Erdősné Németh Ágnes. Batthyány Lajos Gimnázium Nagykanizsa. INFO SAVARIA április 23. Erdősné Németh Ágnes, Nagykanizsa 1

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Erdősné Németh Ágnes. Batthyány Lajos Gimnázium Nagykanizsa. agi@microprof.hu. INFO SAVARIA 2010. április 23. Erdősné Németh Ágnes, Nagykanizsa 1"

Átírás

1 Parkettázás s szabályos sokszögekkel Erdősné Németh Ágnes Batthyány Lajos Gimnázium Nagykanizsa agi@microprof.hu INFO SAVARIA április 23. Erdősné Németh Ágnes, Nagykanizsa 1

2 LOGO versenyfeladatok II., III., IV. kategória feladatai közt mindig szerepel valamilyen parkettázás Feladatminták Ötlet: szabályos sokszögekkel INFO SAVARIA április 23. Erdősné Németh Ágnes, Nagykanizsa 2

3 Szabályos parkettázás A sík olyan egyrétegű, hézagmentes lefedése, ahol minden csúcspontban ugyanannyi szabályos sokszög találkozik és a csúcsok egymásba mozgatásakor a parketta invariáns. Azaz minden csúcspont környezete ugyanúgy néz ki és bármely csúcsot el tudunk mozgatni egymásba, a látvány nem változik. INFO SAVARIA április 23. Erdősné Németh Ágnes, Nagykanizsa 3

4 Szabályos sokszögek egy típust Tipp: melyikkel lehet? Háromszög, négyzet gyorsan jön lehet-e mással? méhek Próbálkozás Háromszög Négyzet Ötszög? Hatszög Hétszög? Nyolcszög? INFO SAVARIA április 23. Erdősné Németh Ágnes, Nagykanizsa 4

5 Egy típust pusú szabályos sokszögb gből Egy csúcs:számelméletileg vizsgálva a problémát, osztópárok felírása a 360 fokra: 360*1 1* *2 120*3 90*4 72*5 60*6 45*8 40*9 36*10 30*12 24*15 20*18 2*180 3*120 4*90 5*72 6*60 8*45 9*40 10*36 12*30 15*24 18*20 Szabályos sokszögek belső szögei: (n-2)*180 o /n 60 o, 90 o, 108, 120 o, 128,57, 135, 140, 144, 147,2727, 150,. INFO SAVARIA április 23. Erdősné Németh Ágnes, Nagykanizsa 5

6 Több típus t is lehet Hány szabályos sokszög találkozhat egy csúcspontban? Belső szög konvex =>minimum 3 szögtartomány Legkisebb belső szög a szabályos háromszögé =>maximum 6 Harmad, negyed, ötöd illetve hatodfokú parkettákról beszélhetünk, attól függően, hány sokszög találkozik egy-egy pontban Hányféle szabályos parkettázás létezik? TIPP INFO SAVARIA április 23. Erdősné Németh Ágnes, Nagykanizsa 6

7 Harmadfokú parketták o o o (a 2) 180 (b 2) 180 (c 2) = a b c = a b c o a,b,c 3; a,b,c Ζ a b c INFO SAVARIA április 23. Erdősné Németh Ágnes, Nagykanizsa 7

8 Harmadfokú parketták = a b c b + c = 6 b=7 => c=42 a=3 => => b=8 => c=24 b=9 => c=18 b=10 => c=15 b=11 => c nem egész b=12 => c=12 a=4 => b=5,6,7,8 => c=20, 12, nem egész, 8 a=5 => b=5,6 => c=5, nem egész a=6 b=6 c=6 INFO SAVARIA április 23. Erdősné Németh Ágnes, Nagykanizsa 8

9 Harmadfokú parketták {3, 7, 42} {3, 8, 24} {3, 9, 18} {3, 10, 15} {3, 12, 12} {4, 5, 20} {4, 6, 12} {4, 8, 8} {5, 5, 10} {6, 6, 6} INFO SAVARIA április 23. Erdősné Németh Ágnes, Nagykanizsa 9

10 Negyedfokú parketták = 1 a,b,c,d 3; a b c d a,b,c,d Ζ a b c d 4 megoldást kapunk {3, 3, 4, 12} nem jó {3, 6, 3, 6} {3, 4, 4, 6 } {4, 4, 4, 4} INFO SAVARIA április 23. Erdősné Németh Ágnes, Nagykanizsa 10

11 Ötödfokú parketták = a b c d e 2 a,b,c,d,e 3; a,b,c,d,e Ζ a b c d e 2 megoldást kapunk {3, 3, 3, 3, 6} {3, 3, 3, 4, 4} INFO SAVARIA április 23. Erdősné Németh Ágnes, Nagykanizsa 11

12 Hatodfokú parketták Egyetlen megoldás van Így mind a 11 lefedést előállítottuk INFO SAVARIA április 23. Erdősné Németh Ágnes, Nagykanizsa 12

13 Matematika Geometriai probléma - algebrai eszközök Algebrai megoldás - nem mind felel meg Teljes megoldás További problémákat vet fel Matematikailag: Térbeli megfelelő Algoritmikusan: Geometriai transzformáció, amire invariáns INFO SAVARIA április 23. Erdősné Németh Ágnes, Nagykanizsa 13

14 WINGEOM program Geometriai szerkesztések Lefedések Ingyenes, letölthető Könnyű használni INFO SAVARIA április 23. Erdősné Németh Ágnes, Nagykanizsa 14

15 Sokszög g rajzolása Imagine-ben Eljárás háromszögrajz ismétlés 3 [előre 100 jobbra 360/3] Vége Először lépkedéssel, majd konkrét értékekkel, majd paraméteresen Eljárás sokszögrajz :oldalhossz :oldalszám :szin ismétlés : oldalszám [előre : oldalhossz jobbra 360/: oldalszám] színezés :szin Vége INFO SAVARIA április 23. Erdősné Németh Ágnes, Nagykanizsa 15

16 Parkettarajzolás Imagine-ben Egy alapelem, mozgás, következő alapelem. Egy sor megrajzolása (ismétlés) Vissza a sor elejére MOZGÁS, újabb sor megrajzolása És itt jön elő a geometriai transzformáció Meg kell keresni az invariáns elemet és a mozgást INFO SAVARIA április 23. Erdősné Németh Ágnes, Nagykanizsa 16

17 Gyerekek munkái Peti Marci : síklefedés2 5 9 sárga kék 50 Sík2 9 sárga kék 50 A2 sárga kék : síklefedés 5 9 piros kék : síklefedés3 3 6 "sárga "kék "piros : síklefedés8 5 5 "sárga "kék "piros : síklefedés "sárga "kék "piros Patti : lefedes1 "sárga "kék : lefedes "sárga "piros Márk Egy eljárás: nincs alapelem, sor : a4848 "piros "sárga : a "piros "kék 6 4 Kis trükkös 33336: a "zöld "kék 3 5 INFO SAVARIA április 23. Erdősné Németh Ágnes, Nagykanizsa 17

18 Nem szabályos sokszöggel parkettázás INFO SAVARIA április 23. Erdősné Németh Ágnes, Nagykanizsa 18

19 PENROSE csempék Nem periodikus csempézés INFO SAVARIA április 23. Erdősné Németh Ágnes, Nagykanizsa 19

20 Linkek IMAGINE Dr. Kosztolányi József: Egy kutatási program általános iskolásoknak, POLYGON 1991, június WINGEOM A sík parkettázása a Wingeom programmal Penrose csempézések Az aranymetszés síkgeometriája Reimann: Parketták a geometria szemszögéből INFO SAVARIA április 23. Erdősné Németh Ágnes, Nagykanizsa 20

21 Parkettázás s szabályos sokszögekkel Erdősné Németh Ágnes Batthyány Lajos Gimnázium Nagykanizsa agi@microprof.hu INFO SAVARIA április 23. Erdősné Németh Ágnes, Nagykanizsa 21

Síklefedések Erdősné Németh Ágnes, Nagykanizsa

Síklefedések Erdősné Németh Ágnes, Nagykanizsa Magas szintű matematikai tehetséggondozás Síklefedések Erdősné Németh Ágnes, Nagykanizsa Kisebbeknek és nagyobbaknak a programozási versenyfeladatok között nagyon gyakran fordul elő olyan, hogy valamilyen

Részletesebben

Programozási nyelvek 2. előadás

Programozási nyelvek 2. előadás Programozási nyelvek 2. előadás Logo forgatás tétel Forgatás tétel Ha az ismétlendő rész T fok fordulatot végez és a kezdőhelyére visszatér, akkor az ismétlések által rajzolt ábrák egymás T fokkal elforgatottjai

Részletesebben

VIII. Vályi Gyula Emlékverseny 2001 november Mennyivel egyenlő ezen számjegyek összege?

VIII. Vályi Gyula Emlékverseny 2001 november Mennyivel egyenlő ezen számjegyek összege? VIII. Vályi Gyula Emlékverseny 001 november 3-5 VI osztály Csak az eredmény kérjük! 1. Frédi 3 naponként, Béni 4 naponként jár az uszodába, mindig pontosan délután 4-től 6-ig. Kedden találkoztak az uszodában.

Részletesebben

Programozás 7.o Az algoritmus fogalma (ismétlés)

Programozás 7.o Az algoritmus fogalma (ismétlés) Programozás 7.o Az algoritmus fogalma (étlés) Az algoritmus olyan leírás, felsorolás, amely az adott feladat megoldásához szükséges jól definiált utasítások s számú sorozata. Egy probléma megoldására kidolgozott

Részletesebben

Informatika óravázlat 4. osztály oldal 15

Informatika óravázlat 4. osztály oldal 15 14. dec. 3. hét Algortimusok és adatok III. Programozzunk Imagine Logo vs. Comenius Logo Alapparancsok közti különbségek megfigyelése. Legfontosabb logo parancsok használata. Okos állat a Teki, szeret

Részletesebben

5.osztály 1.foglalkozás. 5.osztály 2.foglalkozás. hatszögéskörök

5.osztály 1.foglalkozás. 5.osztály 2.foglalkozás. hatszögéskörök 5.osztály 1.foglalkozás 5.osztály 2.foglalkozás hatszögéskörök cseresznye A cseresznye zöld száránál az egyeneshez képest 30-at kell fordulni! (30 fokot). A cseresznyék között 60 egység a térköz! Szétszedtem

Részletesebben

Programozási nyelvek 1. előadás

Programozási nyelvek 1. előadás Programozási nyelvek 1. előadás I. A nyelv története Logo Seymour Papert, 1968,1969 - szövegkezelés, M.I.T. Később: grafika, mikroszámítógépekre átdolgozva Cél: minél kisebb gyerekeknek is, természetes

Részletesebben

2) Egy háromszög két oldalának hossza 9 és 14 cm. A 14 cm hosszú oldallal szemközti szög 42. Adja meg a háromszög hiányzó adatait!

2) Egy háromszög két oldalának hossza 9 és 14 cm. A 14 cm hosszú oldallal szemközti szög 42. Adja meg a háromszög hiányzó adatait! Szinusztétel 1) Egy háromszög két oldalának hossza 3 és 5 cm. Az 5 cm hosszú oldallal szemközti szög 70. Adja ) Egy háromszög két oldalának hossza 9 és 14 cm. A 14 cm hosszú oldallal szemközti szög 4.

Részletesebben

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4 . Orchidea Iskola VI. Matematika verseny 0/0 II. forduló = x + = x ++ = x +++ = x Ennek ismeretében mennyivel egyenlő ++++...+9+99=? A ) 0. D ) 0 000 6 C ) 0 D ) A Földközi-tengerben a só-víz aránya :

Részletesebben

Programozási nyelvek 3. előadás

Programozási nyelvek 3. előadás Programozási nyelvek 3. előadás Logo sokszög variációk Sokszög rekurzívan Az N oldalú sokszögvonal 1 oldalból és egy N-1 oldalú sokszögvonalból áll. eljárás reksokszög :n :hossz :szög előre :hossz balra

Részletesebben

8. modul: NÉGYSZÖGEK, SOKSZÖGEK

8. modul: NÉGYSZÖGEK, SOKSZÖGEK MATEMATIK A 9. évfolyam 8. modul: NÉGYSZÖGEK, SOKSZÖGEK KÉSZÍTETTE: VIDRA GÁBOR Matematika A 9. évfolyam. 8. modul: NÉGYSZÖGEK, SOKSZÖGEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

IV. Matematikai tehetségnap 2013. szeptember 28. IV. osztály

IV. Matematikai tehetségnap 2013. szeptember 28. IV. osztály IV. osztály 1. feladat. Ha leejtünk egy labdát, akkor az feleakkora magasságra pattan fel, mint ahonnan leejtettük. Milyen magasról ejtettük le a labdát, ha ötödször 10 cm magasra pattant fel? 2. feladat.

Részletesebben

4. Lecke. Körök és szabályos sokszögek rajzolása. 4.Lecke / 1.

4. Lecke. Körök és szabályos sokszögek rajzolása. 4.Lecke / 1. 4.Lecke / 1. 4. Lecke Körök és szabályos sokszögek rajzolása Az előző fejezetekkel ellentétben most nem újabb programozási utasításokról vagy elvekről fogunk tanulni. Ebben a fejezetben a sokszögekről,

Részletesebben

MATEMATIKA C 9. évfolyam 8. modul SZIMMETRIKUS?

MATEMATIKA C 9. évfolyam 8. modul SZIMMETRIKUS? MATEMATIKA C 9. évfolyam 8. modul SZIMMETRIKUS? Készítette: Surányi Szabolcs MATEMATIKA C 9. ÉVFOLYAM 8. MODUL: SZIMMETRIKUS? TANÁRI ÚTMUTATÓ 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Követelmény a 6. évfolyamon félévkor matematikából

Követelmény a 6. évfolyamon félévkor matematikából Követelmény a 6. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Halmazba rendezés adott tulajdonság alapján, részhalmaz felírása, felismerése. Két véges halmaz közös részének,

Részletesebben

TANMENET. Matematika

TANMENET. Matematika Bethlen Gábor Református Gimnázium és Szathmáry Kollégium 6800 Hódmezővásárhely, Szőnyi utca 2. Telefon: +36-62-241-703 www.bgrg.hu OM: 029736 TANMENET Matematika 2016/2017 9. B tagozat Összeállította:

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET C

MATEMATIKAI KOMPETENCIATERÜLET C MATEMATIKAI KOMPETENCIATERÜLET C Matematika 1. évfolyam tanulói ESZKÖZÖK Matematika C 1. évfolyam 1. modul: Alakzatok Matematika C 1. évfolyam 1. modul: Alakzatok Matematika C 1. évfolyam 2. modul: Táblás

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III. Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak

Részletesebben

2016/2017. Matematika 9.Kny

2016/2017. Matematika 9.Kny 2016/2017. Matematika 9.Kny Gondolkodási módszerek 1. Számhalmazok: N, Z, Q, Q*, R a számhalmazok kapcsolata, halmazábra 2. Ponthalmazok: o 5. oldal K I. fejezet: 172-178., 180-185., 191. feladat távolsággal

Részletesebben

2. Síkmértani szerkesztések

2. Síkmértani szerkesztések 2. Síkmértani szerkesztések Euklidész görög matematikus (i. e. 325 körül) szerint azokat az eljárásokat tekintjük szerkesztésnek, amelyek egy egyenes vonalzóval és egy körz vel véges számú lépésben elvégezhet

Részletesebben

Hogyan óvjuk meg értékes festményeinket?

Hogyan óvjuk meg értékes festményeinket? Hogyan óvjuk meg értékes festményeinket? Hajnal Péter Bolyai Intézet, SZTE, Szeged 2013. április Bevezető példa I. Feladat Adott egy konvex nyolcszög. Bevezető példa I. Feladat Adott egy konvex nyolcszög.

Részletesebben

16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek

16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek 16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK Geometriai transzformáció Def:Olyan speciális függvény, melynek értelmezési

Részletesebben

JOHANNES KEPLER (Weil der Stadt, december 27. Regensburg, Bajorország, november 15.)

JOHANNES KEPLER (Weil der Stadt, december 27. Regensburg, Bajorország, november 15.) SZABÁLYOS TESTEK JOHANNES KEPLER (Weil der Stadt, 1571. december 27. Regensburg, Bajorország, 1630. november 15.) Német matematikus és csillagász, aki felfedezte a bolygómozgás törvényeit, amiket róla

Részletesebben

48. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK = = 2019.

48. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK = = 2019. 8. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK 1. Bizonyítsd be, hogy 019 db egymást követő pozitív egész szám közül mindig kiválasztható 19 db úgy, hogy az összegük

Részletesebben

Izsák Imre Gyula természettudományos verseny

Izsák Imre Gyula természettudományos verseny 199 Jelölje m a, m b, m c egy háromszög magasságait, ρ a háromszög beírt körének a sugarát. Igazoljuk, hogy ma + mb + mc 9ρ Mikor áll fenn az egyenlség? Osszuk fel egy tetszleges ABCD konvex négyszög AB,

Részletesebben

Megyei matematikaverseny évfolyam 2. forduló

Megyei matematikaverseny évfolyam 2. forduló Megyei matematikaverseny 0. 9. évfolyam. forduló. különbözı pozitív egész szám átlaga. Legfeljebb mekkora lehet ezen számok közül a legnagyobb? (A) (B) 8 (C) 9 (D) 78 (E) 44. 00 009 + 008 007 +... + 4

Részletesebben

Matematika pótvizsga témakörök 9. V

Matematika pótvizsga témakörök 9. V Matematika pótvizsga témakörök 9. V 1. Halmazok, műveletek halmazokkal halmaz, halmaz eleme halmazok egyenlősége véges, végtelen halmaz halmazok jelölése, megadása természetes számok egész számok racionális

Részletesebben

Lehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.

Lehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van. Geometria, sokszögek, szögek, -, 2004_01/5 Lili rajzolt néhány síkidomot: egy háromszöget, egy deltoidot, egy paralelogrammát és egy trapézt. A következő állítások ezekre vonatkoznak. Tegyél * jelet a

Részletesebben

NULLADIK MATEMATIKA szeptember 7.

NULLADIK MATEMATIKA szeptember 7. A NULLADIK MATEMATIKA ZÁRTHELYI 0. szeptember Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható. Válaszait csak az üres mezőkbe írja! A javítók a szürke

Részletesebben

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Síkgeometria 1/6 Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

GEOMETRIA 1, alapszint

GEOMETRIA 1, alapszint GEOMETRIA 1, alapszint Kiss György 4-723 Fogadóóra: péntek 8. 15-10. 00 email: kissgy@cs.elte.hu Előadás: 11. 15-13. 45, közben egyszer 15 perc szünet GEOMETRIA 1, alapszint Ajánlott irodalom: Hajós Gy.:

Részletesebben

Követelmény az 5. évfolyamon félévkor matematikából

Követelmény az 5. évfolyamon félévkor matematikából Követelmény az 5. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Néhány elem kiválasztása adott szempont szerint. Néhány elem sorba rendezése, az összes lehetséges sorrend felsorolása.

Részletesebben

A TERMÉSZETES SZÁMOK

A TERMÉSZETES SZÁMOK Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2018/2019.

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1 Írásban, 90 perc. 2 Személyazonosságot igazoló okmány nélkül

Részletesebben

Geometriai feladatok, 9. évfolyam

Geometriai feladatok, 9. évfolyam Geometriai feladatok, 9. évfolyam Szögek 1. Nevezzük meg az ábrán látható szögpárokat. Mekkora a nagyságuk, ha α =52 o fok? 2. Mekkora az a szög, amelyik a, az egyenesszög 1/3-ad része b, pótszögénél 32

Részletesebben

Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag

Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag Síkbeli és térbeli alakzatok 1.3 Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag Életkor: Fogalmak, eljárások: 10 12 év sokszög, szabályos sokszög egybevágó lap, él, csúcs párhuzamos,

Részletesebben

Feladatok Házi feladat. Keszeg Attila

Feladatok Házi feladat. Keszeg Attila 2016.01.29. 1 2 3 4 Adott egy O pont és egy λ 0 valós szám. a tér minden egyes P pontjához rendeljünk hozzá egy P pontot, a következő módon: 1 ha P = O, akkor P = P 2 ha P O, akkor P az OP egyenes azon

Részletesebben

Egyenes mert nincs se kezdő se végpontja

Egyenes mert nincs se kezdő se végpontja Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással

Részletesebben

Rend, rendezetlenség, szimmetriák (rövidített változat)

Rend, rendezetlenség, szimmetriák (rövidített változat) Rend, rendezetlenség, szimmetriák (rövidített változat) dr. Tasnádi Tamás 1 2018. február 16. 1 BME, Matematikai Intézet Tartalom Mi a rend? Érdekes grafikáktól a periodikus rácsokig Nem periodikus parkettázások

Részletesebben

V. osztály. Matematikai tehetségnap 2013. október 12. Megoldások

V. osztály. Matematikai tehetségnap 2013. október 12. Megoldások V. osztály 1. feladat. Ha leejtünk egy labdát, akkor az fele akkora magasságra pattan fel, mint ahonnan leejtettük. Milyen magasról ejtettük le a labdát, ha ötödik alkalommal 10cm magasra pattant fel?

Részletesebben

mintásfal 60 40 2 2 mintásfal :m :sz :dbjobbra :dbfel

mintásfal 60 40 2 2 mintásfal :m :sz :dbjobbra :dbfel 6.osztály 1.foglalkozás 6.osztály 2.foglalkozás kocka kockafal :db minta Készítsd el ezt a mintát! A minta hosszú oldala 60 a rövid oldala 40 egység hosszú. A hosszú oldal harmada a négyzet oldala! A háromszög

Részletesebben

A szabályos sokszögek közelítő szerkesztéséhez

A szabályos sokszögek közelítő szerkesztéséhez 1 A szabályos sokszögek közelítő szerkesztéséhez A síkmértani szerkesztések között van egy kedvencünk: a szabályos n - szög közelítő szerkesztése. Azért vívta ki nálunk ezt az előkelő helyet, mert nagyon

Részletesebben

Gráfelmélet Megoldások

Gráfelmélet Megoldások Gráfelmélet Megoldások 1) a) Döntse el az alábbi négy állítás közül melyik igaz és melyik hamis! Válaszát írja a táblázatba! A: Egy 6 pontot tartalmazó teljes gráfnak 15 éle van B: Ha egy teljes gráfnak

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória Megoldások és javítási útmutató 1. Az a b pozitív egészek és tudjuk hogy a 2

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 9. évfolyam 1. félév ESZKÖZÖK Matematika A 9. évfolyam 1. modul 1.1 dominó { 5-re végződő páros számok } { az x < 0 egyenlet megoldásai } { a Föld holdjai }

Részletesebben

A Katedra Matematikaverseny 2013/2014-es döntőjének feladatsorai Összeállította: Károlyi Károly

A Katedra Matematikaverseny 2013/2014-es döntőjének feladatsorai Összeállította: Károlyi Károly A Katedra Matematikaverseny 2013/2014-es döntőjének feladatsorai Összeállította: Károlyi Károly 5. osztály 1. A MATEK szó minden betűjének megfeleltetünk egy-egy számjegyet a következők szerint: M + A

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

Vektorok összeadása, kivonása, szorzás számmal, koordináták

Vektorok összeadása, kivonása, szorzás számmal, koordináták Vektorok összeadása, kivonása, szorzás számmal, koordináták 1. Mik lesznek a P (3, 4, 8) pont C (3, 7, 2) pontra vonatkozó tükörképének a koordinátái? 2. Egy szabályos hatszög középpontja K (4, 1, 4),

Részletesebben

KockaKobak Országos Matematikaverseny osztály

KockaKobak Országos Matematikaverseny osztály KockaKobak Országos Matematikaverseny 9-10. osztály 016. november 4. A feladatsort készítette: RÓKA SÁNDOR Lektorálta: DR. KISS GÉZA Anyanyelvi lektor: ASZÓDINÉ KOVÁCS MÁRIA A válaszlapról másold ide az

Részletesebben

Számítógéppel segített modellezés és szimuláció a természettudományokban

Számítógéppel segített modellezés és szimuláció a természettudományokban Számítógéppel segített modellezés és szimuláció a természettudományokban Beszámoló előadás Németh Gábor 2008. 05. 08. A kurzusról Intenzív, 38 órás kurzus 2008. 03. 25. -2008. 03. 30-ig Három csoport:

Részletesebben

Egy geometriai szélsőérték - feladat

Egy geometriai szélsőérték - feladat 1 Egy geometriai szélsőérték - feladat A feladat: Szerkesztendő egy olyan legnagyobb területű háromszög, melynek egyik csúcsa az a és b féltengelyeivel adott ellipszis tetszőlegesen felvett pontja. Keresendő

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

Feladatok a MATEMATIKA. standardleírás 2. szintjéhez

Feladatok a MATEMATIKA. standardleírás 2. szintjéhez Feladatok a MATEMATIKA standardleírás 2. szintjéhez A feladat sorszáma: 1. Standardszint: 2. Gondolkodási és megismerési módszerek Halmazok Képes különböző elemek közös tulajdonságainak felismerésére.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

Boronkay György Műszaki Középiskola és Gimnázium Vác, Németh László u : /fax:

Boronkay György Műszaki Középiskola és Gimnázium Vác, Németh László u : /fax: 5. OSZTÁLY 1.) Apám 20 lépésének a hossza 18 méter, az én 10 lépésemé pedig 8 méter. Hány centiméterrel rövidebb az én lépésem az édesapáménál? 18m = 1800cm, így apám egy lépésének hossza 1800:20 = 90cm.

Részletesebben

Háromszögek, négyszögek, sokszögek 9. évfolyam

Háromszögek, négyszögek, sokszögek 9. évfolyam Háromszögek, négyszögek, sokszögek 9. évfolyam I. Pontok, egyenesek, síkok és ezek kölcsönös helyzetet 1) a pont, az egyenes, a sík és az illeszkedés alapfogalmak 2) két egyenes metsző, ha van közös pontjuk

Részletesebben

Megoldatlan (elemi) matematikai problémák Diszkrét geometriai problémák

Megoldatlan (elemi) matematikai problémák Diszkrét geometriai problémák Megoldatlan (elemi) matematikai problémák Diszkrét geometriai problémák Csikós Balázs ELTE TTK Matematikai Intézet Országos Diákkutatói Program, 2009.11.13. Csikós B. (ELTE TTK Matematikai Intézet) Diszkrét

Részletesebben

MATEMATIKA ÉRETTSÉGI 2012. október 16. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2012. október 16. KÖZÉPSZINT I. ) Az a n sorozat tagját! MATEMATIKA ÉRETTSÉGI 0 október KÖZÉPSZINT I számtani sorozat első tagja és differenciája is 4 Adja meg a a 04 ) Az A és B halmazokról tudjuk, hogy AB ; ; ; 4; ;, A\ ; AB ; A ;

Részletesebben

Matematika érettségi emelt 2008 október. x 2 0. nem megoldás. 9 x

Matematika érettségi emelt 2008 október. x 2 0. nem megoldás. 9 x Matematika érettségi emelt 8 október ( ) lg( 8) 8 8 nem megoldás lg( 8) 8 9 ] ; [ ] ; [, M {;} Matematika érettségi emelt 8 október 6 I. eset II. eset ;[ ] 5 5 6 ;[ ], [ [; 5 5 6 [ [; 4, {;} M Matematika

Részletesebben

Minden feladat teljes megoldása 7 pont

Minden feladat teljes megoldása 7 pont Telefon: 7-8900 Fax: 7-8901 4. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. nap HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat teljes megoldása 7 pont 1. 9 kg mogyorót vásároltunk,

Részletesebben

10. előadás. Konvex halmazok

10. előadás. Konvex halmazok 10. előadás Konvex halmazok Konvex halmazok Definíció: A K ponthalmaz konvex, ha bármely két pontjának összekötő szakaszát tartalmazza. Állítás: Konvex halmazok metszete konvex. Konvex halmazok uniója

Részletesebben

Curie Matematika Emlékverseny 7. évfolyam I. forduló 2011/2012.

Curie Matematika Emlékverseny 7. évfolyam I. forduló 2011/2012. Curie Matematika Emlékverseny 7. évfolyam I. forduló 2011/2012. A feladatokat írta: Kozma Lászlóné, Sajószentpéter Tóth Jánosné, Szolnok Lektorálta: Fodor Csaba, Szeged Név:..... Iskola:. Beküldési határidő:

Részletesebben

Orbán Béla EGY CSEPP GEOMETRIA

Orbán Béla EGY CSEPP GEOMETRIA Orbán Béla EGY CSEPP GEOMETRIA A matematikai feladatok egy része olyan szellemi erőfeszítést igénylő rejtvényként fogható fel, amelynek megoldása jóleső érzést (sikerélményt) biztosít. Fokozott mértékben

Részletesebben

Ezután az első megoldásban látott gondolatmenettel fejezhetjük be a feladat megoldását. = n(np 1)...(np p+1) (p 1)! ( ) np 1.

Ezután az első megoldásban látott gondolatmenettel fejezhetjük be a feladat megoldását. = n(np 1)...(np p+1) (p 1)! ( ) np 1. Országos Középiskolai Tanulmányi Verseny, 2011 12-es tanév MATEMATIKA, III. kategória a gimnáziumok speciális matematikai osztályainak tanulói részére Az első forduló feladatainak megoldásai Kérjük a javító

Részletesebben

Véges ponthalmazok legrövidebb hálózatai Kábelrakás kis költséggel

Véges ponthalmazok legrövidebb hálózatai Kábelrakás kis költséggel Véges ponthalmazok legrövidebb hálózatai Bessenyei Mihály U.M. Debreceni Egyetem, Matematikai Intézet, Analízis Tanszék (Szabó Gréta egyetemi hallgatóval közös munka alapján) Medve Matektábor, Pusztafalu,

Részletesebben

Színezések Fonyó Lajos, Keszthely

Színezések Fonyó Lajos, Keszthely Színezések Fonyó Lajos, Keszthely 1. A sík pontjait kiszínezzük két színnel. Bizonyítsuk be, hogy tetszőleges d R + esetén lesz két egymástól d távolságra levő pont, amelyek azonos színűek. I. megoldás:

Részletesebben

XVIII. Nemzetközi Magyar Matematika Verseny

XVIII. Nemzetközi Magyar Matematika Verseny 9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.

Részletesebben

A GEOMETRIA TÉMAKÖR FELOSZTÁSA. Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria

A GEOMETRIA TÉMAKÖR FELOSZTÁSA. Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria GEOMETRIA A GEOMETRIA TÉMAKÖR FELOSZTÁSA Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria A SÍKGEOMETRIA TANÍTÁSA 5-10. OSZTÁLY Síkgeometriai fogalmak

Részletesebben

Ismerkedés a micro:bit eszközökkel algoritmusok játékosan

Ismerkedés a micro:bit eszközökkel algoritmusok játékosan Ismerkedés a micro:bit eszközökkel algoritmusok játékosan Erdősné Németh Ágnes Batthyány Lajos Gimnázium, Nagykanizsa A kommunikációhoz minden fiatalnak öt alapnyelvet kell elsajátítania: az anyanyelvét,

Részletesebben

Fényi Gyula Jezsuita Gimnázium és Kollégium Miskolc, Fényi Gyula tér Tel.: (+36-46) , , , Fax: (+36-46)

Fényi Gyula Jezsuita Gimnázium és Kollégium Miskolc, Fényi Gyula tér Tel.: (+36-46) , , , Fax: (+36-46) Fényi Gyula Jezsuita Gimnázium és Kollégium 529 Miskolc, Fényi Gyula tér 2-12. Tel.: (+6-46) 560-458, 560-459, 560-58, Fax: (+6-46) 560-582 E-mail: fenyi@jezsuita.hu Honlap: www.jezsu.hu A JECSE Jesuit

Részletesebben

1. A komplex számok ábrázolása

1. A komplex számok ábrázolása 1. komplex számok ábrázolása Vektorok és helyvektorok. Ismétlés sík vektorai irányított szakaszok, de két vektor egyenlő, ha párhuzamosak, egyenlő hosszúak és irányúak. Így minden vektor kezdőpontja az

Részletesebben

Analitikus geometria c. gyakorlat

Analitikus geometria c. gyakorlat matematikatanári szak (2016/2017-es tanév, 1. félév) 1. feladatsor (M veletek vektorokkal) 1) Az a vektor hossza kétszerese a b vektor hosszának. Mekkora a két vektor szöge, ha az a b vektor mer leges

Részletesebben

Matematika 7. osztály

Matematika 7. osztály ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hat évfolyamos képzés Matematika 7. osztály V. rész: Egyenletek Készítette: Balázs Ádám Budapest, 018 . Tartalomjegyzék Tartalomjegyzék V. rész:

Részletesebben

Megoldások p a.) Sanyi költötte a legkevesebb pénzt b.) Sanyi 2250 Ft-ot gyűjtött. c.) Klára

Megoldások p a.) Sanyi költötte a legkevesebb pénzt b.) Sanyi 2250 Ft-ot gyűjtött. c.) Klára Megoldások 1. feladat: A testvérek, Anna, Klára és Sanyi édesanyjuknak ajándékra gyűjtenek. Anna ötször, Klára hatszor annyi pénzt gyűjtött, mint Sanyi. Anna az összegyűjtött pénzének 3/10 részéért, Klára

Részletesebben

Matematika A 9. szakiskolai évfolyam. 16. modul EGYBEVÁGÓSÁGOK. Készítette: Vidra Gábor

Matematika A 9. szakiskolai évfolyam. 16. modul EGYBEVÁGÓSÁGOK. Készítette: Vidra Gábor Matematika A 9. szakiskolai évfolyam 16. modul EGYBEVÁGÓSÁGOK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 16. modul: EGYBEVÁGÓSÁGOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 7 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Matematika 6. osztály Osztályozó vizsga

Matematika 6. osztály Osztályozó vizsga Matematika 6. osztály Osztályozó vizsga 1. Számok és műveletek 1. A tízes számrendszer Számok írása, olvasása, ábrázolása Az egymilliónál nagyobb természetes számok írása, olvasása. Számok tizedestört

Részletesebben

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) Ezt a módszert akkor alkalmazzuk, amikor könnyebb bizonyítani egy állítás ellentettjét, mintsem az állítást direktben. Ez a módszer

Részletesebben

ELLENİRIZD, HOGY A MEGFELELİ ÉVFOLYAMÚ FELADATSORT KAPTAD-E!

ELLENİRIZD, HOGY A MEGFELELİ ÉVFOLYAMÚ FELADATSORT KAPTAD-E! Varga Tamás Matematikaverseny iskolai forduló 2010. 1. feladat Kata egy dobozban tárolja 20 darab dobókockáját. Mindegyik kocka egyszínő, piros, fehér, zöld vagy fekete. 17 kocka nem zöld, 12 nem fehér,

Részletesebben

2016/2017. Matematika 9.Kny

2016/2017. Matematika 9.Kny 2016/2017. Matematika 9.Kny Gondolkodási módszerek 1. Számhalmazok: N, Z, Q, Q*, R a számhalmazok kapcsolata, halmazábra 2. Ponthalmazok: o 4. oldal K I. fejezet: 172-178., 180-185., 191. feladat távolsággal

Részletesebben

III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló

III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló 1. Mennyi az eredmény 15+17 15+17 15+17=? A) 28 B) 35 C) 36 D)96 2. Melyik szám van a piramis csúcsán? 42 82 38 A) 168 B) 138

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév kezdők III. kategória I. forduló

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév kezdők III. kategória I. forduló Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 01/013-as tanév kezdők I II. kategória II. forduló kezdők III. kategória I. forduló Megoldások és javítási útmutató 1. Egy osztályban

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

FOLYTATÁS A TÚLOLDALON!

FOLYTATÁS A TÚLOLDALON! ÖTÖDIK OSZTÁLY 1. Egy négyjegyű számról ezeket tudjuk: (1) van 3 egymást követő számjegye; (2) ezek közül az egyik duplája egy másiknak; (3) a 4 db számjegy összege 10; (4) a 4 db számjegy szorzata 0;

Részletesebben

I. Sokszögek és négyszögek

I. Sokszögek és négyszögek 8. modul: NÉGYSZÖGEK, SOKSZÖGEK 11 I. Sokszögek és négyszögek Módszertani megjegyzés: A modul feldolgozását néhány bevezető gondolat után csoportmunkában célszerű elkezdeni az alább megadott kérdésekre

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 0/03-as tanév. forduló haladók III. kategória Megoldások és javítási útmutató. Egy kör kerületére felírjuk -től 3-ig az egészeket

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ 2005. OKTÓBER 29. 5. osztály

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ 2005. OKTÓBER 29. 5. osztály 5. osztály Józsi bácsi egy farkassal, egy kecskével és egy fej káposztával egy folyóhoz érkezik, amin át szeretne kelni. Csak egy olyan csónak áll rendelkezésére, amellyel a felsoroltak közül csak egyet

Részletesebben

1. Az ábrán látható táblázat minden kis négyzete 1 cm oldalhosszúságú. A kis négyzetek határvonalait akarjuk lefedni. Meg lehet-e ezt tenni

1. Az ábrán látható táblázat minden kis négyzete 1 cm oldalhosszúságú. A kis négyzetek határvonalait akarjuk lefedni. Meg lehet-e ezt tenni 1. Az ábrán látható táblázat minden kis négyzete 1 cm oldalhosszúságú. A kis négyzetek határvonalait akarjuk lefedni. Meg lehet-e ezt tenni a) 5 db 8 cm hosszú, b) 8 db 5 cm hosszú cérnával? Megoldás:

Részletesebben

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatok (középszint) Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy

Részletesebben

1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK

1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK MATEMATIKA TÉMAKÖRÖK 11. évfolyam 1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK 1.1. HALMAZOK 1.1.1. Halmazok megadásának módjai 1.1.2. Halmazok egyenlősége, részhalmaz, üres halmaz, véges,

Részletesebben

Követelmény a 7. évfolyamon félévkor matematikából

Követelmény a 7. évfolyamon félévkor matematikából Követelmény a 7. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Elemek halmazba rendezése több szempont alapján. Halmazok ábrázolása. A nyelv logikai elemeinek helyes használata.

Részletesebben

ROZGONYI-BORUS FERENC DR. KOKAS KÁROLY. Informatika. Számítástechnika és könyvtárhasználat munkafüzet 6., JAVÍTOTT KIADÁS MOZAIK KIADÓ SZEGED, 2013

ROZGONYI-BORUS FERENC DR. KOKAS KÁROLY. Informatika. Számítástechnika és könyvtárhasználat munkafüzet 6., JAVÍTOTT KIADÁS MOZAIK KIADÓ SZEGED, 2013 ROZGONYI-BORUS FERENC DR. KOKAS KÁROLY Informatika 5 Számítástechnika és könyvtárhasználat munkafüzet 6., JAVÍTOTT KIADÁS MOZAIK KIADÓ SZEGED, 2013 HOGYAN KELL HASZNÁLNI? 1. Mi a szoftver? Fogalmazd meg

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

300 válogatott matematikafeladat 7 8. osztályosoknak

300 válogatott matematikafeladat 7 8. osztályosoknak VILLÁMKÉRDÉSEK 300 válogatott matematikafeladat 7 8. osztályosoknak 1. Adottak az 1 x, 2 x, 3 x,..., 100 x számok. Számold ki a szorzatukat, ha x = 18. 2. Adottak az 1 x, 2 x, 3 x,..., 100 x számok. Számold

Részletesebben

6 MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM TANÁRI KÉZIKÖNYV

6 MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM TANÁRI KÉZIKÖNYV 6 MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM TANÁRI KÉZIKÖNYV Módszertani megjegyzés: Ez a modul elsősorban a térszemlélet fejlesztését szolgálja, feladataiban és módszereiben eltér a szokványos feldolgozástól.

Részletesebben

Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András

Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András Feladatok a 2010. májusi emelt szintű matematika érettségi példáihoz Hraskó András 1. Halmazok, halmazműveletek, halmazok számossága, halmazműveletek és logikai műveletek kapcsolata. HA.1.1. Adott a síkon

Részletesebben

Matematika 5. osztály Téma: Geometriai vizsgálatok, szerkesztések

Matematika 5. osztály Téma: Geometriai vizsgálatok, szerkesztések Matematika 5. osztály Téma: Geometriai vizsgálatok, szerkesztések Az óra címe: Testek ábrázolása Az órát tartja: Tóth Zsuzsanna Előzetes ismeretek: Ponthalmazok síkban és térben (pont, vonal, egyenes,

Részletesebben

Színharmóniák és színkontrasztok

Színharmóniák és színkontrasztok Színharmóniák és színkontrasztok Bizonyos színösszeállításokat harmonikusnak, másokat össze nem illőnek érzünk. A kontrasztjelenségekkel már Goethe (1810) és Hoelzel (1910) is foglalkozott. Végül Hoelzel

Részletesebben