebben

Láthatósági kérdések

Láthatósági kérdések Láthatósági kérdések Láthatósági algoritmusok Adott térbeli objektum és adott nézőpont esetén el kell döntenünk, hogy mi látható az adott alakzatból a nézőpontból, vagy irányából nézve. Az algoritmusok

Részletesebben

Számítógépek alkalmazása 2

Számítógépek alkalmazása 2 1 BME Építészmérnöki kar Építészeti Ábrázolás Tanszék Háromdimenziós szerkesztés alapjai BMEEPAG2203 Számítógépek alkalmazása 2 2. előadás 2006. március 14. Strommer László 2 Tulajdonságok szín, vonaltípus

Részletesebben

ANALÍZIS II. Példatár

ANALÍZIS II. Példatár ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3

Részletesebben

A termelésinformatika alapjai 10. gyakorlat: Forgácsolás, fúrás, furatmegmunkálás, esztergálás, marás. 2012/13 2. félév Dr.

A termelésinformatika alapjai 10. gyakorlat: Forgácsolás, fúrás, furatmegmunkálás, esztergálás, marás. 2012/13 2. félév Dr. A termelésinformatika alapjai 10. gyakorlat: Forgácsolás, fúrás, furatmegmunkálás, esztergálás, marás 2012/13 2. félév Dr. Kulcsár Gyula Forgácsolás, fúrás, furatmegmunkálás Forgácsolás Forgácsoláskor

Részletesebben

Számítógépes Graka - 4. Gyak

Számítógépes Graka - 4. Gyak Számítógépes Graka - 4. Gyak Jámbori András andras.jambori@gmail.com 2012.03.01 Jámbori András andras.jambori@gmail.com Számítógépes Graka - 4. Gyak 1/17 Emlékeztet A múlt órákon tárgyaltuk: WinAPI programozás

Részletesebben

A grafika programozás módozatai A képernyő koordinátarendszere A graphics.h header-fájl fontosabb függvényei Mintaprogram

A grafika programozás módozatai A képernyő koordinátarendszere A graphics.h header-fájl fontosabb függvényei Mintaprogram Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. A grafika programozás alapjai A grafika programozás módozatai A képernyő koordinátarendszere A graphics.h header-fájl fontosabb

Részletesebben

Grafika. Egyváltozós függvény grafikonja

Grafika. Egyváltozós függvény grafikonja Grafika Egyváltozós függvény grafikonja Egyváltozós függvény grafikonját a plot paranccsal tudjuk kirajzolni. Elsı paraméter egy függvény képlete, a második paraméter változónév=intervallum alakú: plot(x^3-16*x+2,x=-6..6);

Részletesebben

Geometriai modellezés. Szécsi László

Geometriai modellezés. Szécsi László Geometriai modellezés Szécsi László Adatáramlás vezérlés Animáció világleírás Modellezés kamera Virtuális világ kép Képszintézis A modellezés részfeladatai Geometria megadása [1. előadás] pont, görbe,

Részletesebben

9. előadás. Térbeli koordinátageometria

9. előadás. Térbeli koordinátageometria 9. előadás Térbeli koordinátageometria Koordinátageometria a térben Descartes-féle koordinátarendszerben dolgozunk. A legegyszerűbb alakzatokat fogjuk vizsgálni. Az ezeket leíró egyenletek első-, vagy

Részletesebben

A program a köröket és köríveket az óramutató járásával ellentétes irányban rajzolja meg.

A program a köröket és köríveket az óramutató járásával ellentétes irányban rajzolja meg. 894 11.4. Kör és körív 11.4. Kör és körív A program a köröket és köríveket az óramutató járásával ellentétes irányban rajzolja meg. 11.4.1. Kör/Körív tulajdonságai A kör vagy körív létrehozása előtt állítsa

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

Excel VI. Haladó ismeretek. Makrók készítése Visual Basic nyelven Egyszerű Visual Basic program

Excel VI. Haladó ismeretek. Makrók készítése Visual Basic nyelven Egyszerű Visual Basic program Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. Excel VI. Haladó ismeretek Makrók készítése Visual Basic nyelven Egyszerű Visual Basic program Alkalmazott Informatikai

Részletesebben

Komputeralgebra rendszerek

Komputeralgebra rendszerek Komputeralgebra rendszerek P L O T Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar 2009. október 12. Index I 1 Az alapok plot és plot3d Késleltetett megjelenítés Egyszerűbb

Részletesebben

A Vonallánc készlet parancsai lehetővé teszik vonalláncok és sokszögek rajzolását.

A Vonallánc készlet parancsai lehetővé teszik vonalláncok és sokszögek rajzolását. 11. Geometriai elemek 883 11.3. Vonallánc A Vonallánc készlet parancsai lehetővé teszik vonalláncok és sokszögek rajzolását. A vonallánc egy olyan alapelem, amely szakaszok láncolatából áll. A sokszög

Részletesebben

Felületábrázolás és alkalmazásai Maple-ben

Felületábrázolás és alkalmazásai Maple-ben Debreceni Egyetem Informatikai Kar Felületábrázolás és alkalmazásai Maple-ben Témavezető: Dr. Hoffmann Miklós egyetemi docens Készítette: Szlahorek András informatikatanár Debrecen 2009 Tartalomjegyzék

Részletesebben

Felhasználói kézikönyv

Felhasználói kézikönyv Felhasználói kézikönyv 5040 Lézeres távolságmérő TARTALOMJEGYZÉK 1. Bevezetés... 2 2. Az elemek cseréje... 2 3. A készülék felépítése... 2 4. Műszaki jellemzők... 3 5. A lézeres távolságmérő bekapcsolása...

Részletesebben

Rajz 01 gyakorló feladat

Rajz 01 gyakorló feladat Rajz 01 gyakorló feladat Alkatrészrajz készítése Feladat: Készítse el az alábbi ábrán látható kézi működtetésű szelepház alkatrészrajzát! A feladat megoldásához szükséges fájlok: Rjz01k.ipt A feladat célja:

Részletesebben

Plakátok, részecskerendszerek. Szécsi László

Plakátok, részecskerendszerek. Szécsi László Plakátok, részecskerendszerek Szécsi László Képalapú festés Montázs: képet képekből 2D grafika jellemző eszköze modell: kép [sprite] 3D 2D képével helyettesítsük a komplex geometriát Image-based rendering

Részletesebben

VIK A3 Matematika, Gyakorlati anyag 2.

VIK A3 Matematika, Gyakorlati anyag 2. VIK A3 Matematika, Gyakorlati anyag 2. 208. november Sorok. Konvergensek-e az alábbi sorok? Ha igen, adjuk meg a határértéküket! n(n+3) n(n+)(n+2) 9n 2 3n 2 ( n + 2 2 n + + n) 2n+ n 2 (n+) 2 (f) ( 3) k+2

Részletesebben

1. Munkalap. 1. Fejezze be az előrajzolás szerinti vonalfajták ábrázolását! Ügyeljen a vonalvastagságra!

1. Munkalap. 1. Fejezze be az előrajzolás szerinti vonalfajták ábrázolását! Ügyeljen a vonalvastagságra! 1. Munkalap 1. Fejezze be az előrajzolás szerinti vonalfajták ábrázolását! Ügyeljen a vonalvastagságra! 2. Rajzoljon merőleges egyenest az e egyenes P pontjába! e P 3. Ossza fel az AB szakaszt 2:3 arányban!

Részletesebben

11. Előadás Gradiens törésmutatójú közeg II.

11. Előadás Gradiens törésmutatójú közeg II. 11. Előadás Gradiens törésmutatójú közeg II. A következőkben két különleges, gradiens törésmutatójú lencsével fogunk foglalkozni, az úgynevezett Luneburg-féle lencsékkel. Annak is két típusával: a Maxwell-féle

Részletesebben

Objektumok és osztályok. Az objektumorientált programozás alapjai. Rajzolás tollal, festés ecsettel. A koordinátarendszer

Objektumok és osztályok. Az objektumorientált programozás alapjai. Rajzolás tollal, festés ecsettel. A koordinátarendszer Objektumok és osztályok Az objektumorientált programozás alapjai Rajzolás tollal, festés ecsettel A koordinátarendszer A vektorgrafikában az egyes grafikus elemeket (pontokat, szakaszokat, köröket, stb.)

Részletesebben

KOORDINÁTA-GEOMETRIA

KOORDINÁTA-GEOMETRIA XIV. Témakör: feladatok 1 Huszk@ Jenő XIV.TÉMAKÖR Téma A pont koordinátageometriája A kör koordinátageometriája KOORDINÁTA-GEOMETRIA A projekt típus ú feladatok tartalmi szintézise A feladat sorszáma Oldal

Részletesebben

Analízis III. gyakorlat október

Analízis III. gyakorlat október Vektoranalízis Analízis III. gyakorlat 216. október Gyakorló feladatok és korábbi zh feladatok V1. Igazolja az alábbi "szorzat deriválási" szabályt: div(ff) = F, f + f div(f). V2. Legyen f : IR 3 IR kétszer

Részletesebben

DOMBORZAT MODELL, TEREPMETSZET KÉSZÍTÉS (INTERPOLÁCIÓ)

DOMBORZAT MODELL, TEREPMETSZET KÉSZÍTÉS (INTERPOLÁCIÓ) DOMBORZAT MODELL, TEREPMETSZET KÉSZÍTÉS (INTERPOLÁCIÓ) Terepfelmérés során többnyire szórt pontokban kapunk magassági értékeket, melyekből szeretnénk digitális domborzatmodellt készíteni, szintvonalas

Részletesebben

anal2_03_szelsoertek_demo.nb 1

anal2_03_szelsoertek_demo.nb 1 anal szelsoertek_demo.nb parciális deriválás f x^ y^; f Sin x Cos y ; g D f, x ; h D f, y ; Show GraphicsArray PlotD f, x,,, y,,, AxesLabel StringForm "f ``", f, None, None, DisplayFunction Identity, PlotD

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 3. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 19 Skalármezők

Részletesebben

Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. Excel V. Haladó ismeretek. Makrók Űrlap vezérlőelemek Legördülő lista

Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. Excel V. Haladó ismeretek. Makrók Űrlap vezérlőelemek Legördülő lista Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. Excel V. Haladó ismeretek Makrók Űrlap vezérlőelemek Legördülő lista Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA

Részletesebben

11.5. Ellipszis és ellipszisív

11.5. Ellipszis és ellipszisív 11. Geometriai elemek 907 11.5. Ellipszis és ellipszisív Egy ellipszist geometriailag a fókuszpontjaival, valamint a nagy- és kistengelyei hosszának és irányának megadásával, egy ellipszisívet pedig ugyanezekkel

Részletesebben

Elektronikai tervezés Dr. Burány, Nándor Dr. Zachár, András

Elektronikai tervezés Dr. Burány, Nándor Dr. Zachár, András Elektronikai tervezés Dr. Burány, Nándor Dr. Zachár, András Elektronikai tervezés írta Dr. Burány, Nándor és Dr. Zachár, András Publication date 2013 Szerzői

Részletesebben

BME MOGI Gépészeti informatika 15.

BME MOGI Gépészeti informatika 15. BME MOGI Gépészeti informatika 15. 1. feladat Készítsen alkalmazást a y=2*sin(3*x-π/4)-1 függvény ábrázolására a [-2π; 2π] intervallumban 0,1-es lépésközzel! Ezen az intervallumon a függvény értékkészlete

Részletesebben

Csima Judit március 9. és 16.

Csima Judit március 9. és 16. Grafika Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2017. március 9. és 16. Csima Judit Grafika 1 / 18 Grafika általában Grafika az R-ben Van néhány alapvető package az ábrázolásra:

Részletesebben

MATLAB. 3. gyakorlat. Mátrixműveletek, címzések

MATLAB. 3. gyakorlat. Mátrixműveletek, címzések MATLAB 3. gyakorlat Mátrixműveletek, címzések Menetrend Kis ZH Mátrixok, alapműveletek Vezérlő szerkezetek Virtuális műtét Statisztikai adatok vizsgálata pdf Kis ZH Mátrixok, alapműveletek mátrix létrehozása,

Részletesebben

MATLAB grafika gyakorlatok

MATLAB grafika gyakorlatok MATLAB grafika gyakorlatok 2.01-es verzió Bevezető Az összefoglaló kettős céllalt készült. Egyrészt a MATLAB grafikus lehetőségeibe kiván nem teljes igényű bepillantást nyújtani, másrészt a különböző függvénytípusok

Részletesebben

3D számítógépes geometria és alakzatrekonstrukció

3D számítógépes geometria és alakzatrekonstrukció 3D számítógépes geometria és alakzatrekonstrukció 14. Digitális Alakzatrekonstrukció - Bevezetés http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr.

Részletesebben

M-Fájlok létrehozása MATLAB-ban

M-Fájlok létrehozása MATLAB-ban M-Fájlok létrehozása MATLAB-ban 1 Mi az M-fájl Annak ellenére, hogy a MATLAB rendkívül kifinomult és fejlett számológépként használható, igazi nagysága mégis abban rejlik, hogy be tud olvasni és végrehajtani

Részletesebben

Komputeralgebra rendszerek

Komputeralgebra rendszerek XVII. A Maple grafikus képeségei Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar 2010-2011 ősz Index I 1 Az alapok A plot és plot3d Implicit függvény ábrázolása Késleltetett

Részletesebben

Autodesk Inventor Professional New Default Standard.ipt

Autodesk Inventor Professional New Default Standard.ipt Adaptív modellezési technika használata Feladat: Készítse el az alábbi ábrán látható munkahenger összeállítási modelljét adaptív technikával! 1. Indítson egy új feladatot! New Default Standard.ipt 2. A

Részletesebben

A hordófelület síkmetszeteiről

A hordófelület síkmetszeteiről 1 A hordófelület síkmetszeteiről Előző dolgozatunkban melynek címe: Ismét egy érdekes mechanizmusról azon hiányérzetünknek adtunk hangot, hogy a hordószerű test görbe felülete nem kapott nevet. Itt elneveztük

Részletesebben

Számítógépes Grafika mintafeladatok

Számítógépes Grafika mintafeladatok Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk

Részletesebben

Klár Gergely 2010/2011. tavaszi félév

Klár Gergely 2010/2011. tavaszi félév Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2010/2011. tavaszi félév Tartalom Pont 1 Pont 2 3 4 5 Tartalom Pont Descartes-koordináták Homogén koordináták

Részletesebben

Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága

Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága Földrajzi koordináták Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága Topo-Karto-2 1 Földrajzi koordináták pólus egyenlítő

Részletesebben

Máté: Számítógépes grafika alapjai

Máté: Számítógépes grafika alapjai Világító tárgyak Környezeti fény Szórt visszaverődés Környezeti fény és diffúz visszaverődés együtt Tükröző visszaverődés fényességének meghatározása Gouraud-féle fényesség Phong-féle fényesség a. Világító

Részletesebben

Hajder Levente 2017/2018. II. félév

Hajder Levente 2017/2018. II. félév Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév Tartalom 1 A fény elektromágneses hullám Az anyagokat olyan színűnek látjuk, amilyen színű fényt visszavernek

Részletesebben

Tartalom. Tartalom. Anyagok Fényforrás modellek. Hajder Levente Fényvisszaverési modellek. Színmodellek. 2017/2018. II.

Tartalom. Tartalom. Anyagok Fényforrás modellek. Hajder Levente Fényvisszaverési modellek. Színmodellek. 2017/2018. II. Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév 1 A fény elektromágneses hullám Az anyagokat olyan színűnek látjuk, amilyen színű fényt visszavernek

Részletesebben

Kérdés Lista. A Magyarországon alkalmazott rajzlapoknál mekkora az oldalak aránya?

Kérdés Lista. A Magyarországon alkalmazott rajzlapoknál mekkora az oldalak aránya? Kérdés Lista információ megjelenítés :: műszaki rajz T A darabjegyzék előállítása során milyen sorrendben számozzuk a tételeket? Adjon meg legalább két módszert! T A Magyarországon alkalmazott rajzlapoknál

Részletesebben

3D-s számítógépes geometria és alakzatrekonstrukció

3D-s számítógépes geometria és alakzatrekonstrukció 3D-s számítógépes geometria és alakzatrekonstrukció 14. Digitális Alakzatrekonstrukció - Bevezetés http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav08 Dr. Várady Tamás,

Részletesebben

Széchenyi István Egyetem. Műszaki számítások. Matlab 4. előadás. Elemi függvények és saját függvények. Dr. Szörényi Miklós, Dr.

Széchenyi István Egyetem. Műszaki számítások. Matlab 4. előadás. Elemi függvények és saját függvények. Dr. Szörényi Miklós, Dr. Matlab 4. előadás Elemi függvények és saját függvények Dr. Szörényi Miklós, Dr. Kallós Gábor 2017 2018 Tartalom Bevezetés, motiváció Elemi függvények Trigonometrikus és exponenciális csoport Maximális/minimális

Részletesebben

Hajder Levente 2017/2018. II. félév

Hajder Levente 2017/2018. II. félév Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév Tartalom 1 Sugár és sík metszéspontja Sugár és háromszög metszéspontja Sugár és poligon metszéspontja

Részletesebben

S Z E K S Z Á R D T É R I N F O R M A T I K A I R E N D S Z E R

S Z E K S Z Á R D T É R I N F O R M A T I K A I R E N D S Z E R S Z E K S Z Á R D T É R I N F O R M A T I K A I R E N D S Z E R FELHASZNÁLÓI KÉZIKÖNYV (KIV O NAT 2018 JÚNIUS) SZOFTVERKÖVETELMÉNYEK A térinformatikai rendszer kezelőfelülete Autodesk MapGuide Enterprise

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geometra modellezés, alakzatrekonstrukcó, nyomtatás 17. 3D Szegmentálás http://cg.t.bme.hu/portal/node/312 https://www.vk.bme.hu/kepzes/targyak/viiiav54 Dr. Várady Tamás, Dr. Salv Péter BME, Vllamosmérnök

Részletesebben

A WORD 2016 szövegszerkesztő újdonságai

A WORD 2016 szövegszerkesztő újdonságai Alkalmazott Informatikai Tanszék SZÁMÍTÁSTECHNIKA I. dr.dudás László 6./1. A WORD 2016 szövegszerkesztő újdonságai A WORD dokumentum több személy általi egyidejű szerkeszthetősége felhőben (One Drive)

Részletesebben

Dierenciálgeometria feladatsor

Dierenciálgeometria feladatsor Dierenciálgeometria feladatsor 1. Görbék paraméterezése 1. Határozzuk meg az alábbi ponthalmazok egy paraméteres el állítását: a a, b középpontú, r sugarú kör a síkban; b y = mx + b egyenlettel leírt egyenes

Részletesebben

A geometriai optika. Fizika május 25. Rezgések és hullámok. Fizika 11. (Rezgések és hullámok) A geometriai optika május 25.

A geometriai optika. Fizika május 25. Rezgések és hullámok. Fizika 11. (Rezgések és hullámok) A geometriai optika május 25. A geometriai optika Fizika 11. Rezgések és hullámok 2019. május 25. Fizika 11. (Rezgések és hullámok) A geometriai optika 2019. május 25. 1 / 22 Tartalomjegyzék 1 A fénysebesség meghatározása Olaf Römer

Részletesebben

Geometriai alapok Felületek

Geometriai alapok Felületek Geometriai alapok Felületek Geometriai alapok Felületek matematikai definíciója A háromdimenziós tér egy altere Függvénnyel rögzítjük a pontok helyét Parabolavezérgörbéjű donga 4 f z x + a C Elliptikus

Részletesebben

Utoljára mentve: BME-MIT, :22:00, sorsz.: 3

Utoljára mentve: BME-MIT, :22:00, sorsz.: 3 Az útmutató célja Ezen útmutató célja, hogy rövid áttekintést adjon a mérési eredmények ábrázolásáról, értelmezéséről. A mérés nem csupán az elsődleges mérések elvégzéséből áll, hanem a mért eredmények

Részletesebben

Készítette: niethammer@freemail.hu

Készítette: niethammer@freemail.hu VLogo VRML generáló program Készítette: Niethammer Zoltán niethammer@freemail.hu 2008 Bevezetés A VLogo az általános iskolákban használt Comenius Logo logikájára épülő programozási nyelv. A végeredmény

Részletesebben

HASZNÁLT MATLAB FÜGGVÉNYEK LISTÁJA

HASZNÁLT MATLAB FÜGGVÉNYEK LISTÁJA HASZNÁLT MATLAB FÜGGVÉNYEK LISTÁJA BEVEZETÉS FÜGGVÉNYEI (1. GYAKORLAT) matlab helpjének kategóriái, vagy segítség megadott help témakörhöz, függvényhez rand Véletlen számok 01 között egyenletes eloszlásban

Részletesebben

Tűrések. 12. előadás

Tűrések. 12. előadás Tűrések 12. előadás A kész munkadarabok többé-kevésbé eltérnek a rajzon ábrázolt munkadaraboktól Az eltérés háromféle lehet: méreteltérés alakeltérés helyzeteltérés Tűrésmező Széchenyi Tűrésmező A körülmények

Részletesebben

Gépjármű kiegészítő biztosítások kötésének menete

Gépjármű kiegészítő biztosítások kötésének menete Gépjármű kiegészítő biztosítások kötésének menete 1. Általános információk Statisztikáink szerint egyre több partnerünk használja ki a lehetőséget, hogy a casco, illetve kötelező gépjármű felelősség biztosítások

Részletesebben

Objektum definiálása és szerkesztése

Objektum definiálása és szerkesztése 2. Előadás Objektum definiálása és szerkesztése A következőkben az egyes elemek definiálását, beillesztését és azok tulajdonságainak beállításait fogjuk megnézni. TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt

Részletesebben

Transzformációk. Grafikus játékok fejlesztése Szécsi László 2013.02.26. t05-transform

Transzformációk. Grafikus játékok fejlesztése Szécsi László 2013.02.26. t05-transform Transzformációk Grafikus játékok fejlesztése Szécsi László 2013.02.26. t05-transform Koordinátarendszerek: modelltér Koordinátarendszerek: világtér Koordinátarendszerek: kameratér up right z eye ahead

Részletesebben

DIGITÁLIS TEREPMODELL A TÁJRENDEZÉSBEN

DIGITÁLIS TEREPMODELL A TÁJRENDEZÉSBEN DIGITÁLIS TEREPMODELL A TÁJRENDEZÉSBEN DR. GIMESI LÁSZLÓ Bevezetés Pécsett és környékén végzett bányászati tevékenység felszámolása kapcsán szükségessé vált az e tevékenység során keletkezett meddők, zagytározók,

Részletesebben

Egyenletek, egyenlőtlenségek grafikus megoldása TK. II. kötet 25. old. 3. feladat

Egyenletek, egyenlőtlenségek grafikus megoldása TK. II. kötet 25. old. 3. feladat Egyenletek, egyenlőtlenségek grafikus megoldása TK. II. kötet. old.. feladat a. lépés: Az egyenlet bal oldalának ábrázolása függvényként.. lépés: Az egyenlet bal oldalának ábrázolása függvényként.. lépés:

Részletesebben

A MATLAB programozása. Féléves házifeladat. RGBdialog

A MATLAB programozása. Féléves házifeladat. RGBdialog A MATLAB programozása Féléves házifeladat RGBdialog Készítette: Till Viktor Konzulens: Dr. Varga Gábor 2005. tavasz 1. A feladat kitőzése A cél képek editálása a színösszetevık manipulálása alapján. A

Részletesebben

Végeselem módszer 7. gyakorlat

Végeselem módszer 7. gyakorlat SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem módszer 7. gyakorlat (kidolgozta: Szüle Veronika egyetemi ts.) Feladat: harang sajátrezgéseinek meghatározása 500 100 500 1000 250 250 1.

Részletesebben