Területi primitívek: Zárt görbék által határolt területek (pl. kör, ellipszis, poligon) b) Minden belső pont kirajzolásával (kitöltött)
|
|
- Virág Kissné
- 8 évvel ezelőtt
- Látták:
Átírás
1 Grafikus primitívek kitöltése Téglalap kitöltése Poligon kitöltése Kör, ellipszis kitöltése Kitöltés mintával
2 Grafikus primitívek kitöltése Területi primitívek: Zárt görbék által határolt területek (pl. kör, ellipszis, poligon) Megjelenítendők a) Csak a határvonalat reprezentáló pontok kirajzolásával (kitöltetlen) b) Minden belső pont kirajzolásával (kitöltött)
3 Grafikus primitívek kitöltése Alapkérdés: Mely képpontok tartoznak a grafikus primitívhez? Páratlan paritás szabálya: Páros számú metszéspont: külső pont Páratlan számú metszéspont: belső pont
4 Grafikus primitivek kitöltése Primitívek kitöltésének az elve: Balról jobbra haladva minden egyes pásztázó (scan) vonalon kirajzoljuk a primitív belső pontjait (egyszerre egy szakaszt kitöltve)
5 Grafikus primitívek kitöltése Csúcspontok metszésekor: Ha a metszett csúcspont lokális minimum vagy maximum, akkor kétszer számítjuk, különben csak egyszer.
6 Téglalap kitöltése for (y = y min ; y < y max, y++) for (x = x min ; x < x max, x++) WritePixel(x,y,value) Probléma: Egész koordinátájú határpontok hova tartozzanak?
7 Téglalap kitöltése Legyen a szabály pl.: Egy képpont akkor nem tartozik a primitívhez, ha rajta áthaladó él, és a primitív által meghatározott félsík a képpont alatt, vagy attól balra van. Pl.: Vagyis a pásztázó vonalon a kitöltési szakasz balról zárt, jobbról nyitott
8 Téglalap kitöltése Megjegyzések: a) Általánosítható poligonokra b) A felső sor és a jobb szélső oszlop kimarad c) A bal alsó sarok kétszeresen tartozhat a téglalaphoz
9 Poligonok kitöltése A poligon lehet: konvex konkáv önmagát metsző lyukas Haladjunk a pásztázó egyeneseken és keressük a kitöltési szakaszok végpontjait.
10 Poligon kitöltése a) A felezőpont algoritmus szerint választjuk a végpontokat (azaz, nem számít, hogy azok a poligonon kívül, vagy belül vannak) Diszjunkt poligonoknak lehet közös képpontjuk
11 Poligon kitöltése b) A végpontokat a poligonhoz tartozó képpontok közül választjuk
12 Algoritmus poligonok kitöltésére Minden pásztázó egyenesre: 1. A pásztázó egyenes és a poligon élei metszéspontjainak a meghatározása 2. A metszéspontok rendezése növekvő x-koordinátáik szerint 3. A poligon belsejébe tartozó szakasz(ok) végpontjai közötti képpontok kirajzolása Használjuk a páratlan paritás szabályát: Tegyük fel, hogy a bal szélen kívül vagyunk, utána minden egyes metszéspont megváltoztatja a paritást.
13 Algoritmus poligonok kitöltésére 3.1. Adott x nem egész értékű metszéspont. Ha kívül vagyunk, akkor legyen a végpont a fölfelé kerekített x Ha belül vagyunk, akkor legyen a végpont a lefelé kerekített x
14 Algoritmus poligonok kitöltésére 3.2. Adott x egész értékű metszéspont Ha ez bal végpont, akkor ez belső pont. Ha ez jobb végpont, akkor ez külső pont
15 Algoritmus poligonok kitöltésére A poligon csúcspontjaiban: y min csúcspont beszámít a paritásba ymax csúcspont nem számít a paritásba, tehát y max csúcspont csak akkor lesz kirajzolva, ha az a szomszédos él y min pontja is
16 Algoritmus poligonok kitöltésére Vízszintes él esetén: Az ilyen élek csúcspontjai nem számítanak a paritásba Egész y koordináta esetén az alsó élet rajzoljunk, a felsőt nem
17 Példa poligon kitöltésére
18 Poligon kitöltése Szilánkok: olyan poligon-területek, amelyek belsejében nincs kitöltendő szakasz = hiányzó képpontok
19 Poligon kitöltése Implementáció: Nem kell minden egyes pásztázó vonalra újra kiszámolni minden metszéspontot, mert általában csak néhány metszéspont érdekes az i-edik pásztázó vonalról az i + 1-dikre átlépve. x i+i = x i + 1 m i
20 Poligon kitöltése Tegyük fel hogy: m > 1 (m = 1 triviális, m < 1 kicsit bonyolultabb) x = 1 m = x max x min y max y min (< 1) x = [x] + {x} egész rész tört rész [x i+1 ] = [x i ] vagy [x i ] + 1 {x i+1 } = {x i + x} vagy {x i } + x 1
21 Poligon kitöltése Tegyük fel, hogy bal határon vagyunk! Ha {x i } = 0, akkor (x, y)-t rajzolni kell (a vonalon van) Ha {x i } 0, akkor fölfelé kell kerekíteni x-et (belső pont) Egész értékű aritmetika használható: törtrész helyett a számlálót és nevezőt kell tárolni
22 Poligon kitöltése void LeftEdgeScan(int xmin, int ymin, int xmax, int ymax, int value) { int x, y, numerator, denominator, increment; x = xmin; numerator = xmax - xmin; denimonator = ymax - ymin; increment = denominator; for(y = ymin; y < ymax; y++) { WritePixel(x,y,value); increment += numerator; if(increment > denominator) { x++; increment -= denominator; } // END IF } // END FOR }
23 Poligon kitöltése Adatstruktúrák: ÉT: (Élek táblázata) A kisebbik y értékük szerint rendezve az összes élet tartalmazza. A vízszintes élek kimaradnak! Annyi lista van, ahány pásztázó vonal. Minden listában azok az élek szerepelnek, amelyek alsó végpontja a pásztázó vonalon van. A listák az élek alsó végpontjának x koordinátája, ezen belül a meredekség reciproka szerint rendezettek. Minden lista elem tartalmazza az él y max, x min koordinátáját és a meredekség reciprokát.
24 Poligon kitöltése 11 λ 10 λ 9 λ 8 λ EF DE λ CD λ 4 λ FA λ 2 λ AB BC λ 1 ymax xmin m
25 Poligon kitöltése AÉT: Aktív Élek Táblázata) A pásztázó vonalat metsző éleket tartalmazza a metszéspontok x koordinátája szerint rendezve. Ezek a metszéspontok kitöltési szakaszokat határoznak meg az aktuális pásztázó vonalon. Ez is lista.
26 Algoritmus poligon kitöltésére 0. ÉT kialakítása 1. y legyen az ÉT-ben lévő nem üres listák közül a legkisebb y 2. AÉT inicializálása (üres) 3. A továbbiakat addig ismélteljük, amíg ÉT végére érünk és AÉT üres lesz: 3.1 ÉT-ből az y-hoz tartozó listát a rendezést megtartva AÉT-hez másoljuk 3.2 AÉT-ből kivesszük azokat az éleket, amelyekre y max = y (a felső éleket nem töltjük ki) 3.3 A kitöltési szakaszok pontjait megjelenítjük 3.4 y = y Minden AÉT-beli élben módosítjuk x-et
27 Poligon kitöltése AÉT az y = 8 pásztázóvonalon: x max x m λ
28 Poligon kitöltése Megjegyzés: Háromszögekre, trapézokra egyszerűsíthető az algoritmus, mert a pásztázó egyeneseknek legfeljebb 2 metszéspontja lehet egy háromszöggel vagy egy trapézzal (nem kell ÉT).
29 Kör, ellipszis kitöltése P belül van, ha F (P ) < 0, de most is használható a felezőpont módszer. Hasonló algoritmussal számíthatók a kitöltési szakaszok.
30 Háromszög kitöltése (OpenGL) Egyetlen színnel: glbegin(gl TRIANGLES); glcolor3f(0.1, 0.2, 0.3); glvertex3f(0, 0, 0); glvertex3f(1, 0, 0); glvertex3f(0, 1, 0); glend();
31 Háromszög kitöltése (OpenGL) Több színnel (Gouraud-féle módon interpolálva): glshademodel(gl SMOOTH); // G-arnyalas glbegin(gl TRIANGLES); glcolor3d(1.0,0.0,0.0); glvertex3d(5.0, 5.0, 0); glcolor3d(0.0,1.0,0.0); glvertex3d(195.0, 5.0, 0); glcolor3d(0.0,0.0,1.0); glvertex3d(100.0, 195.0, 0); glend();
32 Poligon létrehozása (OpenGL) glbegin(gl POLYGON); glvertex3d(100,0,0); glvertex3d(0,0,0); glend(); Az OpenGL csak síkbeli konvex sokszögek helyes kirajzolását garantálja. Az elsőként specifikált csúcspont színe lesz a primitív színe, ha glshademodel(gl FLAT);
33 Poligon (OpenGL) 3D-s poligonoknak két oldaluk van: elülső és hátulsó oldal. Alapértelmezésben mindkét oldal ugyanúgy rajzolódik ki, de ezen lehet változtatni: void glpolygonmode(enum face, enum mode); face: GL FRONT AND BACK GL FRONT GL BACK mode: GL POINT csak a csúcspontokat rajzolja ki GL LINE a határvonalat rajzolja ki GL FILL kitölti a poligont
34
Területi primitívek: Zárt görbék által határolt területek (pl. kör, ellipszis, poligon)
Grafikus primitívek kitöltése Téglalap kitöltése Kör, ellipszis kitöltése Kitöltés mintával Grafikus primitívek kitöltése A tertületi primitívek zárt görbével határolt területek, amelyeket megjelníthetünk
Területi primitívek: Zárt görbék által határolt területek (pl. kör, ellipszis, poligon)
Grafikus primitívek kitöltése Téglalap kitöltése Poligon kitöltése Kör, ellipszis kitöltése Kitöltés mintával Grafikus primitívek kitöltése Területi primitívek: Zárt görbék által határolt területek (pl.
Máté: Számítógépes grafika alapjai
Téglalap kitöltése Kör, ellipszis kitöltése Területi primitívek: Zárt görbék által határolt területek (pl. kör, ellipszis, poligon) Megjeleníthetők a) Csak a határvonalat reprezentáló pontok kirajzolásával
Algoritmusok raszteres grafikához
Algoritmusok raszteres grafikához Egyenes rajzolása Kör rajzolása Ellipszis rajzolása Algoritmusok raszteres grafikához Feladat: Grafikai primitíveket (pl. vonalat, síkidomot) ábrázolni kép-mátrixszal,
Látható felszín algoritmusok
Látható felszín algoritmusok Látható felszínek Z-buffer algoritmus Festő algoritmus A látható felszín meghatározására szolgáló algoritmusok A tárgyak takarják-e egymást? Mely tárgy látható? Pontokra: P
Algoritmusok raszteres grafikához
Algoritmusok raszteres grafikához Egyenes rajzolása Kör rajzolása Ellipszis rajzolása Algoritmusok raszteres grafikához Feladat: Grafikai primitíveket (pl. vonalat, síkidomot) ábrázolni kép-mátrixszal,
Algoritmusok raszteres grafikához
Algoritmusok raszteres grafikához Egyenes rajzolása Kör rajzolása Ellipszis rajzolása Algoritmusok raszteres grafikához Feladat: Grafikai primitíveket (pl. vonalat, síkidomot) ábrázolni kép-mátrixszal,
Máté: Számítógépes grafika alapjai
Poligon kitöltése Implementáció: Nem kell minden egyes pásztázó vonalra újra kiszámolni minden metszéspontot, mert általában csak néhány metszéspont érdekes az i-dik pásztázó vonalról az i+1-dikre átlépve
Máté: Számítógépes grafika alapjai
Bevezetés Bevezetés Történeti áttekintés Hordozható szoftverek, szabványok Interaktív grafikai rendszerek A számítógépes grafika osztályozása Valós és képzeletbeli objektumok (pl. tárgyak képei, függvények)
Cohen-Sutherland vágóalgoritmus
Vágási algoritmusok Alapprobléma Van egy alakzatunk (szakaszokból felépítve) és van egy "ablakunk" (lehet a monitor, vagy egy téglalap alakú tartomány, vagy ennél szabálytalanabb poligon által határolt
Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter
Információ megjelenítés Számítógépes ábrázolás Dr. Iványi Péter (adat szerkezet) float x,y,z,w; float r,g,b,a; } vertex; glcolor3f(0, 0.5, 0); glvertex2i(11, 31); glvertex2i(37, 71); glcolor3f(0.5, 0,
Máté: Számítógépes grafika alapjai
Pontok rajzolása OpenGL Rajzoljunk egy piros pontot a (10, 10), egy zöld pontot az (50, 10) és egy kék pontot a (30, 80) koordinátákba (az ablak 100*100-as méretű) Pontok rajzolása Színek és színmódok
Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter
Információ megjelenítés Számítógépes ábrázolás Dr. Iványi Péter Raszterizáció OpenGL Mely pixelek vannak a primitíven belül fragment generálása minden ilyen pixelre Attribútumok (pl., szín) hozzárendelése
Máté: Számítógépes grafika alapjai
LÁTHATÓ FELÜLETEK MEGHATÁROZÁSA LÁTHATÓ FELÜLETEK MEGHATÁROZÁSA szolgáló általános algoritmusok Adott 3D tárgyak egy halmaza, és egy projekció specifikációja. Mely vonalak és felületek lesznek láthatók?
Képfeldolgozás és Számítógépes Grafika Tanszék 1. A SZÁMÍTÓGÉPES GRAFIKA TÁRGYA, ALKALMAZÁSAI
. A SZÁMÍTÓGÉPES GRAFIKA TÁRGYA, ALKALMAZÁSAI Számítógépes grafika vs. digitális képfeldolgozás Számítógépes grafika Valós és képzeletbeli objektumok (pl. tárgyak képei, függvények) szintézise számítógépes
Képfeldolgozás és Számítógépes Grafika Tanszék 1. A SZÁMÍTÓGÉPES GRAFIKA TÁRGYA, ALKALMAZÁSAI
. A SZÁMÍTÓGÉPES GRAFIKA TÁRGYA, ALKALMAZÁSAI Számítógépes grafika vs. digitális képfeldolgozás Számítógépes grafika Valós és képzeletbeli objektumok (pl. tárgyak képei, függvények) szintézise számítógépes
Koordináta-geometria feladatok (emelt szint)
Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik
Klár Gergely
Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2010/2011. őszi félév Tartalom Vágás Szakaszvágás Poligonvágás 1 Vágás Szakaszvágás Poligonvágás 2 Vágás
Tartalom. Tartalom. Hajder Levente Szakasz raszterizálása. 2017/2018. II. félév. Poligon raszterizáció.
Tartalom Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév 1 Emlékeztető 2 Vágás 3 Raszterizálás Inkrementális képszintézis Tartalom 1 Emlékeztető Inkrementális
Feladatok Házi feladat. Keszeg Attila
2016.01.29. 1 2 3 4 Adott egy O pont és egy λ 0 valós szám. a tér minden egyes P pontjához rendeljünk hozzá egy P pontot, a következő módon: 1 ha P = O, akkor P = P 2 ha P O, akkor P az OP egyenes azon
SZE, Doktori Iskola. Számítógépes grafikai algoritmusok. Összeállította: Dr. Gáspár Csaba. Felületmegjelenítés
Felületmegjelenítés Megjelenítés paramétervonalakkal Drótvázas megjelenítés Megjelenítés takarással Triviális hátsólap eldobás A z-puffer algoritmus Megvilágítás és árnyalás Megjelenítés paramétervonalakkal
Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)
1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy
BME MOGI Gépészeti informatika 15.
BME MOGI Gépészeti informatika 15. 1. feladat Készítsen alkalmazást a y=2*sin(3*x-π/4)-1 függvény ábrázolására a [-2π; 2π] intervallumban 0,1-es lépésközzel! Ezen az intervallumon a függvény értékkészlete
Helyvektorok, műveletek, vektorok a koordináta-rendszerben
Helyvektorok, műveletek, vektorok a koordináta-rendszerben. Rajzold meg az alábbi helyvektorokat a derékszögű koordináta-rendszerben, majd számítsd ki a hosszúságukat! a) (4 ) b) ( 5 ) c) ( 6 ) d) (4 )
Koordináta-geometria feladatgyűjtemény
Koordináta-geometria feladatgyűjtemény A feladatok megoldásai a dokumentum végén találhatók Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két csúcs
Máté: Számítógépes grafika alapjai
LÁTHATÓ FELÜLETEK MEGHATÁROZÁSA LÁTHATÓ FELÜLETEK MEGHATÁROZÁSA szolgáló általános algoritmusok Látható felszín algoritmusok Adott 3D tárgyak egy halmaza, és egy projekció specifikációja. Mely vonalak
Gazdasági Matematika I. Megoldások
. (4.feladatlap/2) Gazdasági Matematika I. Di erenciálszámítás alkalmazásai Megoldások a) Határozza meg az f(x) x 6x 2 + függvény x 2 helyen vett érint½ojének az egyenletét. El½oször meghatározzuk a pont
Síklapú testek. Gúlák, hasábok Metszésük egyenessel, síkkal
Síklapú testek Gúlák, hasábok Metszésük egyenessel, síkkal Az előadás átdolgozott részleteket tartalmaz a következőkből: Gubis Katalin: Ábrázoló geometria Vlasta Szirovicza: Descriptive geometry Síklapú
Függvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
10. Koordinátageometria
I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember
43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ
43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 1. Ismerkedj a 100 tulajdonságaival! I.) Állítsd elő a 100-at a,, b, 3, c, 4, d, 5 négyzetszám összegeként!
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Skaláris szorzat: a b cos, ahol α a két vektor által bezárt szög.
1 Összeadás: Legyen a (7; 3) és b (- 2; 4), akkor az összegük a + b (7 + (-2); 3 + 4) = (5; 7) Kivonás: Legyen a (7; 3) és b (- 2; 4), akkor a különbségük a b (7 - (-2); 3-4)=(9; - 1) Valós számmal való
Koordináta - geometria I.
Koordináta - geometria I A koordináta geometria témaköre geometriai problémákat old meg algebrai módszerekkel úgy, hogy a geometriai fogalmaknak algebrai fogalmakat feleltet meg: a pontokat, vektorokat
TÉRINFORMATIKAI ALGORITMUSOK
Topológiai algoritmusok és adatszerkezetek TÉRINFORMATIKAI ALGORITMUSOK Cserép Máté mcserep@inf.elte.hu 2017. november 22. EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR BEVEZETŐ Topológia: olyan matematikai
egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0.
Magyar Ifjúság. X. TRIGONOMETRIKUS FÜGGVÉNYEK A trigonometrikus egyenletrendszerek megoldása során kísérletezhetünk új változók bevezetésével, azonosságok alkalmazásával, helyettesítő módszerrel vagy más,
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7
A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat
Geometriai algoritmusok
Geometriai algoritmusok Alapfogalmak Pont: (x,y) R R Szakasz: Legyen A,B két pont. Az A és B pontok által meghatározott szakasz: AB = {p = (x,y) : x = aa.x + (1 a)b.x,y = aa.y + (1 a)b.y),a R,0 a 1. Ha
9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel;
Síkok és egyenesek FELADATLAP Írjuk fel annak az egyenesnek az egyenletét, amely átmegy az M 0(,, ) ponton és a) az M(,, 0) ponton; b) párhuzamos a d(,, 5) vektorral; c) merőleges a x y + z 0 = 0 síkra;
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
10. előadás. Konvex halmazok
10. előadás Konvex halmazok Konvex halmazok Definíció: A K ponthalmaz konvex, ha bármely két pontjának összekötő szakaszát tartalmazza. Állítás: Konvex halmazok metszete konvex. Konvex halmazok uniója
Lehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.
Geometria, sokszögek, szögek, -, 2004_01/5 Lili rajzolt néhány síkidomot: egy háromszöget, egy deltoidot, egy paralelogrammát és egy trapézt. A következő állítások ezekre vonatkoznak. Tegyél * jelet a
Máté: Számítógépes grafika alapjai
Világító tárgyak Környezeti fény Szórt visszaverődés Környezeti fény és diffúz visszaverődés együtt Tükröző visszaverődés fényességének meghatározása Gouraud-féle fényesség Phong-féle fényesség a. Világító
Koordináta-geometria II.
Koordináta-geometria II. DEFINÍCIÓ: (Alakzat egyenlete) A síkon adott egy derékszögű koordináta rendszer. A síkban levő alakzat egyenlete olyan f (x, y) = 0 egyenlet, amelyet azoknak és csak azoknak a
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Gráfelmélet II. Gráfok végigjárása
Gráfelmélet II. Gráfok végigjárása DEFINÍCIÓ: (Séta) A G gráf egy olyan élsorozatát, amelyben a csúcsok és élek többször is szerepelhetnek, sétának nevezzük. Egy lehetséges séta: A; 1; B; 2; C; 3; D; 4;
Ellipszis átszelése. 1. ábra
1 Ellipszis átszelése Adott egy a és b féltengely - adatokkal bíró ellipszis, melyet a befoglaló téglalapjának bal alsó sarkában csuklósan rögzítettnek képzelünk. Az ellipszist e C csukló körül forgatva
BME MOGI Gépészeti informatika 18. Grafika, fájlkezelés gyakorló óra. 1. feladat Készítsen alkalmazást az = +
BME MOGI Gépészeti informatika 18. Grafika, fájlkezelés gyakorló óra 1. feladat Készítsen alkalmazást az = + függvény ábrázolására! Az értelmezési tartomány a [-6;5] intervallum, a lépésköz 0,1 legyen!
Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.
Matematika 11 Koordináta geometria Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A
Modellezési transzformáció: [r lokális,1] T M = [r világ,1] Nézeti transzformáció: [r világ,1] T v = [r képernyo,1]
Inkrementális képsintéis Inkrementális 3D képsintéis Sirma-Kalos Lásló Árnalás, láthatóság nehé, különösen általános heletu objektumokra koherencia: oldjuk meg nagobb egségekre feleslegesen ne sámoljunk:
1. Fénysugár követő és festő algoritmus (3p) fénysugárkövető módszer Festő algoritmus: 2. Fények, fény, fény az opengl-ben, anyagtulajdonság (12pt)
1. Fénysugár követő és festő algoritmus (3p) A fénysugárkövető módszer azt használja ki, hogy a kép pontokból (pixelekből) épül fel. Alapötlete az, hogy meghatározza az ábrázolandó objektumnak az a pontját,
Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)
Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két
Algoritmizálás, adatmodellezés 10. előadás
Algoritmizálás, adatmodellezés 10. előadás Belül(N,P,D): Külső pont(n,p,q) P(N+1):=P(1); Db:=0 Ciklus i=1-től N-ig Ha Metszi(P(i),P(i+1),D,Q) akkor Db:=Db+1 Ciklus vége Belül:=(Db mod 2)=1 Függvény vége.
Geometria 1 normál szint
Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1 Írásban, 90 perc. 2 Személyazonosságot igazoló okmány nélkül
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,
Koordináta geometria III.
Koordináta geometria III. TÉTEL: A P (x; y) pont akkor és csak akkor illeszkedik a K (u; v) középpontú r sugarú körre (körvonalra), ha (x u) 2 + (y v) 2 = r 2. Ez az összefüggés a K (u; v) középpontú r
Teljes függvényvizsgálat
Teljes üggvényvizsgálat Tanulási cél A üggvényvizsgálat lépéseinek megismerése és begyakorlása. Motivációs példa Jelölje egy adott termék árát P, a termék keresleti üggvényét pedig 1000 10 P D P. A P teljes
A Paint program használata
A Paint program használata A Windows rendszerbe épített Paint program segítségével képeket rajzolhat, színezhet és szerkeszthet. A Paint használható digitális rajztáblaként. Egyszerű képek és kreatív projektek
Hajder Levente 2018/2019. II. félév
Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2018/2019. II. félév Tartalom 1 2 3 4 5 Albrecht Dürer, 1525 Motiváció Tekintsünk minden pixelre úgy, mint egy kis ablakra
A valós számok halmaza
VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben
TÉRINFORMATIKAI ÉS TÁVÉRZÉKELÉSI ALKALMAZÁSOK FEJLESZTÉSE
Topológiai algoritmusok és adatszerkezetek TÉRINFORMATIKAI ÉS TÁVÉRZÉKELÉSI ALKALMAZÁSOK FEJLESZTÉSE Cserép Máté mcserep@caesar.elte.hu 2015. május 5. EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR BEVEZETŐ
Paraméteres és összetett egyenlôtlenségek
araméteres és összetett egyenlôtlenségek 79 6 a) Minden valós szám b) Nincs ilyen valós szám c) c < vagy c > ; d) d # vagy d $ 6 a) Az elsô egyenlôtlenségbôl: m < - vagy m > A második egyenlôtlenségbôl:
Exponenciális és logaritmusos kifejezések, egyenletek
Eponenciális és logaritmusos kifejezések, egyenletek. Hatványozási azonosságok. Számítsd ki a következő hatványok pontos értékét! a) 8 b) 4 c) d) 7 e) f) 9 0, g) 0, 9 h) 6 0, 7,, i) 8 j) 6 k) 4 l) 49,.
Hajder Levente 2014/2015. tavaszi félév
Hajder Levente hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom 1 2 3 4 5 Albrecht Dürer, 1525 Motiváció Tekintsünk minden pixelre úgy, mint
FÜGGVÉNYEK. A derékszögű koordináta-rendszer
FÜGGVÉNYEK A derékszögű koordináta-rendszer Az. jelzőszámot az x tengelyről, a 2. jelzőszámot az y tengelyről olvassuk le. Pl.: A(-3;-) B(3;2) O(0;0) II. síknegyed I. síknegyed A (0; 0) koordinátájú pontot
1. Az ábrán látható táblázat minden kis négyzete 1 cm oldalhosszúságú. A kis négyzetek határvonalait akarjuk lefedni. Meg lehet-e ezt tenni
1. Az ábrán látható táblázat minden kis négyzete 1 cm oldalhosszúságú. A kis négyzetek határvonalait akarjuk lefedni. Meg lehet-e ezt tenni a) 5 db 8 cm hosszú, b) 8 db 5 cm hosszú cérnával? Megoldás:
mintásfal 60 40 2 2 mintásfal :m :sz :dbjobbra :dbfel
6.osztály 1.foglalkozás 6.osztály 2.foglalkozás kocka kockafal :db minta Készítsd el ezt a mintát! A minta hosszú oldala 60 a rövid oldala 40 egység hosszú. A hosszú oldal harmada a négyzet oldala! A háromszög
Ferde kúp ellipszis metszete
Ferde kúp ellipszis metszete A ferde kúp az első képsíkon lévő vezérkörével és az M csúcsponttal van megadva. Ha a kúpból ellipszist szeretnénk metszeni, akkor a metsző síknak minden alkotót végesben kell
Java és web programozás
Budapesti M szaki Egyetem 2015. 03. 18. 6. El adás Graka Java-ban Emlékezzünk kicsit vissza a tikz-re: \begin{tikzpicture \draw (0,0) node[draw,circle] (S) {s; \draw (3,2) node[draw,circle] (A) {a; \draw
1.1 A függvény fogalma
1.1 A üggvény ogalma Deiníció: Adott két (nem üres) halmaz H és K. Ha a H halmaz minden egyes eleméhez valamilyen módon hozzárendeljük a K halmaznak egy-egy elemét, akkor a hozzárendelést üggvénynek nevezzük.
Programozási nyelvek 2. előadás
Programozási nyelvek 2. előadás Logo forgatás tétel Forgatás tétel Ha az ismétlendő rész T fok fordulatot végez és a kezdőhelyére visszatér, akkor az ismétlések által rajzolt ábrák egymás T fokkal elforgatottjai
Számítógépes Grafika mintafeladatok
Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk
Oracle Spatial. Térbeli adatot tartalmazó tábla: Geometry table Legalább 2 oszlopa van: Elsődleges kulcs, SDO_GEOMETRY típusú oszlop.
Oracle Spatial Az Oracle adatbázis-kezelő rendszer Oracle Spatial (Oracle Locator) nevű kiegészítő modulja támogatja a térbeli adatok kezelését. Térbeli adatot tartalmazó tábla: Geometry table Legalább
Háromszögek, négyszögek, sokszögek 9. évfolyam
Háromszögek, négyszögek, sokszögek 9. évfolyam I. Pontok, egyenesek, síkok és ezek kölcsönös helyzetet 1) a pont, az egyenes, a sík és az illeszkedés alapfogalmak 2) két egyenes metsző, ha van közös pontjuk
LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL
LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény
Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010.
Nagy András Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 010. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 1) Döntsd el, hogy a P pont illeszkedik-e az e egyenesre
Hogyan óvjuk meg értékes festményeinket?
Hogyan óvjuk meg értékes festményeinket? Hajnal Péter Bolyai Intézet, SZTE, Szeged 2013. április Bevezető példa I. Feladat Adott egy konvex nyolcszög. Bevezető példa I. Feladat Adott egy konvex nyolcszög.
Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória
Bolyai János Matematikai Társulat Oktatásért Közalapítvány támogatásával Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Megoldások és javítási útmutató 1. Határozzuk
TÉRINFORMATIKAI ALGORITMUSOK
Topológiai algoritmusok és adatszerkezetek TÉRINFORMATIKAI ALGORITMUSOK Cserép Máté mcserep@caesar.elte.hu 2015. november 18. EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR BEVEZETŐ Topológia: olyan matematikai
MATLAB gyakorlat. Fájlműveletek folytatás, gyakorlás
MATLAB 2015 10. gyakorlat Fájlműveletek folytatás, gyakorlás Kis ZH A megoldás egyetlen fájlba készüljön, melynek a neve az alábbi legyen: zh9_[digitusosazonosito].m Az elkészült megoldást másoljuk be
Geometria 1 normál szint
Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!
(d) a = 5; c b = 16 3 (e) b = 13; c b = 12 (f) c a = 2; c b = 5. Számítsuk ki minden esteben a háromszög kerületét és területét.
Euklidész tételei megoldások c = c a + c b a = c c a b = c c b m c = c a c b 1. Számítsuk ki az derékszögű ABC háromszög hiányzó oldalainak nagyságát, ha adottak: (a) c a = 1,8; c b =, (b) c = 10; c a
Fiók ferde betolása. A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát!
1 Fiók ferde betolása A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát! 1. ábra Itt azt látjuk, hogy egy a x b méretű kis kék téglalapot
Érettségi feladatok Koordinátageometria_rendszerezve / 5
Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!
Gyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van!
1. Melyik a nagyobb? a) 6 5 vagy 5 7 b) vagy 11 10 vagy Gyökvonás 5 11 vagy 6 8 55 e) 7 vagy 60 16 1. Hozd egyszerűbb alakra a következő kifejezéseket! a) 7 18 b) 1 5 75 8 160 810 650 8a 5 a 7a e) 15a
3. feladat Hány olyan nél kisebb pozitív egész szám van, amelyben a számjegyek összege 2?
Varga Tamás Matematikaverseny iskolai forduló 2010. 1. feladat A tengeren léket kapott egy hajó, de ezt csak egy óra múlva vették észre. Ekkorra már 3 m 3 víz befolyt a hajóba. Rögtön mőködésbe hoztak
Egyenletek, egyenlőtlenségek grafikus megoldása TK. II. kötet 25. old. 3. feladat
Egyenletek, egyenlőtlenségek grafikus megoldása TK. II. kötet. old.. feladat a. lépés: Az egyenlet bal oldalának ábrázolása függvényként.. lépés: Az egyenlet bal oldalának ábrázolása függvényként.. lépés:
Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:
005-0XX Emelt szint Koordinátageometria 1) a) Egy derékszögű háromszög egyik oldalegyenese valamelyik koordinátatengely, egy másik oldalegyenesének egyenlete x + y = 10, egyik csúcsa az origó. Hány ilyen
MEMO (Middle European Mathematical Olympiad) Szoldatics József, Dunakeszi
Szoldatics József: MEMO MEMO (Middle European Mathematical Olympiad) Szoldatics József, Dunakeszi A feladatmegoldó szemináriumon első részében egy rövid beszámolót fognak hallani a 010. szeptember 9. és
Függvények vizsgálata
Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =
Középpontos hasonlóság szerkesztések
Középpontos hasonlóság szerkesztések 1. Adott az AV B konvex szög és a belsejében egy P pont. Húzzunk a P ponton át egy egyenest úgy, hogy a szög száraiból kimetszett szeletek aránya 3 : 4 legyen. Legyen
6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?
6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.
Vektorok és koordinátageometria
Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,
Tartalom. Tartalom. Hajder Levente 2018/2019. I. félév
Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2018/2019. I. félév Emlékeztető Múlt órán megismerkedtünk a sugárkövetéssel Előnyei: A színtér benépesítésére minden használható,
GAZDASÁGI STATISZTIKA
GAZDASÁGI STATISZTIKA Dr. Kun István GÁBOR DÉNES FŐISKOLA Tantárgy: Gazdasági statisztika Kódszám: 224 Lapszám: 1 TÉMAKÖRÖK A STATISZTIKA ALAPFOGALMAI STATISZTIKAI SOROK STATISZTIKAI TÁBLÁK ÖSSZETETT VISZONYSZÁMOK
EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS
GEOMETRIA 1. Az A, B, C egy egyenes pontjai (ebben a sorrendben), AB szakasz 5 cm, BC szakasz 17 cm. F 1 az AB szakasz, F 2 a BC szakasz felezőpontja. Mekkora az F 1 F 2 szakasz? 2. Az AB és CD szakaszok
QGIS Gyakorló. 1. kép: Koordináta levétel plugin bekapcsolása.
QGIS Gyakorló Verzió: 1.8.0 Trunk (Az 1.6 os verzió fejlesztői kiadása) Cím: Tagolt szöveg réteg hozzáadás; WKT - Well Known Text - opció. Minta fájl: http://www.box.net/shared/adayk6f5oy Az alábbiakban
Németh László Matematikaverseny április 16. A osztályosok feladatainak javítókulcsa
Németh László Matematikaverseny 007. április 16. A 9-10. osztályosok feladatainak javítókulcsa Feladatok csak 9. osztályosoknak 1. feladat a) Vegyük észre, hogy 7 + 5 felírható 1 + 3 + 6 + alakban, így