Máté: Számítógépes grafika alapjai
|
|
- Liliána Katonané
- 9 évvel ezelőtt
- Látták:
Átírás
1 Világító tárgyak Környezeti fény Szórt visszaverődés Környezeti fény és diffúz visszaverődés együtt Tükröző visszaverődés fényességének meghatározása Gouraud-féle fényesség Phong-féle fényesség a. Világító tárgyak: Minden tárgynak saját intenzitású fénye van A megvilágítás egyenlete: I = k i k i - a tárgy saját fényénez intenzitása független a pont helyzetétől b. Környezeti (szórt - ambient) fény: Minden irányból egyenletes I = I a I a : környezeti fény intenzitása : a környezeti fény visszaverődési együtthatója (anyagtól függ), 0 1 c. Diffúz (diffuse) visszaverődés (Lambert-féle visszaverődés) Minden irányban ugyanannyi fényt ver vissza. A felület fényessége (I) függ a fényforrás iránya (L) és a felület normálisa (N) közötti szögtől: N, L egységvektorok I = I p cos Θ = I p I p : a pontforrás intenzitása : a szórt visszaverődés együtthatója (anyagtól függ), 0 1. Környezeti fény (b) és diffúz visszaverődés (c) együtt: I = I a + I p Ha a fényforrás és a tárgy közötti távolságot (d L ) is figyelembe vesszük, akkor: I = I a +I p /d L2 = f att (gyengülési faktor) Színes fény és felületek esetén a komponensekre: I R = I ar O dr + f att I pr O dr I G =... I B =... ahol O dr a tárgy szórt vörös komponense I pr a megvilágítás vörös komponens O dr visszaverődési hányad komponense... Általában: + f att ahol λ a hullámhossz 13_megvilágítás 1
2 Tükröző (specular) visszaverődés Fényes felületekről (tükörről) Tükröző (specular) visszaverődés Phong-féle modell: + f att [ cos θ + W (θ) cos n α ] n: a tükrözési visszaverődés kitevője (csillogás) (tompa) 1 n 1000 (éles fény) W(θ): a tükrözötten visszaverődő fény hányada, lehet konstans, k s (0 k s 1), Tükröző (specular) visszaverődés Megvilágítási modellek (példa) Phong-féle modell: A tárgy anyagát is figyelembe véve: + f att [ (N V) + k s O sλ (R V) n ] Több fényforrásra: + f att [ (N V) + k s O sλ (R V) n ] szórt diffúz tükröző, csillogás = 20 szórt + diffúz + tükröző 0. Minden pontban kiszámítju megvilágítási egyenlet szerinti intenzitást (nagyon drága módszer) 1. Konstans fényesség Az egész poligon ugyanolyan intenzitású. Jó, ha: - végtelen távoli fényforrás (N, L konstans) - végtelen távoli megfigyelő ( N, V konstans) - poligon oldalú felület 13_megvilágítás 2
3 2. Interpolált fényesség 3. Poligon-hálózat fényessége Az intenzitást a csúcsokban számított intenzitásból kapjuk interpolációval Az egyes poligonok konstans fényessége csak kiemelné a poligonok közötti éleket Érzékelt fényesség Mach-féle hatás Tényleges megvilágítás Az intenzitás változását eltúlozva érezzük ott, ahol az intenzitás folytonossága megszűnik. 3. Poligon-hálózat fényessége Mach-hatás Megoldás: minden poligon fényességét változó intenzitásúnak generáljuk Gouraud-féle fényesség Gouraud-féle fényesség 1. A poligonok normálisait ismerve határozzuk meg a csúcspontok normálisait (pl. az ott érintkező poligonok normálisainak átlagaként) 2. Számoljuk ki az intenzitásokat a csúcspontokban 3. Az élek mentén lineáris interpolációval számoljuz intenzitást 4. Az élek között (a pásztázó vonalak mentén) lineáris interpolációval számoljuz intenzitást 13_megvilágítás 3
4 Phong-féle fényesség Phong-féle fényesség: 1. A normálvektorokat számoljuk ki a csúcspontokban, 2. Interpolációval a csúcspontok között az élek mentén a normálvektorokat, 3. Interpolációval az élek között, 4. Intenzitás számítása Sokszor jobb, mint a Gouraud-féle módszer Phong- és Gouraud-féle fényesség Gouraud Phong Konstans Gouraud Phong Példák Példák n=100 Phong n=800 Gouraud Példák szórt Phong (szórt + diffúz) Világítási komponensek RGBA értékeivel definiálható: szórt (ambiens) diffúz: (diffuse) a megvilágított felületről minden irányban azonos a visszaverődés tükröző (specular): fényes felületről - csillogás Phong (szórt + diffúz + tükröző) 13_megvilágítás 4
5 A specifikálható fényforrások száma: max. 8 pozícionált: az objektum közelében van irányított: végtelen távoli a pozícióvektor negyedik koordinátája 0.0 A fényforrás fénysugara: szűk fókuszált széles void gllight{if}(enum light, enum pname, T param); void gllight{if}v(enum light, enum pname, T *param); light: kijelöli a fényforrást (GL_LIGHT0,..., GL_LIGHT7), pname: a beállítandó tulajdonság, param: a beállítandó tulajdonságnaz értéke. Param GL_AMBIENT GL_DIFFUSE GL_SPECULAR GL_POSITION GL_SPOT_DIRECTION GL_SPOT_EXPONENT GL_SPOT_CUTOFF GL_CONSTANT_ATTENUATION GL_LINEAR_ATTENUATION GL_QUADRATIC_ATTENUATION alapértelmezés (0.0, 0.0, 0.0, 1.0) (1.0, 1.0, 1.0, 1.0) (1.0, 1.0, 1.0, 1.0) (0.0, 0.0, 1.0, 0.0) (0.0, 0.0, -1.0) ,0 Jelentés A szórt fény RGBA intenzitása A diffúz fény RGBA intenzitása A tükröző fény RGBA intenzitása A fényforrás (x, y, z, w) pozíciója A fény (x, y, z) iránya Reflektorfény exponens Reflektorfény kúpszöge Konstans elnyelő faktor Lineáris elnyelő faktor Négyzetes elnyelő faktor A fényforrás távolságával a fény intenzitása gyengül OpenGL-ben a gyengítő faktor: f att = 1/(e k + e l VP + e n VP 2 ), e k : konstans gyengítő faktor GL_CONSTANT_ATTENUATION, e l : lineáris gyengítő faktor GL_LINEAR_ATTENUATION, e n : négyzetes gyengítő faktor GL_QUADRATIC_ATTENUATION, VP : a tárgy és a fényforrás távolsága Reflektorszerű fényforrás (OpenGL) Világítási modell (OpenGL) Kúpszög: Középvonal: Intenzitás eloszlás: GL_SPOT_CUTOFF GL_SPOT_DIRECTION GL_SPOT_EXPONENT void gllightmodel{if}(enum pname, T param); void gllightmodel{if}v(enum pname, T *param); pname: a világítási modell tulajdonság kijelölése: GL_LIGHT_MODEL_AMBIENT a szórt megvilágítás értékeinek megadása Alapértelmezés: RGBA = (0.2, 0.2, 0.2, 1.0) 13_megvilágítás 5
6 Világítási modell (OpenGL) GL_LIGHT_MODEL_TWO_SIDE: egy- vagy kétoldalas világítási számításokat kell alkalmazni a poligonoknál. Ha param=0.0, akkor csaz elülső oldal világít, különben mindkettő GL_LIGHT_MODEL_LOCAL_VIEWER: hogyan kell kiszámítani ki a spekuláris (tükröző) fényvisszaverődés szögét Alapértelmezés: 0.0: a z tengely irányából, más érték esetén a nézőpontból Az objektumok tulajdonságai: szín komponensek (meghatározzá fénykomponensek visszavert hányadát), fényvisszaverődés: szórt, diffúz és tükröző fény számára, az objektumok saját fénye, emissziós érték. Szín: void glcolormaterial(glenum face, Glenum mode); face: GL_FRONT, GL_BACK, GL_FRONT_AND_BACK Alapértelmezés: GL_FRONT_AND_BACK mode: GL_EMISSION, GL_AMBIENT, GL_SPECULAR, GL_DIFFUSE, GL_AMBIENT_AND_DIFFUSE Alapértelmezés: GL_AMBIENT_AND_DIFFUSE void glmaterial{if}(enum face, enum pname, T param); void glmaterial{if}v(enum face, enum pname,t params); face: GL_FRONT, GL_BACK, GL_FRONT_AND_BACK pname: a specifikálandó paraméter neve, param(s): az érték, vagy értékek, amelyre a pname által jelzett paramétert be kell állítani. Feladat (OpenGL) Paraméter GL_AMBIENT GL_DIFFUSE Alapértelmezés (0.2, 0.2, 0.2, 1.0) (0.8, 0.8, 0.8, 1.0) Jelentés szórt RGBA fényvisszaverés diffúz RGBA fényvisszaverés Rajzoljuk meg egy dobókocka perspektivikus képét megvilágítással és a kocka saját színeivel! GL_SPECULAR (0.0, 0.0, 0.0, 1.0) tükröző RGBA fényvisszaverés GL_EMISSION (0.0, 0.0, 0.0, 1.0) emissziós fény intenzitás GL_SHININESS 0 tükröző exponens GL_AMBIENT_AND_DIFFUSE szórt és diffúz szín együtt GL_COLOR_INDEXES (0, 1, 1) szórt, diffúz és tüktöző szín indexek 13_megvilágítás 6
Számítógépes grafika. XIV. rész
ismerd meg! Számítógépes grafika XIV. rész Normálisok A Firka előző lapszámában a fénytan törvényeit ismételtük át, és láttuk, hogy a megvilágítás kiszámításánál fontos szerepet játszanak a normálisok
Máté: Számítógépes grafika alapjai
Tükröző (specular) visszaverődés Tükröző (specular) visszaverődés Fényes felületekről (tükörről) Phong-féle modell: I λ = I aλ k a + f att I pλ [ k d cos θ + W (θ) cos n α ] n: a tükrözési visszaverődés
Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter
Infomáció megjelenítés Számítógépes ábázolás D. Iványi Péte Megvilágítás, ányékolás Realisztikus képhez ányékolás kell Modellezés összetett nagy számítási igenyű Megvilágítás, ányékolás OpenGL egyszeűsített
Sugárkövetési algoritmusok (2. rész)
Sugárkövetési algoritmusok (2. rész) Ismét jelentkezik a sugarak szerelmeseinek szóló cikkünk, melyben tovább folytatjuk a fények birodalmában megkezdett utazásunkat. A fénysugarak rekurzív követésével
Irrlicht 3D. Programfejlesztés az OpenGL segítségével (2. rész) Fejlesztõi sarok
Programfejlesztés az OpenGL segítségével (2. rész) Irrlicht 3D Az elõzõ OpenGL cikkben megismerkedtünk a GLUT-tal és az OpenGL alapjaival. Most egy kis kitérõt teszünk a játékfejlesztés felé, megismerkedünk
Máté: Számítógépes grafika alapjai
Téglalap kitöltése Kör, ellipszis kitöltése Területi primitívek: Zárt görbék által határolt területek (pl. kör, ellipszis, poligon) Megjeleníthetők a) Csak a határvonalat reprezentáló pontok kirajzolásával
2012.11.27. Maga a tématerület így nagyon nagy. A fények pontos fizikai szimulációja kimondottan számításigényes
Fények a számítógépes grafikában Dr. Mileff Péter A fények és árnyékok területe különösen frekventált terület a számítógépes vizualizációban. Az utóbbi években ez tovább fokozódott Oka a hardver folyamatos
2. előadás: További gömbi fogalmak
2 előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak Valamely gömbi főkör ívének α azimutja az ív egy tetszőleges pontjában az a szög, amit az ív és a meridián érintői zárnak be egymással
QGIS tanfolyam (ver.2.0)
QGIS tanfolyam (ver.2.0) II. Címkézés, Szűrés, Szelektálás 2014. január-február Összeállította: Bércesné Mocskonyi Zsófia Duna-Ipoly Nemzeti Park Igazgatóság Attribútumok eszköztár Elem azonosítás - kiválasztott
A bemutatott példa a Phong modell egy egyszerűsített változatát alkalmazza a Blinn-Phong-féle megközelítést
Dr. Mileff Péter 2 Pontosabb vertex shader alapú árnyalás Phong-féle Cél: A korábbi modelltől komplexebb árnyalási modell áttekintése és megvalósítása, ahol már felhasználjuk a felület anyagtulajdonságait
Komplex számok. 2014. szeptember 4. 1. Feladat: Legyen z 1 = 2 3i és z 2 = 4i 1. Határozza meg az alábbi kifejezés értékét!
Komplex számok 014. szeptember 4. 1. Feladat: Legyen z 1 i és z 4i 1. (z 1 z ) (z 1 z ) (( i) (4i 1)) (6 9i 8i + ) 8 17i 8 + 17i. Feladat: Legyen z 1 i és z 4i 1. Határozza meg az alábbi kifejezés értékét!
Differenciaegyenletek
Differenciaegyenletek Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Losonczi László (DE) Differenciaegyenletek 1 / 24 3.1 Differenciaegyenlet fogalma, egzisztencia- és unicitástétel
Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint
TÁMOP-.1.4-08/2-2009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint Vasvár,
Máté: Számítógépes grafika alapjai
LÁTHATÓ FELÜLETEK MEGHATÁROZÁSA LÁTHATÓ FELÜLETEK MEGHATÁROZÁSA szolgáló általános algoritmusok Látható felszín algoritmusok Adott 3D tárgyak egy halmaza, és egy projekció specifikációja. Mely vonalak
Területi primitívek: Zárt görbék által határolt területek (pl. kör, ellipszis, poligon)
Grafikus primitívek kitöltése Téglalap kitöltése Poligon kitöltése Kör, ellipszis kitöltése Kitöltés mintával Grafikus primitívek kitöltése Területi primitívek: Zárt görbék által határolt területek (pl.
Területi primitívek: Zárt görbék által határolt területek (pl. kör, ellipszis, poligon)
Grafikus primitívek kitöltése Téglalap kitöltése Kör, ellipszis kitöltése Kitöltés mintával Grafikus primitívek kitöltése A tertületi primitívek zárt görbével határolt területek, amelyeket megjelníthetünk
Készítette: niethammer@freemail.hu
VLogo VRML generáló program Készítette: Niethammer Zoltán niethammer@freemail.hu 2008 Bevezetés A VLogo az általános iskolákban használt Comenius Logo logikájára épülő programozási nyelv. A végeredmény
Területi primitívek: Zárt görbék által határolt területek (pl. kör, ellipszis, poligon) b) Minden belső pont kirajzolásával (kitöltött)
Grafikus primitívek kitöltése Téglalap kitöltése Poligon kitöltése Kör, ellipszis kitöltése Kitöltés mintával Grafikus primitívek kitöltése Területi primitívek: Zárt görbék által határolt területek (pl.
Az aperturaantennák és méréstechnikájuk
Az aperturaantennák és méréstechnikájuk (tanulmány) Szerzők: Nagy Lajos Lénárt Ferenc Bajusz Sándor Pető Tamás Az aperturaantennák és méréstechnikájuk A vezetékmentes hírközlés, távközlés és távmérés egyik
2x2-es Rubik kocka kirakó 3D-s alkalmazás készítése
2x2-es Rubik kocka kirakó 3D-s alkalmazás készítése 1 Tartalomjegyzék Bevezetés...5 1. OpenGL...7 1.1. Az OpenGL-ről általánosan...7 1.2. Az OpenGL lényegesebb funkciói és használata...7 1.2.1. Vetítési
Távérzékelés - alapfogalmak
Távérzékelés - alapfogalmak Dr. Berke József www.digkep.hu Kvark Bt., Keszthely Tartalom A képfeldolgozás fogalma Távérzékelés fogalma Hazai és nemzetközi kitekintések Légi- és űrfelvételek alapvető jellemzői
1. Fénysugár követő és festő algoritmus (3p) fénysugárkövető módszer Festő algoritmus: 2. Fények, fény, fény az opengl-ben, anyagtulajdonság (12pt)
1. Fénysugár követő és festő algoritmus (3p) A fénysugárkövető módszer azt használja ki, hogy a kép pontokból (pixelekből) épül fel. Alapötlete az, hogy meghatározza az ábrázolandó objektumnak az a pontját,
ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK
Építészeti és építési alapismeretek középszint 1212 ÉRETTSÉGI VIZSGA 2012. május 25. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS
Méréssel kapcsolt 3. számpélda
Méréssel kapcsolt 3. számpélda Eredmények: m l m 1 m 3 m 2 l l ( 2 m1 m2 m l = 2 l2 ) l 2 m l 3 = m + m2 m1 Méréssel kapcsolt 4. számpélda Állítsuk össze az ábrán látható elrendezést. Használjuk a súlysorozat
OpenGL. Bevezetés. Hasznos oldalak. Tematika OpenGL. Előadás feldolgozása
OpenGL http://www.opengl.org/ 1 Bevezetés Tematika OpenGL Primitívek létrehozása Előadás feldolgozása Hasznos oldalak http://www.opengl.org http://www.opengl.org//documenta tion/specs/glut/index.html http://www.mesa3d.org
1 Újdonságok a 3D szerkesztő módban
ArchiTECH.PC V8.0 verzió újdonságai 1 - Újdonságok a 3D szerkesztő módban 2 - Új eszközök 3 - Új menüparancsok 4 - Új paraméterek 5 - PDF import 6 - Információs jelek technikai jellegű módosítása a 2D
2. Interpolációs görbetervezés
2. Interpolációs görbetervezés Gondoljunk arra, hogy egy grafikus tervező húz egy vonalat (szabadformájú görbét), ezt a vonalat nekünk számítógép által feldolgozhatóvá kell tennünk. Ennek egyik módja,
2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika
2. OPTIKA 2.1. Elmélet Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert fényt bocsátanak ki, vagy a rájuk eső fényt visszaverik, és ezt a fényt a szemünk érzékeli. A
DEME FERENC okl. építőmérnök, mérnöktanár RÁCSOS TARTÓK
we-lap : www.hild.gyor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STTIK 47. RÁCSOS TRTÓK rácsos tartók két végükön csuklókkal összekötött merev testekől állnak. z így
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 0 ÉRETTSÉGI VIZSGA 00. február. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Matematika emelt szint Fontos tudnivalók Formai
Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =
2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög
Számítógépes Graka - 4. Gyak
Számítógépes Graka - 4. Gyak Jámbori András andras.jambori@gmail.com 2012.03.01 Jámbori András andras.jambori@gmail.com Számítógépes Graka - 4. Gyak 1/17 Emlékeztet A múlt órákon tárgyaltuk: WinAPI programozás
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 161 ÉRETTSÉGI VIZSGA 016. május. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben
Atomfizika ψ ψ ψ ψ ψ E z y x U z y x m = + + + ),, ( h ) ( ) ( ) ( ) ( r r r r ψ ψ ψ E U m = + Δ h z y x + + = Δ ),, ( ) ( z y x ψ =ψ r Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet),
A poláros fény rejtett dimenziói
AZ ATOMOKTÓL A CSILLAGOKIG HORVÁTH GÁBOR BARTA ANDRÁS SUHAI BENCE VARJÚ DEZSÕ A poláros fény rejtett dimenziói Elsõ rész Sarkított fény a természetben, polarizációs mintázatok Mivel az emberi szem fotoreceptorai
Sugárzási alapismeretek
Sugárzási alapismeretek Energia 10 20 J Évi bejövő sugárzásmennyiség 54 385 1976-os kínai földrengés 5006 Föld széntartalékának energiája 1952 Föld olajtartalékának energiája 179 Föld gáztartalékának energiája
Széchenyi István Egyetem, 2005
Gáspár Csaba, Molnárka Győző Lineáris algebra és többváltozós függvények Széchenyi István Egyetem, 25 Vektorterek Ebben a fejezetben a geometriai vektorfogalom ( irányított szakasz ) erős általánosítását
Fény kölcsönhatása az anyaggal:
Fény kölcsönhatása az Fény kölcsönhatása az : szórás, abszorpció, emisszió Kellermayer Miklós Fényszórás A fényszórás mérése, orvosi alkalmazásai Lord Rayleigh (1842-1919) J 0 Light Fényforrás source Rayleigh
3D Grafika+képszintézis
D Grafikaképsintéis P . Computer Integrated Manufacturing (Beveetés ea. CAD ADATOK CAQ CAPP CAP CAM CAE Computer Aided Design Computer Aided Manufacturing Computer Aided Engineering Computer Aided Processing
A poláros fény rejtett dimenziói
HORVÁTH GÁBOR BARTA ANDRÁS SUHAI BENCE VARJÚ DEZSÕ A poláros fény rejtett dimenziói Elsõ rész Sarkított fény a természetben, polarizációs mintázatok Mivel az emberi szem fotoreceptorai érzéketlenek a fény
TERMÉSZETTUDOMÁNY JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Természettudomány középszint 1311 ÉRETTSÉGI VIZSGA 2013. május 27. TERMÉSZETTUDOMÁNY KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Útmutató a dolgozatok
Vasbeton gerendák kísérleti és elméleti nyírásvizsgálata
Vasbeton gerendák kísérleti és elméleti nyírásvizsgálata DRASKÓCZY András egy.adjunktus BME, Szilárdságtani és Tartószerkezeti Tanszék EMT 2011 Csíksomlyó Draskóczy A.: Vasbeton gerendák nyírása 1. oldal
OpenGL. OpenGL SuperBible Second Edition
OpenGL OpenGL SuperBible Second Edition http://www.inf.u-szeged.hu/~h837106/ 1 Első gyakorlat 2 Bevezetés! Tematika! OpenGL! Primitívek létrehozása!! Előadás feldolgozása! Hasznos oldalak www.opengl.org
EÖTVÖS LABOR EÖTVÖS JÓZSEF GIMNÁZIUM TATA FELADATLAPOK FIZIKA. 11. évfolyam. Gálik András. A Tatai Eötvös József Gimnázium Öveges Programja
FELADATLAPOK FIZIKA 11. évfolyam Gálik András ajánlott korosztály: 11. évfolyam 1. REZGÉSIDŐ MÉRÉSE fizika-11-01 1/3! BALESETVÉDELEM, BETARTANDÓ SZABÁLYOK, AJÁNLÁSOK A mérés során használt eszközökkel
Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter
Információ megjelenítés Számítógépes ábrázolás Dr. Iványi Péter Raszterizáció OpenGL Mely pixelek vannak a primitíven belül fragment generálása minden ilyen pixelre Attribútumok (pl., szín) hozzárendelése
Széchenyi István Egyetem. Alkalmazott Mechanika Tanszék
Széchenyi István Egyetem Szerkezetek dinamikája Alkalmazott Mechanika Tanszék Elméleti kérdések egyetemi mesterképzésben (MSc) résztvev járm mérnöki szakos hallgatók számára 1. Merev test impulzusának
Hajder Levente 2017/2018. II. félév
Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév Tartalom 1 A fény elektromágneses hullám Az anyagokat olyan színűnek látjuk, amilyen színű fényt visszavernek
Tartalom. Tartalom. Anyagok Fényforrás modellek. Hajder Levente Fényvisszaverési modellek. Színmodellek. 2017/2018. II.
Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév 1 A fény elektromágneses hullám Az anyagokat olyan színűnek látjuk, amilyen színű fényt visszavernek
A kvantummechanika általános formalizmusa
A kvantummechanika általános formalizmusa October 4, 2006 Jelen fejezetünk célja bevezetni egy általános matematikai formalizmust amelynek segítségével a végtelen dimenziós vektorterek elegánsan tárgyalhatók.
Az adatmátrix, az adatok átalakítása
2 Az adatmátrix, az adatok átalakítása (Az elsõ bátortalan lépések... de még sok minden rejtve marad) A mintavételezés során, mint láttuk, a mintavételi egységeket változók segítségével írjuk le. A kapott
EMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2006. május 9. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2006. május 9. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika
Modern Fizika Laboratórium Fizika BSc 22. Kvantumradír
Modern Fizika Laboratórium Fizika BSc 22. Kvantumradír Mérést végezték: Márkus Bence Gábor Kálmán Dávid Kedd délelőtti csoport Mérés ideje: 05/15/2012 Beadás ideje: 05/26/2012 Érdemjegy: 1 1. A mérés rövid
EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára
EGÉSZTESTSZÁMLÁLÁS Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára Zagyvai Péter - Osváth Szabolcs Bódizs Dénes BME NTI, 2008 1. Bevezetés Az izotópok stabilak vagy radioaktívak
Megjelenítési funkciók
Pap Lőrinc 2010. április 19. Megjelenítési funkciók A ma használatos Földrajzi Információs Rendszerek (geographic information system, GIS) egyik funkciója még mindig a hardcopy térképek előállítása. Ezzel
Természetes számok: a legegyszerűbb halmazok elemeinek. halmazokat alkothatunk, ezek elemszámai természetes 3+2=5
1. Valós számok (ismétlés) Természetes számok: a legegyszerűbb halmazok elemeinek megszámlálására használjuk őket: N := {1, 2, 3,...,n,...} Például, egy zsák bab felhasználásával babszemekből halmazokat
Fogalmi alapok Mérlegegyenletek
1. Fogalmi alapok Mérlegegyenletek Utolsó módosítás: 2013. február 11. A transzportfolyamatokról általában 1 A természetben lezajló folyamatok leírására szolgáló összefoglaló elmélet, amely attól függetlenül
Készítette: Bujnóczki Tibor Lezárva: 2005. 01. 01.
VILÁGÍTÁSTECHNIKA Készítette: Bujnóczki Tibor Lezárva: 2005. 01. 01. ANYAGOK FELÉPÍTÉSE Az atomok felépítése: elektronhéjak: K L M N O P Q elektronok atommag W(wolfram) (Atommag = proton+neutron protonok
Radiometria, fotometria, színmérés. Az anyagokat Prof. Schanda János jegyzeteiből összeállította: Várady Géza
Radiometria, fotometria, színmérés Az anyagokat Prof. Schanda János jegyzeteiből összeállította: Várady Géza Radiometria, fotometria, színmérés A radiometria az optikai sugárzást fizikai mennyiségek formájában
Kísérletek mikrohullámokkal I-II.
A kísérlet célkitűzései: Az elektromágneses hullámok tulajdonságainak vizsgálata Diákradar készülékkel. Eszközszükséglet: TZA 1996 Diákradar készlet vonalzó Eszközismertető Kísérletünkhöz a Diákradar készüléket
Modern Fizika Labor. Értékelés: A mérés dátuma: A mérés száma és címe: 2005.10.05. A Zeeman-effektus. A beadás dátuma: A mérést végezte:
Modern Fizika Labor A mérés dátuma: 005.10.05. A mérés száma és címe: 6. A Zeeman-effektus Értékelés: A beadás dátuma: 005.10.1. A mérést végezte: Orosz Katalin Tóth Bence 1 Az atomok mágneses momentuma
Miért használjuk? Ásványok keresztezett nikolnál
Ásványok keresztezett nikolnál Miért használjuk? Ásványmeghatározás (nem találgatás) Kızettípus meghatározása Kristályosodási sorrend meghatározása Deformációtörténet Kızetelváltozások jellemzése Élvezetes,
4. sz. Füzet. A hibafa számszerű kiértékelése 2002.
M Ű S Z A K I B I Z O N S Á G I F Ő F E L Ü G Y E L E 4. sz. Füzet A hibafa számszerű kiértékelése 00. Sem a Műszaki Biztonsági Főfelügyelet, sem annak nevében, képviseletében vagy részéről eljáró személy
SZENT ISTVÁN EGYETEM BELSŐÉGÉSŰ MOTOROK MŰKÖDÉSI MIKROFOLYAMATAINAK ANALÍZISE A GÉPÜZEMELTETÉS CÉLJÁBÓL. Doktori értekezés. Bártfai Zoltán.
SZENT ISTVÁN EGYETEM BELSŐÉGÉSŰ MOTOROK MŰKÖDÉSI MIKROFOLYAMATAINAK ANALÍZISE A GÉPÜZEMELTETÉS CÉLJÁBÓL Doktori értekezés Bártfai Zoltán Gödöllő 001 A doktori program címe: Agrárenergetika és Környezetgazdálkodás
A HÉJSZERKEZETEK TERVEZÉSÉNEK GYAKORLATI KÉRDÉSEI 1. A NYOMÁSTARTÓ EDÉNYEK TERVEZÉSÉNEK ÁLTALÁNOS ELVEI
Gépészeti szerkezetek tervezése (GEGEMGGT) Gyakorlati útmutató 1/55 A HÉJSZERKEZETEK TERVEZÉSÉNEK GYAKORLATI KÉRDÉSEI Kollár György tudományos munkatárs, BME Gép- és Terméktervezés Tanszék A lemez- és
A Budai Vár-barlangot ábrázoló térképek összehasonlító elemzése
Eötvös Loránd Tudományegyetem Informatikai Kar Térképtudományi és Geoinformatikai Tanszék A Budai Vár-barlangot ábrázoló térképek összehasonlító elemzése Havasi Attila térképész szakos hallgató Témavezető:
MÉRSÉKLETI NYÚLÁS hossz mérséklet változás t (oc) 100 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00
HŐMÉRSÉKLETI NYÚLÁS Csőhossz Hőmérséklet változás t ( o C) m 10 20 30 40 50 60 70 80 90 100 0,10 0,01 0,03 0,04 0,05 0,07 0,08 0,09 0,10 0,12 0,13 0,20 0,03 0,05 0,08 0,10 0,13 0,16 0,18 0,20 0,23 0,26
Akuszto-optikai fénydiffrakció
Bevezetés Akuszto-optikai fénydiffrakció A Brillouin által megjósolt akuszto-optikai kölcsönhatást 1932-ben mutatta ki Debye és Sears. Az effektus felhasználását, vagyis akuszto-optikai elven működő eszközök
ISMÉT FÖLDKÖZELBEN A MARS!
nikai Vállalat, Audió, EVIG Egyesült Villamosgépgyár, Kismotor- és Gépgyár, Szerszámgép Fejlesztési Intézet (Halásztelek), Pestvidéki Gépgyár (Szigethalom), Ikladi ûszeripari ûvek (II), Kôbányai Vas- és
Számítógépes grafika
Számítógépes grafika XVII. rész A grafikai modellezés A modellezés A generatív számítógépes grafikában és a képfeldolgozás során nem a valódi objektumokat (valóságbeli tárgyakat), hanem azok egy modelljét
Modellezési transzformáció: [r lokális,1] T M = [r világ,1] Nézeti transzformáció: [r világ,1] T v = [r képernyo,1]
Inkrementális képsintéis Inkrementális 3D képsintéis Sirma-Kalos Lásló Árnalás, láthatóság nehé, különösen általános heletu objektumokra koherencia: oldjuk meg nagobb egségekre feleslegesen ne sámoljunk:
Radarmeteorológia. Makra László
Radarmeteorológia Makra László TARTALOM Bevezetés Interpretáció A radarok története Radar hardver Hogyan működik? Elmélet Gyakorlat Visszaverődési kép Radartípusok 1-2. Hagyományos radar Doppler radar
Munkapiaci áramlások Magyarországon
Kónya István MTA-KRTK Közgazdaságtudományi Intézet és Közép-európai Egyetem 2015.11.13 MTA KRTK KTI Motiváció Munkapiaci áramlások központi szerepe Munkapiac keresési modellje Munkanélküliség és aktivitás
MODELER FELHASZNÁLÓI KÉZIKÖNYV
MODELER FELHASZNÁLÓI KÉZIKÖNYV DesignSoft 1067 Budapest Csengery u. 53 Tel.:269-1206 Fax:332-7777 www.designsoftware.com 1 2 Előszó A MODELER egy háromdimenziós modellező program. A segítségével előállított
Máté: Számítógépes grafika alapjai
LÁTHATÓ FELÜLETEK MEGHATÁROZÁSA LÁTHATÓ FELÜLETEK MEGHATÁROZÁSA szolgáló általános algoritmusok Adott 3D tárgyak egy halmaza, és egy projekció specifikációja. Mely vonalak és felületek lesznek láthatók?
Grafika. Egyváltozós függvény grafikonja
Grafika Egyváltozós függvény grafikonja Egyváltozós függvény grafikonját a plot paranccsal tudjuk kirajzolni. Elsı paraméter egy függvény képlete, a második paraméter változónév=intervallum alakú: plot(x^3-16*x+2,x=-6..6);
Az épületfizika tárgya. Az épületfizika tantárgy törzsanyagában szereplı témák
Az épületfizika tárgya Az épületfizika tantárgy törzsanyagában szereplı témák A tárgyalt jelenségek zöme transzportfolyamat Lényege: valamilyen potenciálkülönbség miatt valami áramlik Az épületfizikában
Prizmás impulzuskompresszorok hômérsékleti stabilitásának modellezése
Prizmás impulzuskompresszorok hômérsékleti stabilitásának modellezése Tudományos diákköri dolgozat Írta: DOMBI PÉTER Témavezetô: DR. OSVAY KÁROLY JATE Optikai és Kvantumelektronikai Tanszék Szeged 1998.
Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2009 tavasz
Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2009 tavasz Dátum Téma beadandó Feb 12Cs Konvolúció (normális, Cauchy,
Gépgyártástechnológia alapjai 2012/13 I. félév
Gépgyártástechnológia alapjai 2012/13 I. félév 2BM, 2BMR, 2BF (www.uni miskolc.hu/~ggytmazs) Lineáris méretlánc L Általános méretlánc Szerkesztési bázisok SZB Felfogási bázisok FB TB GÉP? A héten laborgyakorlat!!
A figurális számokról (I.)
A figurális számokról (I.) Tuzson Zoltán, Székelyudvarhely A figurális számok felfedezését a pitagoreusoknak tulajdonítják, mert k a számokat kavicsokkal, magokkal szemléltették. Sok esetben így jelképezték
Akusztika terem. Dr. Reis Frigyes előadásának felhasználásával
Akusztika terem Dr. Reis Frigyes előadásának felhasználásával Hangenergia-eloszlás a különböző jellegű zárt terekben - a hangteljesítményszint és a hangnyomásszint közötti összefüggést számos tényező befolyásolja:
SZÍNES KÉPEK FELDOLGOZÁSA
SZÍNES KÉPEK FELDOLGOZÁSA Színes képek feldolgozása Az emberi szem többezer színt képes megkülönböztetni, de csupán 20-30 különböző szürkeárnyalatot A színes kép feldolgozása két csoportba sorolható -
A csavarvonalról és a csavarmenetről
A csavarvonalról és a csavarmenetről A témáoz kapcsolódó korábbi dolgozatunk: Ricard I. A Gépészeti alapismeretek tantárgyban a csavarok mint gépelemek tanulmányozását a csavarvonal ismertetésével kezdjük.
Tevékenység: Gyűjtse ki és tanulja meg a kötőcsavarok szilárdsági tulajdonságainak jelölési módját!
Csavarkötés egy külső ( orsó ) és egy belső ( anya ) csavarmenet kapcsolódását jelenti. A következő képek a motor forgattyúsházában a főcsapágycsavarokat és a hajtókarcsavarokat mutatják. 1. Kötőcsavarok
P. Nagy József, Akadémiai Kiadó A hangszigetelés elmélete és gyakorlata
1. Ajánlott irodalom P. Nagy József, Akadémiai Kiadó A hangszigetelés elmélete és gyakorlata. Alafogalmak, hullám jellemzői Hullám jellemzői eriódusidő (T) [s] frekvenciája (f) [Hz] hullámhossz (λ) [m]
Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter
Információ megjelenítés Számítógépes ábrázolás Dr. Iványi Péter (adat szerkezet) float x,y,z,w; float r,g,b,a; } vertex; glcolor3f(0, 0.5, 0); glvertex2i(11, 31); glvertex2i(37, 71); glcolor3f(0.5, 0,
Vetülettani és térképészeti alapismeretek
Vetülettani és térképészeti alapismeretek A geodéziában - mint ismeretes - a földalak első megközelítője a geoid. Geoidnak nevezzük a nehézségi erőtér potenciáljának azt a szintfelületét, amelynek potenciálértéke
Látható felszín algoritmusok
Látható felszín algoritmusok Látható felszínek Z-buffer algoritmus Festő algoritmus A látható felszín meghatározására szolgáló algoritmusok A tárgyak takarják-e egymást? Mely tárgy látható? Pontokra: P
Farkas Gyula Szakkollégium Bit- és számtologatók. DirectX9 1. Szín, fény, textúra 2. Stencil buffer használata (tükörkép, hamis árnyék)
Farkas Gyula Szakkollégium Bit- és számtologatók DirectX9 1. Szín, fény, textúra 2. Stencil buffer használata (tükörkép, hamis árnyék) 2006. május 10., 23. Róth Ágoston Vertex vs ColorVertex exe Eddig:
Felületábrázolás és alkalmazásai Maple-ben
Debreceni Egyetem Informatikai Kar Felületábrázolás és alkalmazásai Maple-ben Témavezető: Dr. Hoffmann Miklós egyetemi docens Készítette: Szlahorek András informatikatanár Debrecen 2009 Tartalomjegyzék
Tevékenység: Olvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDEO (A ragasztás ereje)
lvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDE (A ragasztás ereje) A ragasztás egyre gyakrabban alkalmazott kötéstechnológia az ipari gyakorlatban. Ennek oka,
Loványi István vizsgakérdései kidolgozva (béta)
Loványi István vizsgakérdései kidolgozva (béta) 1. Morfológiai képfeldolgozás elmélete 1. Alapvető halmazműveletek, tulajdonságaik Műveletek: egyesítés (unió) metszet negált összetett műveletek... Tulajdonságok:
SHADOW MAPPING MODERN GPU-KON
Debreceni Egyetem Informatika Kar SHADOW MAPPING MODERN GPU-KON Témavezet: Dr. Schwarcz Tibor Egyetemi adjunktus Készítette: Lehcz Kornél Programozó matematikus Debrecen 27 Tartalomjegyzék Bevezetés...
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Gráfelmélet II. Gráfok végigjárása
Gráfelmélet II. Gráfok végigjárása DEFINÍCIÓ: (Séta) A G gráf egy olyan élsorozatát, amelyben a csúcsok és élek többször is szerepelhetnek, sétának nevezzük. Egy lehetséges séta: A; 1; B; 2; C; 3; D; 4;
Körmozgás és forgómozgás (Vázlat)
Körmozgás és forgómozgás (Vázlat) I. Egyenletes körmozgás a) Mozgás leírását segítő fogalmak, mennyiségek b) Egyenletes körmozgás kinematikai leírása c) Egyenletes körmozgás dinamikai leírása II. Egyenletesen
A műszaki rezgéstan alapjai
A műszaki rezgéstan alapjai Dr. Csernák Gábor - Dr. Stépán Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanikai Tanszék 2012 Előszó Ez a jegyzet elsősorban gépészmérnök hallgatóknak
BISZTATIKUS PASSZÍV RÁDIÓLOKÁCIÓ
Bunkóczi Sándor Papp Tamás BISZTATIKUS PASSZÍV RÁDIÓLOKÁCIÓ H. Hertz 1887-ben állított elő először elektromágneses hullámot, és írta le annak terjedési tulajdonságait. 1900-ban Nikola Tesla próbálta meg
a fizikai (hullám) optika
A fény f hullám m természete a fizikai (hullám) optika Geometriai optika Optika Fizikai optika Fény-anyag kölcsönhatás Összeállította: CSISZÁR IMRE SZTE, Ságvári E. Gyakorló Gimnázium SZEGED, 006. szeptember
Elektromágneses hullámok - Hullámoptika
Bevezetés a modern fizika fejezeteibe 2. (c) Elektromágneses hullámok - Hullámoptika Utolsó módosítás: 2015. január 17. 1 Az elektromágneses hullámok visszaverődési és törési törvényei (1) Kérdés: Mi történik
JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Újgörög nyelv emelt szint 0611 ÉRETTSÉGI VIZSGA 2006. november 3. ÚJGÖRÖG NYELV EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM I. Olvasott szöveg