TÉRINFORMATIKAI ALGORITMUSOK
|
|
- Enikő Bogdán
- 6 évvel ezelőtt
- Látták:
Átírás
1 Topológiai algoritmusok és adatszerkezetek TÉRINFORMATIKAI ALGORITMUSOK Cserép Máté november 18. EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR
2 BEVEZETŐ Topológia: olyan matematikai tudomány, mely bizonyos geometriai tulajdonságokból kiindulva, azok általánosítása alapján, algebrai törvényszerűségeket határoz meg. Geometriai topológia: a téralakzatok azon tulajdonságait vizsgálja, melyek nem változnak az idomok szakadásmentes torzítása során. Szomszédság Kapcsolódás / Folyamatosság Tartalmazás EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR 2
3 FELHASZNÁLÁSI TERÜLETEK Topológiai relációk lekérdezése Mely megyékkel határos Veszprém megye? EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR 3
4 FELHASZNÁLÁSI TERÜLETEK Topológiai relációk lekérdezése Mely megyékkel határos Veszprém megye? Mely főutakra lehet ráhajtani az M3-as autópályáról? EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR 4
5 FELHASZNÁLÁSI TERÜLETEK Topológiai relációk lekérdezése Mely megyékkel határos Veszprém megye? Mely főutakra lehet ráhajtani az M3-as autópályáról? Mely megyékben található a Balaton? EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR 5
6 FELHASZNÁLÁSI TERÜLETEK Topológiai relációk lekérdezése Mely megyékkel határos Veszprém megye? Mely főutakra lehet ráhajtani az M3-as autópályáról? Mely megyékben található a Balaton? Mely megyéken folyik keresztül a Duna? EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR 6
7 FELHASZNÁLÁSI TERÜLETEK Adatok ellenőrzése: Minden település külterület kizárólag egy megyéhez tartozhat. EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR 7
8 FELHASZNÁLÁSI TERÜLETEK Adatok ellenőrzése: Minden település külterület kizárólag egy megyéhez tartozhat. Minden település külterülethez tartoznia kell legalább egy településnek. EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR 8
9 FELHASZNÁLÁSI TERÜLETEK Adatok ellenőrzése: Minden település külterület kizárólag egy megyéhez tartozhat. Minden település külterülethez tartoznia kell legalább egy településnek. Nem lehetnek rések a külterület határok között. EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR 9
10 TÉRBELI RELÁCIÓK Forrás: wikipedia.org Forrás: oracle.com EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR 10
11 DIMENSIONALLY EXTENDED NINE-INTERSECTION MODEL (DE-9IM) Forrás: opengeo.org EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR 11
12 TÉRBELI RELÁCIÓK NINE-INTERSECTION MODEL HASZNÁLATÁVAL Forrás: EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR 12
13 SPAGETTI MODELL A spagetti modell egy olyan vektoros adatmodell, amely a csúcsokon és az összekötési szabályokon kívül mást nem vesz figyelembe. Nem vizsgálja, hogy van-e közvetlen szomszédja egy poligonnak, és így vannak-e közös csúcsai a szomszédos poligonoknak. Nem törődik a folytonossággal, és az egyes objektumok esetleges térbeli sorrendiségével, szomszédságával. Előnye az egyszerűsége, amely egyben a hátránya is, mivel olyan laza minőségi kritériumok mellett, mint amilyet a spagetti modell kíván meg, nagyon könnyű rossz minőségű adatbázist létrehozni. EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR 13
14 TOPOLOGIKUS ADATSZERKEZETEK A térbeli relációk folytonos és ismételt kiértékelése: túlságosan erőforrás igényes, nem hatékony. A topológiát ezért előfeldolgozási lépésként célszerű a teljes geometriakollekcióra kiszámítani, tárolni, és a továbbiakban azt felhasználva sokkal hatékonyabb lekérdezés-kiértékeléseket végrehajtani. Módosításkor: topologikus modellt kell szerkeszteni vagy a geometriakollekció változásakor a topológia (részét vagy egészét) is frissíteni kell. Milyen adatszerkezetben tároljuk a topológiát? EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR 14
15 TOPOLOGIKUS ADATSZERKEZETEK Általános elvárások: térbeli adatok ismétlődésmentes tárolása, térbeli kapcsolatok (pl. szomszédság, rákövetkezés) tárolása. Elméleti háttér: Duális gráfokkal történő leírás Elterjedt gyakorlati topologikus adatstruktúrák: Winged-edge data structure Quad-edge data structure Half-edge data structure Doubly connected edge list EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR 15
16 SÍKGRÁFOK ÉS DUÁLISUK A síkgráf csúcsai az elágazási pontok, ezek között a pontok között élek pedig ott lesznek, ahol ezen a pontok között polylineok találhatók. Ezekben az élekben tároljuk azt is, hogy tőle jobbra és balra milyen területek vannak. A síkgráf duálisában a csúcsok a területek, az élek pedig azt jelentik, hogy egy területnek egy másik a szomszédja. A területhez tároljuk el az őt határoló polylineokat is, egyszóval azt a valódi poligont, amit az reprezentál. Illeszkedő poligonok és síkgráfuk Síkgráf duálisa és a befoglaló területekkel kiegészítve EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR 16
17 WINGED-EDGE DATA STRUCTURE Élek reprezentációja: Név: a Csúcspontok: kiindulás: X vég: Y Felületek: bal: 1 jobb: 2 Bal felület bejárása: megelőző él: b rákövetkező él: d Jobb felület bejárása: megelőző él: e rákövetkező él: c Csúcspontok reprezentációja: név: X él: d (pozíció: koordináta) Felületek reprezentációja: Név: 1 Él: b EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR 17
18 HALF-EDGE DATA STRUCTURE Fél-élek reprezentációja: vég csúcspont ellentett fél-él rákövetkező fél-él határos felület Élek reprezentációja: egyik fél-él Csúcspontok reprezentációja: egyik kiinduló fél-él (pozíció: koordináta) Felületek reprezentációja: egyik határos fél-él EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR 18
19 ALGORITMUSOK A TOPOLÓGIA KIALAKÍTÁSÁHOZ Pont poligon általi tartalmazása Crossing Number algoritmus Winding Number algoritmus Él-láncok metszése Shamos-Hoey algoritmus (vizsgálat) Bentley-Ottmann algoritmus (meghatározás) Poligonok metszése Sutherland-Hodgman algoritmus (konvex) Vatti algoritmus Greiner-Hormann algoritmus Weiler-Atherton algoritmus EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR 19
20 WINDING NUMBER ALGORITMUS Szabályok: Felfelé keresztező él, óramutató szerinti ellentétes bejárással: wn wn + 1 Lefele keresztező él, óramutató szerinti bejárással: wn wn 1 A pont a poligon kívül van wn = 0 Algoritmikus komplexitás: θ(2n) n: élek száma EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR 20
21 Forrás: geomalgorithms.com BENTLEY-OTTMANN ALGORITMUS Event: 0 EQ: S 1, S 2, S 3, S 4, S 3, S 1, S 2, S 4 SL: Event: 1 (S 1 ) EQ: S 2, S 3, S 4, S 3, S 1, S 2, S 4 SL: S1 Event: 2 (S 2 ) EQ: S 3, S 4, I 12, S 3, S 1, S 2, S 4 SL: S 1, S 2 Event: 3 (S 3 ) EQ: I 13, S 4, I 12, S 3, S 1, S 2, S 4 SL: S 1, S 3, S 2 EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR 21
22 Forrás: geomalgorithms.com BENTLEY-OTTMANN ALGORITMUS Event: 4 (I 13 ) EQ: S 4, I 12, S 3, S 1, S 2, S 4 SL: S 3, S 1, S 2 Event: 5 (S 4 ) EQ: I 12, I 34, S 3, S 1, S 2, S 4 SL: S 4, S 3, S 1, S 2 Event: 6 (I 12 ) EQ: I 34, S 3, S 1, S 2, S 4 SL: S 4, S 3, S 2, S 1 Event: 7 (I 34 ) EQ: S 3, I 24, S 1, S 2, S 4 SL: S 3, S 4, S 2, S 1 EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR 22
23 Forrás: geomalgorithms.com BENTLEY-OTTMANN ALGORITMUS Event: 8 (S 3 ) EQ: I 24, S 1, S 2, S 4 SL: S 4, S 2, S 1 Event: 9 (I 24 ) EQ: S 1, S 2, S 4 SL: S 2, S 4, S 1 Event: 10 (S 1 ) EQ: S 2, S 4 SL: S 2, S 4 Event: 11 (S 2 ) EQ: S 4 SL: S 4 Algoritmikus komplexitás: θ n: élszegmensek száma k: metszéspontok száma n + k log n EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR 23
24 GREINER-HORMANN ALGORITMUS Csúcslisták: P: P 0, I 1, I 0, P 1, I 2, I 3, P 2, I 4, P 3, I 5, P 4 Q: Q 0, Q 1, I 0, I 2, Q 2, Q 3, I 5, I 4, I 3, I 1 Belépési pontok: I 1, I 2, I 4 Feldolgozási szabály: 1. Belépési ponttól elindulunk P listán. 2. Metszéspontnál listát váltunk. 3. A kiindulási ponthoz visszaérkezéskor megkaptunk egy metszet poligont. 4. Töröljük az érintett metszéspontokat a belépési pontok közül; újrakezdjük a feldolgozást. Speciális esetek: Több egymást követő belépési (ill. kilépési) pont Belépési/kilépési pontok (érintés) EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR 24
TÉRINFORMATIKAI ÉS TÁVÉRZÉKELÉSI ALKALMAZÁSOK FEJLESZTÉSE
Topológiai algoritmusok és adatszerkezetek TÉRINFORMATIKAI ÉS TÁVÉRZÉKELÉSI ALKALMAZÁSOK FEJLESZTÉSE Cserép Máté mcserep@caesar.elte.hu 2015. május 5. EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR BEVEZETŐ
TÉRINFORMATIKAI ALGORITMUSOK
Topológiai algoritmusok és adatszerkezetek TÉRINFORMATIKAI ALGORITMUSOK Cserép Máté mcserep@inf.elte.hu 2017. november 22. EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR BEVEZETŐ Topológia: olyan matematikai
Valasek Gábor tavaszi félév
Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2016-2017 tavaszi félév Tartalom Tartalom Áttekintés Tartalom B-reṕ Attekintés Topológiai adatszerkezetek Szárnyas-él adatszerkezet
TÉRINFORMATIKAI MODELLEZÉS TÉRINFORMATIKAI MODELLEZÉS ALAPFOGALMAI A VALÓSÁG MODELLEZÉSE
TÉRINFORMATIKAI MODELLEZÉS ALAPFOGALMAI TÉRINFORMATIKAI MODELLEZÉS A VALÓSÁG MODELLEZÉSE a valóság elemei entitásosztályok: települések utak, folyók domborzat, növényzet az entitás digitális megjelenítése
Termék modell. Definíció:
Definíció: Termék modell Összetett, többfunkciós, integrált modell (számítógépes reprezentáció) amely leír egy műszaki objektumot annak különböző életfázis szakaszaiban: tervezés, gyártás, szerelés, szervízelés,
(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja.
Testmodellezés Testmodellezés (Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. A tervezés (modellezés) során megadjuk a objektum geometria
MIKOVINY SÁMUEL TÉRINFORMATIKAI EMLÉKVERSENY
FVM VIDÉKFEJLESZTÉSI, KÉPZÉSI ÉS SZAKTANÁCSADÁSI INTÉZET NYUGAT-MAGYARORSZÁGI EGYETEM GEOINFORMATIKAI KAR MIKOVINY SÁMUEL TÉRINFORMATIKAI EMLÉKVERSENY 2009/2010. TANÉV Az I. FORDULÓ FELADATAI 1. feladat:
Gráfok 1. Tárolási módok, bejárások. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor
Gráfok 1. Tárolási módok, bejárások előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Gráfok 1. Tárolási módok Szélességi
Csoportosítás. Térinformatikai műveletek, elemzések. Csoportosítás. Csoportosítás
Csoportosítás Térinformatikai műveletek, elemzések Leíró (attribútum) adatokra vonatkozó kérdések, műveletek, elemzések, csoportosítások,... Térbeli (geometriai) adatokra vonatkozó kérdések, műveletek
3D számítógépes geometria és alakzatrekonstrukció
3D számítógépes geometria és alakzatrekonstrukció 12. Tömör testek modellezése http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME,
Cohen-Sutherland vágóalgoritmus
Vágási algoritmusok Alapprobléma Van egy alakzatunk (szakaszokból felépítve) és van egy "ablakunk" (lehet a monitor, vagy egy téglalap alakú tartomány, vagy ennél szabálytalanabb poligon által határolt
Adatszerkezetek 2. Dr. Iványi Péter
Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat
PTE PMMIK Infrastruktúra és Mérnöki Geoinformatika Tanszék
Kérdés, amire választ ad: Mi, Hol van? Objektumok geometriai jellemzése vektoros rendszer esetén vektorokkal történik Vektor: kezdő- és végpontjával adott irányított szakasz Vektor alapú rendszerek objektumai:
Klár Gergely 2010/2011. tavaszi félév
Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2010/2011. tavaszi félév Tartalom Virtuális világ tárolása 1 Virtuális világ tárolása 2 3 4 Virtuális világ
22. GRÁFOK ÁBRÁZOLÁSA
22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is
Parametrikus tervezés
2012.03.31. Statikus modell Dinamikus modell Parametrikus tervezés Módosítások a tervezés folyamán Konstrukciós variánsok (termékcsaládok) Parametrikus Modell Parametrikus tervezés Paraméterek (változók
5. gyakorlat. Feladatunk az, hogy készítsük el Zamárdi környékének területhasználati a térképét.
Geoinformatika a környezetvédelemben 1 5. gyakorlat Feladatunk az, hogy készítsük el Zamárdi környékének területhasználati a térképét. Ebben a gyakorlatban: megtanuljuk a poligon témák létrehozását, megtanuljuk
Területi primitívek: Zárt görbék által határolt területek (pl. kör, ellipszis, poligon) b) Minden belső pont kirajzolásával (kitöltött)
Grafikus primitívek kitöltése Téglalap kitöltése Poligon kitöltése Kör, ellipszis kitöltése Kitöltés mintával Grafikus primitívek kitöltése Területi primitívek: Zárt görbék által határolt területek (pl.
Klár Gergely
Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2010/2011. őszi félév Tartalom Vágás Szakaszvágás Poligonvágás 1 Vágás Szakaszvágás Poligonvágás 2 Vágás
Megoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei
Számítástudomány alapjai Megoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei 90. A konvex poliéder egyes lapjait határoló élek száma legyen k! Egy konvex poliéder egy tetszőleges
TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS
TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS 1 ALAPADATOK 1.1 Tantárgy neve TÉRINFORMATIKAI ELEMZÉSEK 1.2 Azonosító (tantárgykód) BMEEOFTA-J1 1.3 A tantárgy jellege kontaktórás tanegység 1.4 Óraszámok típus előadás
CAD Rendszerek I. Sajátosság alapú tervezés - Szinkron modellezés
CAD Rendszerek I. Sajátosság alapú tervezés - Szinkron modellezés Farkas Zsolt Budapesti Műszaki és Gazdaságtudományi Egyetem, Gép- és Terméktervezés Tanszék 1/ 14 Tartalom -Sajátosság alapú tervezés:
Mezők/oszlopok: Az egyes leíró adat kategóriákat mutatják.
54 581 01 0010 54 01 FÖLDMÉRŐ ÉS TÉRINFORMATIKAI TECHNIKUS 54 581 01 0010 54 02 TÉRKÉPÉSZ TECHNIKUS szakképesítések 2244-06 A térinformatika feladatai A térinformatika területei, eszközrendszere vizsgafeladat
Geometriai algoritmusok
Geometriai algoritmusok Alapfogalmak Pont: (x,y) R R Szakasz: Legyen A,B két pont. Az A és B pontok által meghatározott szakasz: AB = {p = (x,y) : x = aa.x + (1 a)b.x,y = aa.y + (1 a)b.y),a R,0 a 1. Ha
3D számítógépes geometria és alakzatrekonstrukció
3D számítógépes geometria és alakzatrekonstrukció 2a. Háromszöghálók http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki
Térinformatika 3. Vektoros adatszerkezetek Végső, Ferenc
Térinformatika 3. Vektoros adatszerkezetek Végső, Ferenc Térinformatika 3.: Vektoros adatszerkezetek Végső, Ferenc Lektor: Detrekői Ákos Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel
Térinformatikai adatszerkezetek
Térinformatikai adatszerkezetek 1. Pont Egy többdimenziós pont reprezentálható sokféle módon. A választott reprezentáció függ attól, hogy milyen alkalmazás során akarjuk használni, és milyen típusú műveleteket
Valasek Gábor
Geometria és topológia tárolása Görbék reprezentációja Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2015/2016. őszi félév Geometria és topológia tárolása Görbék reprezentációja
Láthatósági kérdések
Láthatósági kérdések Láthatósági algoritmusok Adott térbeli objektum és adott nézőpont esetén el kell döntenünk, hogy mi látható az adott alakzatból a nézőpontból, vagy irányából nézve. Az algoritmusok
GráfRajz fejlesztői dokumentáció
GráfRajz Követelmények: A GráfRajz gráfokat jelenít meg grafikus eszközökkel. A gráfot többféleképpen lehet a programba betölteni. A program a gráfokat egyedi fájl szerkezetben tárolja. A fájlokból betölthetőek
Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8.
Algoritmuselmélet 2-3 fák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 8. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet 8. előadás
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Hajder Levente 2018/2019. II. félév
Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2018/2019. II. félév Tartalom 1 2 Törtvonal Felületi folytonosságok B-spline Spline variánsok Felosztott (subdivision) görbék
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,
Térinformatika. j informáci. ciós s rendszerek funkciói. Kereső nyelvek (Query Languages) Az adatok feldolgozását (leválogat
Térinformatika Elemzék 2. Az informáci ciós s rendszerek funkciói adatnyerés s (input) adatkezelés s (management) adatelemzés s (analysis) adatmegjelenítés s (prentation) Összeállította: Dr. Szűcs LászlL
Algoritmusok és adatszerkezetek II.
Szegedi Tudományegyetem - Természettudományi és Informatikai Kar - Informatikai Tanszékcsoport - Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszék - Németh Tamás Algoritmusok és adatszerkezetek
Valasek Gábor tavaszi félév
Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2016-2017 tavaszi félév Tartalom Test- és felületmodellezés Test- és felületmodellezés Tartalom Test- és felületmodellezés
Síklefedések Erdősné Németh Ágnes, Nagykanizsa
Magas szintű matematikai tehetséggondozás Síklefedések Erdősné Németh Ágnes, Nagykanizsa Kisebbeknek és nagyobbaknak a programozási versenyfeladatok között nagyon gyakran fordul elő olyan, hogy valamilyen
3D-s számítógépes geometria és alakzatrekonstrukció
3D-s számítógépes geometria és alakzatrekonstrukció 2a. Háromszöghálók http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav08 Dr. Várady Tamás, Salvi Péter BME, Villamosmérnöki
Geometria brute force tárolása
Virtuális világ tárolása - kérdések Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar Hol táruljuk az adatokat? Mem. vagy HDD? Mire optimalizálunk? Rajzolás
A 3D ingatlan-nyilvántartás megvalósítása
A 3D ingatlan-nyilvántartás megvalósítása Iván Gyula műszaki főtanácsadó Magyar Földmérési, Térképészeti és Távérzékelési Társaság XXIX. Vándorgyűlése Sopron, 2013. július 11-13. FÖLD A Föld felszíne önmaga
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Tartalom. Geometria közvetlen tárolása. Geometria tárolása - brute force. Valasek Gábor valasek@inf.elte.hu. Hermite interpoláció. Subdivision görbék
Tartalom Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2015/2016. őszi félév Geometria és topológia tárolása Geometria tárolása Topológia tárolása
R ++ -tree: an efficient spatial access method for highly redundant point data - Martin Šumák, Peter Gurský
R ++ -tree: an efficient spatial access method for highly redundant point data - Martin Šumák, Peter Gurský Recenzió: Németh Boldizsár Térbeli indexelés Az adatszerkezetek alapvetően fontos feladata, hogy
Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése
Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése Készítette: Bognár Gergő Témavezető: Veszprémi Anna Eötvös Loránd Tudományegyetem Informatikai Kar Algoritmusok és Alkalmazásaik Tanszék Budapest,
Területi primitívek: Zárt görbék által határolt területek (pl. kör, ellipszis, poligon)
Grafikus primitívek kitöltése Téglalap kitöltése Poligon kitöltése Kör, ellipszis kitöltése Kitöltés mintával Grafikus primitívek kitöltése Területi primitívek: Zárt görbék által határolt területek (pl.
Területi primitívek: Zárt görbék által határolt területek (pl. kör, ellipszis, poligon)
Grafikus primitívek kitöltése Téglalap kitöltése Kör, ellipszis kitöltése Kitöltés mintával Grafikus primitívek kitöltése A tertületi primitívek zárt görbével határolt területek, amelyeket megjelníthetünk
3D-s számítógépes geometria
3D-s számítógépes geometria 2. Háromszöghálók http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav01 Dr. Várady Tamás BME, Villamosmérnöki és Informatikai Kar Irányítástechnika
2014/2015. tavaszi félév
Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés
Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel
Navigáci ció és s mozgástervez stervezés Algoritmusok és alkalmazásaik Osváth Róbert Sorbán Sámuel Feladat Adottak: pálya (C), játékos, játékos ismerethalmaza, kezdőpont, célpont. Pálya szerkezete: akadályokkal
Grafikonok automatikus elemzése
Grafikonok automatikus elemzése MIT BSc önálló laboratórium konzulens: Orosz György 2016.05.18. A feladat elsődleges célkitűzései o eszközök adatlapján található grafikonok feldolgozása, digitalizálása
Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter
Információ megjelenítés Számítógépes ábrázolás Dr. Iványi Péter Raszterizáció OpenGL Mely pixelek vannak a primitíven belül fragment generálása minden ilyen pixelre Attribútumok (pl., szín) hozzárendelése
Kulcsár Attila. A második szint GeoCalc GIS 2. GISopen 2012 konfrencia. www.geocalc.hu
Kulcsár Attila A második szint GISopen 2012 konfrencia 1 GeoCalc GIS története 2006 Alapverzió (csak adatbázisokkal együtt Temető nyilvántartás) 2008 GeoCalc GIS 1.0 2011 GeoCalc GIS 1.5 (hierarchia, földtömegszámítás,
Nyugat-magyarországi Egyetem Geoinformatikai Kara. Végső Ferenc. Térinformatika 3. TÉI3 modul. Vektoros adatszerkezetek
Nyugat-magyarországi Egyetem Geoinformatikai Kara Végső Ferenc Térinformatika 3. TÉI3 modul Vektoros adatszerkezetek SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999. évi LXXVI.
Tantárgy neve. Geomatematika és térinformatika I-II. Meghirdetés féléve 2-3 Kreditpont 2-2 Összóraszám (elm+gyak) 0+2
Tantárgy neve Geomatematika és térinformatika I-II. Tantárgy kódja FDB1404; FDB1405 Meghirdetés féléve 2-3 Kreditpont 2-2 Összóraszám (elm+gyak) 0+2 Számonkérés módja gyakorlati jegy Előfeltétel (tantárgyi
Szabványos adatstruktúra a közösségi közlekedés számára
Szabványos adatstruktúra a közösségi közlekedés számára www.cdata.hu CBC-TRANSPLAN, Szeged, 2013 július 3 EU adatszabványok a közlekedésben Data Referential Data Model Dictionnary Localisation Public Transport
Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor
Gráfok 2. Legrövidebb utak, feszítőfák előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor Óbudai Egyetem,Neumann János Informatikai Kar Legrövidebb utak keresése Minimális feszítőfa keresése Gráfok 2
A DATR rendszer megvalósítása és bevezetése a földhivatalokban
A DATR rendszer megvalósítása és bevezetése a földhivatalokban Iván Gyula Institóris István Földmérési és Távérzékelési Intézet GIS OPEN 2010 Kataszter Térinformatika - Társadalom Székesfehérvár, 2010.
Egyirányban láncolt lista
Egyirányban láncolt lista A tárhely (listaelem) az adatelem értékén kívül egy mutatót tartalmaz, amely a következő listaelem címét tartalmazza. A láncolt lista első elemének címét egy, a láncszerkezeten
Térinformatikai adatszerkezetek
Térinformatikai adatszerkezetek Bevezetés A térinformatika célja, hogy grafikus, térképi formához kötve mutasson be gazdasági, társadalmi, politikai és egyéb adatokat, elősegítve ezzel az adott terület
3D-s számítógépes geometria és alakzatrekonstrukció
3D-s számítógépes geometria és alakzatrekonstrukció Tesztkörnyezet II http://cg.iit.bme.hu/portal/node/312 https://portal.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki
Adatszerkezetek 7a. Dr. IványiPéter
Adatszerkezetek 7a. Dr. IványiPéter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér () Nincsennek hurkok!!! 2 Bináris fák Azokat a
HAMILTON ÚT: minden csúcson PONTOSAN egyszer áthaladó út
SÍKBA RAJZOLHATÓ GRÁFOK ld. előadás diasorozat SZÍNEZÉS: ld. előadás diasorozat PÉLDA: Reguláris 5 gráf színezése 4 színnel Juhász, PPKE ITK, 007: http://users.itk.ppke.hu/~b_novak/dmat/juhasz_5_foku_graf.bmp
Gráfelméleti alapfogalmak
1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont
Gráfok, definíciók. Gráfok ábrázolása. Az adott probléma megoldásához ténylegesen mely műveletek szükségesek. Ábrázolások. Példa:
Gráfok, definíciók Irányítatlan gráf: G = (V,E), ahol E rendezetlen (a,b),a,b V párok halmaza. Irányított gráf: G = (V,E) E rendezett (a,b) párok halmaza; E V V. Címkézett (súlyozott) gráf: G = (V,E,C)
Marton József BME-TMIT. Adatbázisok VITMAB november 11.
Marton József BME-TMIT Gajdos Sándor diasorának felhasználásával Adatbázisok VITMAB00 2016. november 11. A lekérdezés-feldolgozás folyamata I. Cél: az adatok adatbázisból való kinyerése Mivel: egyértelmű,
Görbe- és felületmodellezés. Szplájnok Felületmodellezés
Görbe- és felületmodellezés Szplájnok Felületmodellezés Spline (szplájn) Spline: Szakaszosan, parametrikus polinomokkal leírt görbe A spline nevét arról a rugalmasan hajlítható vonalzóról kapta, melyet
Generikus osztályok, gyűjtemények és algoritmusok
Programozási, gyűjtemények és algoritmusok bejárása Informatikai Kar Eötvös Loránd Tudományegyetem 1 Tartalom 1 bejárása 2 bejárása 2 Java-ban és UML-ben bejárása Az UML-beli paraméteres osztályok a Java
3D-s számítógépes geometria
3D-s számítógépes geometria 2. Háromszöghálók I. http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav01 Dr. Várady Tamás BME, Villamosmérnöki és Informatikai Kar Irányítástechnika
HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör. Forrás: (
HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör Teljes gráf: Páros gráf, teljes páros gráf és Hamilton kör/út Hamilton kör: Minden csúcson áthaladó kör Hamilton kör Forrás: (http://www.math.klte.hur/~tujanyi/komb_j/k_win_doc/g0603.doc
10. előadás Speciális többágú fák
10. előadás Adatszerkezetek és algoritmusok előadás 2018. április 17., és Debreceni Egyetem Informatikai Kar 10.1 A többágú fák kezelésére nincsenek általános elvek, implementációjuk elsősorban alkalmazásfüggő.
Jogi terek modellezése a 3D kataszterben
Jogi terek modellezése a 3D kataszterben Iván Gyula főtanácsadó Fölmérési és Távérzékelési Intézet GIS OPEN 2012 Konferencia Felelni az alapkérdésekre Székesfehérvár, 2012. 03. 12-14. Tartalom A 2D és
Nyilvántartási Rendszer
Nyilvántartási Rendszer Veszprém Megyei Levéltár 2011.04.14. Készítette: Juszt Miklós Honnan indultunk? Rövid történeti áttekintés 2003 2007 2008-2011 Access alapú raktári topográfia Adatbázis optimalizálás,
11. Alakzatjellemzők. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)
11. Alakzatjellemzők Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Alakzat = pontok összefüggő rendszere példák síkbeli alakzatokra 3 Az
Síklapú testek. Gúlák, hasábok áthatása. Az előadás átdolgozott részleteket tartalmaz a következőkből: Gubis Katalin: Ábrázoló geometria
Síklapú testek Gúlák, hasábok áthatása Az előadás átdolgozott részleteket tartalmaz a következőkből: Gubis Katalin: Ábrázoló geometria Áthatás Két test áthatásának nevezzük a testek közös pontjainak összességéből
Környezeti informatika
Környezeti informatika Alkalmazható természettudományok oktatása a tudásalapú társadalomban TÁMOP-4.1.2.A/1-11/1-2011-0038 Eger, 2012. november 22. Utasi Zoltán Eszterházy Károly Főiskola, Földrajz Tanszék
MIKOVINY SÁMUEL TÉRINFORMATIKAI EMLÉKVERSENY
NYUGAT-MAGYARORSZÁGI EGYETEM GEOINFORMATIKAI KAR MIKOVINY SÁMUEL TÉRINFORMATIKAI EMLÉKVERSENY 2012/2013. TANÉV Az I. FORDULÓ FELADATAI NÉV:... Tudnivalók A feladatlap 4 feladatból áll, melyeket tetszőleges
Számítógépes Grafika SZIE YMÉK
Számítógépes Grafika SZIE YMÉK Analóg - digitális Analóg: a jel értelmezési tartománya (idő), és az értékkészletes is folytonos (pl. hang, fény) Diszkrét idejű: az értelmezési tartomány diszkrét (pl. a
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeș-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika 1.3 Intézet Magyar Matematika és Informatika 1.4 Szakterület
Síkbarajzolható gráfok, duális gráf
Síkbarajzolható gráfok, duális gráf Papp László BME November 8, 2018 Gráfok lerajzolása Definíció: Egy G gráf diagramján a gráf olyan lerajzolását értjük ahol a csúcsok különböző síkbeli pontok, illetve
Erdősné Németh Ágnes. Batthyány Lajos Gimnázium Nagykanizsa. agi@microprof.hu. INFO SAVARIA 2010. április 23. Erdősné Németh Ágnes, Nagykanizsa 1
Parkettázás s szabályos sokszögekkel Erdősné Németh Ágnes Batthyány Lajos Gimnázium Nagykanizsa agi@microprof.hu INFO SAVARIA 2010. április 23. Erdősné Németh Ágnes, Nagykanizsa 1 LOGO versenyfeladatok
Térinformatikai támogatás a kistérségi döntés és erőforrás-gazdálkodásban
Térinformatikai támogatás a kistérségi döntés és erőforrás-gazdálkodásban Készítette: Pázmányi Sándor Hajdú-Bihar Megyei Önkormányzat Informatikai Központ 1 A stratégiai területi döntéstámogatási rendszerek
Adatszerkezetek 1. előadás
Adatszerkezetek 1. előadás Irodalom: Lipschutz: Adatszerkezetek Morvay, Sebők: Számítógépes adatkezelés Cormen, Leiserson, Rives, Stein: Új algoritmusok http://it.inf.unideb.hu/~halasz http://it.inf.unideb.hu/adatszerk
11. előadás. Konvex poliéderek
11. előadás Konvex poliéderek Konvex poliéder 1. definíció: Konvex poliédernek nevezzük a térben véges sok, nem egysíkú pont konvex burkát. 2. definíció: Konvex poliédernek nevezzük azokat a térbeli korlátos
Elengedhetetlen a játékokban, mozi produkciós eszközökben Nélküle kvantum hatás lép fel. Az objektumok áthaladnak a többi objektumon
Bevezetés Ütközés detektálás Elengedhetetlen a játékokban, mozi produkciós eszközökben Nélküle kvantum hatás lép fel Az objektumok áthaladnak a többi objektumon A valósághű megjelenítés része Nem tisztán
Hajder Levente 2018/2019. II. félév
Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2018/2019. II. félév Tartalom 1 2 3 4 5 Albrecht Dürer, 1525 Motiváció Tekintsünk minden pixelre úgy, mint egy kis ablakra
Koordináta-geometria feladatgyűjtemény
Koordináta-geometria feladatgyűjtemény A feladatok megoldásai a dokumentum végén találhatók Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két csúcs
Készítette: Enisz Krisztián, Lugossy Balázs, Speiser Ferenc, Ughy Gergely 2010.11.29. 1
Készítette: Enisz Krisztián, Lugossy Balázs, Speiser Ferenc, Ughy Gergely 2010.11.29. 1 /17 Tartalomjegyzék A térinformatikáról általánosságban Célok Felhasznált eszközök Fejlesztés lépései Adatbázis Grafikus
QGIS. Tematikus szemi-webinárium Térinformatika. Móricz Norbert. Nemzeti Agrárkutatási és Innovációs Központ Erdészeti Tudományos Intézet (NAIK ERTI)
Tematikus szemi-webinárium Térinformatika Móricz Norbert Nemzeti Agrárkutatási és Innovációs Központ Erdészeti Tudományos Intézet (NAIK ERTI) Tartalom QGIS ismertető Vektor/raszter adatok elemzési lehetőségei
Adatszerkezetek és algoritmusok
2010. január 8. Bevezet El z órák anyagainak áttekintése Ismétlés Adatszerkezetek osztályozása Sor, Verem, Lengyelforma Statikus, tömbös reprezentáció Dinamikus, láncolt reprezentáció Láncolt lista Lassú
Hajder Levente 2014/2015. tavaszi félév
Hajder Levente hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom 1 2 3 4 5 Albrecht Dürer, 1525 Motiváció Tekintsünk minden pixelre úgy, mint
Az ErdaGIS térinformatikai keretrendszer
Az ErdaGIS térinformatikai keretrendszer Két évtized tapasztalatát sűrítettük ErdaGIS térinformatikai keretrendszerünkbe, mely moduláris felépítésével széleskörű felhasználói réteget céloz, és felépítését
I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra)
MATEMATIKA NYEK-humán tanterv Matematika előkészítő év Óraszám: 36 óra Tanítási ciklus 1 óra / 1 hét Részletes felsorolás A tananyag felosztása: I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek,
Matematika alapszak (BSc) 2015-től
Matematika alapszak (BSc) 2015-től módosítva 2015. 08. 12. Nappali tagozatos képzés A képzési terv tartalmaz mindenki számára kötelező tárgyelemeket (MK1-3), valamint választható tárgyakat. MK1. Alapozó
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás Önálló projektek - 2017. április 7. http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr.
Nyílt forráskódú tapasztalatok a FÖMI Térinformatikai Igazgatóságán
Nyílt forráskódú tapasztalatok a FÖMI Térinformatikai Igazgatóságán Dr. Kristóf Dániel osztályvezető Oláh Róbert igazgató Olasz Angéla térinformatikus Nyílt forráskódú GIS munkaértekezlet, BME, 2013.02.06.
Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t
Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,
4. Lokalizáció Magyar Attila
4. Lokalizáció Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2011. szeptember 23. 4. Lokalizáció 2 4. Tartalom