V. osztály. Matematikai tehetségnap október 12. Megoldások

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "V. osztály. Matematikai tehetségnap 2013. október 12. Megoldások"

Átírás

1 V. osztály 1. feladat. Ha leejtünk egy labdát, akkor az fele akkora magasságra pattan fel, mint ahonnan leejtettük. Milyen magasról ejtettük le a labdát, ha ötödik alkalommal 10cm magasra pattant fel? Megoldás: Ha a leejtett labda ötödször 10 cm magasra pattant fel, és minden egyes esésénél feleakkora magasságra pattan fel mint, ahonnan leejtettük, akkor az ötödik esésnél a földt l 20cm-re van pont a negyediknél 40 cm-re ,5 pont harmadiknál 80cm-re ,5 pont a másodiknál 160 cm-re ,5pont az els nél pedig 320 cm-re ,5pont Tehát a labdát 320 cm magasságból ejtették le. 2. feladat. Van 8 kis kockánk, mindegyiknek 1 cm az éle. a) Hogyan színezzük ki a kis kockák lapjait, hogy ugyanazokkal a darabokkal akár kék, akár zöld 2cm él kockát tudjunk összeállítani? b) Meg tudunk-e színezni 27 kis kockát úgy, hogy azokból akár kék, akár zöld 3 cm él kockát lehessen összeállítani? c) Meg tudunk-e színezni 27 kis kockát úgy, hogy azokból akár kék, akár piros, akár zöld 3 cm él kockát lehessen összeállítani? Megoldás: a) Minden kiskockának 3 lapja látszik, tehát ha mindeniknek a látszó 3 szomszédos lapját kékre, a többit zöldre festjük a kirakás megvalósítható pont b) Egy zöld 3 cm él kockában 8 darab olyan kiskocka van, melynek 3 lapja látszik, 12 darab olyan amelynek 2 lapja látszik, 6 darab amelynek 1 lapja látszik és egy amelynek nem látszik egyetlen lapja sem. Így ha a kiskockák el bbi színezését használjuk a kirakás mindkét színnel megvalósítható, mert 8 kiskockának van 3 egyszín laja, 12-nek legalább 2 egyszín lapja(ami látszhat), 6-nak legalább egy kék vagy zöld lapja, az utolsó nem is látszik pont c) Mivel a 27 kiskockának 162 lapja van, és egy 3x3-as kocka felszínén pontosan 54 ilyen lap látszik, és 3x54 = 162 világos, hogy egyetlen színb l sem lehet 54 lapnál több kiszínezve. Egy ilyen színezés: 1

2 1 db. kocka 3 piros+3 kék lap 1 db. kocka 3 kék+3 zöld lap 1 db. kocka 3 zöld+3 piros lap 6 db. kocka 3 kék+2 piros+1 zöld lap 6 db. kocka 3 zöld+2 kék+1piros lap 6 db. kocka 3 piros+2 zöld+1kék lap 6 db. kocka 2 piros+2 zöld+2 kék lap pont 3. feladat. Vágd szét a négyzetet minél többféleképpen két részre úgy, hogy azok egyforma nagyságúak és alakúak legyenek! Csak a kis négyzetek oldalai mentén vághatsz! Megoldás: Minden helyes szétvágás 1,5 pont. 4. feladat. Egy kis faluban három egymás melletti házban három különböz foglalkozású ember lakik (ORVOS, MATEKTANÁR, HOKISTA). A házak más-más szín ek (SÁRGA, ZÖLD, PIROS), minden háztulajdonos más-más állatot tart (MACSKA, KECSKE, KUTYA), más-más a kedvenc itala (TEA,, GYÜMÖLCSLÉ), más-más járm vel mennek dolgozni (BICIKLI, MOTOR, ) és igazak az alábbi állítások: 1. Az ORVOS a PIROS házban lakik. 2

3 2. A KUTYA és a MACSKA nem szomszédok. 3. Az els házban lakó ember T vezet és nem tart KUTYÁT. 4. A SÁRGA ház tulajdonosának nincs BICIKLIJE. 5. A MATEKTANÁR KECSKÉT tart. 6. A PIROS házban lakó ember nem TEÁT iszik. 7. A KUTYÁT tartó ember a ZÖLD házban lakik. 8. A középs házban lakó ember ZIK. Ki MOTOROZIK? Ki iszik GYÜMÖLCSLEVET? Megoldás: ORVOS MATEKTANÁR HOKISTA PIROS SÁRGA ZÖLD GYÜMÖLCSLÉ TEA MOTOR BICIKLI Részletesebben (egy lehetséges megoldás a sok közül): A h. állítás alapján a 2. házban lakó ember ZIK. A c. állítás alapján az 1. házban lakó ember T vezet.1 pont Állat A b. állítás alapján a KUTYA és a MACSKA nem szomszédok, azaz a középs házban lakik a KECSKE pont Állat KECSKE Az e. állítás alapján a MATEKTANÁR KECSKÉT tart, tehát a 2. házban lakik pont MATEKTANÁR Állat KECSKE A c. állítás alapján az 1. házban lakó ember nem tart KUTYÁT, tehát a KUTYA a 3. házban lakik és így a MACSKA lakik az 1. házban pont MATEKTANÁR A g. állítás alapján a KUTYÁT tartó ember a ZÖLD házban lakik, tehát a 3. ház ZÖLD pont 3

4 MATEKTANÁR ZÖLD Az a. állítás alapján az ORVOS a PIROS házban lakik, így ez a páros csak az 1. házba tehet be pont ORVOS MATEKTANÁR PIROS ZÖLD Következik, hogy a 3. házban lakik a HOKISTA, illetve a 2. ház SÁRGA pont ORVOS MATEKTANÁR HOKISTA PIROS SÁRGA ZÖLD A d. állítás alapján a SÁRGA ház tulajdonosának nincs BICIKLIJE, tehát a BICIKLI a 3. házban van és így a MOTOR a 2. házban pont ORVOS MATEKTANÁR HOKISTA PIROS SÁRGA ZÖLD MOTOR BICIKLI Az f. állítás alapján a PIROS házban lakó ember nem TEÁT iszik, tehát a TEÁT a 3. házban isszák. Így pedig a GYÜMÖLCSLEVET az 1. házban pont ORVOS MATEKTANÁR HOKISTA PIROS SÁRGA ZÖLD GYÜMÖLCSLÉ TEA MOTOR BICIKLI 4

5 VI. osztály 1. feladat. Az 1, 1, 1, 1, számok összege 1 legyen?, számok közül melyiket (melyeket) kell eltávolítani ahhoz, hogy a a megmaradt 1. megoldás Mivel = = , pont Ezért a = 147 összegb l 27-et kell levenni. A 60 és a 30 nem húzható ki, mivel nagyobbak, mint 27. Marad a 20, 15, 12, pont Pontosan két számot kell kihúzzunk ezekb l, mivel egy nem elég (még a legnagyobb is kisebb 27-nél), három pedig már túl sok (a három legkisebb szám összege: = 37 > 27). A 20-as viszont nem lehet egy párosnak sem tagja, mivel = 30 > pont Maradnak a 15, 12, 10. Az ezekb l a számokból alkotható három pár közül ((15, 12), (15, 10) és (12, 10)) csak a (15, 12) jó. Tehát az 1-ot és az et kell kihúzzuk ahhoz, hogy a megmaradt törteknek az összege 1 legyen pont Valóban: = = megoldás A számok összege = = pont 40 9 Ahhoz, hogy a megmaradt számok összege 1 legyen, összeg számokat kell eltávolítani. Ehhez a törtet olyan törtek összegére kell bontani, amelyek nevez i 2, 4, 6, 8, 10, 12 lehetnek, a számlálók pedig (egyszer sítés után) mind 1 legyen pont 40 = 2 3 5, az 5-ös egyetlen tört nevez jében szerepel, ez biztosan kell szerepeljen az eltávolításban, és mivel = 1, a két tört, amit el kell távolítani az 1 és az pont Javítási javaslat: ha nem indokol a tanuló, de megtalálja a megoldást, 7-8 pontot kaphat. 2. feladat. A SIMPLEX szó bet inek hány darab különb öz átrendezésében van mindkét magánhangzó el l? (Például IESMPLX egy ilyen átrendezés, de ISMPLEX nem.) Megoldás. A magánhangzókat (E, I) el l kétféleképpen lehet elhelyezni: EI, IE pont A mássalhangzók a magánhangzók után 5 helyre tehet ek be:. Ez = 120 féleképpen lehetséges pont Tehát = 240 különböz átrendezés van a feladat feltételeinek megfelel en pont 3. feladat. Van 216 egyforma kis kockánk. Hány különböz alakú téglatestet építhetünk ezekb l, ha mindenik kockát fel kell használni? Megoldás: 216 = Meg kell keresni az összes olyan felbontást, amely a b c alakú és a b c, ezekb l mind különböz alakú téglatesteket kapunk. Összesen 19 téglatestet kapunk, közvetlen felsorolással is megkaphatjuk: , , , , , , , pont , , , , pont , , , pont 4 6 9, pont 4. feladat. Egy kis faluban három egymás melletti házban három k ülönböz foglalkozású ember lakik (ORVOS, MATEKTAN ÁR, HOKISTA). A házak más-más szín ek (SÁRGA, Z ÖLD, PIROS), minden háztulajdonos más-más állatot tart (MACSKA, KECSKE, KUTYA), más-más a kedvenc itala (TEA,, GYÜMÖLCSLÉ), más-más járm vel mennek dolgozni (BICIKLI, MOTOR, ) és igazak az alábbi állítá sok: 1. Az ORVOS a PIROS házban lakik. 2. A KUTYA és a MACSKA nem szomszédok. 3. Az els házban lakó ember T vezet és nem tart KUTYÁT. 5

6 4. A SÁRGA ház tulajdonosának nincs BICIKLIJE. 5. A MATEKTANÁR KECSKÉT tart. 6. A PIROS házban lakó ember nem TEÁT iszik. 7. A KUTYÁT tartó ember a ZÖLD házban lakik. 8. A középs házban lakó ember ZIK. Ki MOTOROZIK? Ki iszik GYÜMÖLCSLEVET? Megoldás: ORVOS MATEKTANÁR HOKISTA PIROS SÁRGA ZÖLD GYÜMÖLCSLÉ TEA MOTOR BICIKLI Részletesebben (egy lehetséges megoldás a sok közül): A h. állítás alapján a 2. házban lakó ember ZIK. A c. állítás alapján az 1. házban lakó ember T vezet.1 pont Állat A b. állítás alapján a KUTYA és a MACSKA nem szomszédok, azaz a középs házban lakik a KECSKE pont Állat KECSKE Az e. állítás alapján a MATEKTANÁR KECSKÉT tart, tehát a 2. házban lakik pont MATEKTANÁR Állat KECSKE A c. állítás alapján az 1. házban lakó ember nem tart KUTYÁT, tehát a KUTYA a 3. házban lakik és így a MACSKA lakik az 1. házban pont MATEKTANÁR A g. állítás alapján a KUTYÁT tartó ember a ZÖLD házban lakik, tehát a 3. ház ZÖLD pont MATEKTANÁR ZÖLD 6

7 Az a. állítás alapján az ORVOS a PIROS házban lakik, így ez a páros csak az 1. házba tehet be pont ORVOS MATEKTANÁR PIROS ZÖLD Következik, hogy a 3. házban lakik a HOKISTA, illetve a 2. ház SÁRGA pont ORVOS MATEKTANÁR HOKISTA PIROS SÁRGA ZÖLD A d. állítás alapján a SÁRGA ház tulajdonosának nincs BICIKLIJE, tehát a BICIKLI a 3. házban van és így a MOTOR a 2. házban pont ORVOS MATEKTANÁR HOKISTA PIROS SÁRGA ZÖLD MOTOR BICIKLI Az f. állítás alapján a PIROS házban lakó ember nem TEÁT iszik, tehát a TEÁT a 3. házban isszák. Így pedig a GYÜMÖLCSLEVET az 1. házban pont ORVOS MATEKTANÁR HOKISTA PIROS SÁRGA ZÖLD GYÜMÖLCSLÉ TEA MOTOR BICIKLI 7

8 VII. osztály 1. feladat. A SIMPLEX szó bet inek hány darab különböz átrendezésében van mindkét magánhangzó el l? (Például IESMPLX egy ilyen átrendezés, de ISMPLEX nem.) Megoldás. A magánhangzókat (E, I) el l kétféleképpen lehet elhelyezni: EI, IE pont A mássalhangzók a magánhangzók után 5 helyre tehet ek be:. Ez = 120 féleképpen lehetséges pont Tehát = 240 különböz átrendezés van a feladat feltételeinek megfelel en pont 2. feladat. Van 12 egyforma gyufaszálunk. Tekintsük egy területegységnek annak a négyzetnek a területét, amelyet négy gyufaszálból készítünk. Készíts olyan sokszögeket az összes gyufaszál felhasználásával, amelynek területe: a) 5 területegység b) 9 területegység c) 6 területegység d) 4 területegység e) 3 területegység a) megfelel pl. az 1 5-ös téglalap. Megoldás pont b) megfelel pl. a 3 3-as négyzet pont c) egy 2 3-as téglalap oldalaira kifele illetve befele egyenl oldalú háromszögeket állítunk, pl. a rajzon látható módon: pont d) hasonló módszerrel kapunk 4 terület sokszöget egy 1 4-es téglalapból ,5 pont 8

9 e) egy 1 3-as téglalapbó két egyenl oldalú háromszöget vágunk ki ,5 pont Minden alpontnál a maximális pontot megfelel indoklás esetén lehet elérni. 3. feladat. Amikor a nagyapám már elmúlt 65 éves, de még nem volt 90, a következ t mondta: Minden gyerekemnek annyi gyermeke van, mint testvére. Éveim száma pedig pontosan annyi, ahány gyermekem és unokám van összesen." Hány éves volt ekkor a nagyapám? Megoldás. Jelöljük a nagyapa gyerekeinek számát x-szel. Ebben az esetben minden gyermeknek x 1 testvére van, így x 1 gyermeke is pont Tehát összesen x(x 1) az unokák száma pont A gyermekek és az unokák száma így x + x (x 1) = x + x 2 x = x pont Olyan négyzetszámot keresünk, amely 65-nél nagyobb és 95-nél kisebb. Ilyen négyzetszám csak egy van, a pont 4. feladat. Az ábrán négy fogaskerék látható. A rajtuk lev számok a fogak számát mutatják. Amíg a legnagyobb egyszer körbefordul, hányszor fordul körbe a legkisebb? Megoldás. Mivel a fogaskerekek a fogak által össze vannak "kötve", ezért a mozgásuk is összekötött, egyszerre mozognak pont Tehát függetlenül attól, hogy a legnagyobb és a legkisebb fogaskerék között hány fogaskerék van, a legnagyobb és a legkisebb fogaskerék egyszerre mozog. Azaz akár az ábrán látható módon is elhelyezhetnénk ezeket és ez a feladaton nem változtatna pont Amíg a nagy egyszer körbefordul, addig a kicsi = 6-szor fordul körbe pont Indoklás (Ez azért van így, mert a kicsi fogaskerék egyszeri körbefordulása a nagyot éppen a kicsi fogaskerék hosszával viszi el re. Tehát meg kellene nézzük, hogy a kicsi fogaskerék hossza hányszor fér rá a nagyra. A nagy fogaskereket tekinthetjük 78 egység hosszúnak, a kicsit pedig 13-nak, mert ha például a nagy körre rajzolunk 78 9

10 fogat (azaz vonalkát), egy fog mentén "elvágjuk" a fogaskereket és kiegyenesítjük, akkor 79 vonalka keletkezik, ami 78 egységszakaszt határoz meg. Ugyanez van a kicsi fogaskerékkel is, amin - ahhoz, hogy a fogaskerekek m ködjenek - az egységek ugyanazok kell legyenek, mint a nagyon. Tehát csak azt kell megnézni, hogy a 13 hányszor van meg a 78-ban.) pont Kibontottabb megoldás. (Ha nem veszi észre a gyermek hogy mindegy, hogy középen hány fogaskerék van.) Mivel a fogaskerekek egyszerre mozognak, amíg az els egyszer körbefordul, addig a második szer fordul körbe. Amíg a második egyszer körbefordul, addig a harmadik szer fordul körbe. Amíg a harmadik egyszer körbefordul, addig a negyedik szor fordul körbe. Tehát amíg a legnagyobb fogaskerék egyszer körbefordul, addig a legkisebb = 6-szor fordul körbe. 10

11 VIII. osztály 1. feladat. Legyen n és k két darab háromjegy természetes szám úgy, hogy n + k = Igazold, hogy az n 2 és k 2 természetes számok utolsó három számjegye megegyezik! Megoldás Ha k = abc n 2 = (1000 k) 2 = k + k 2 n 2 = abc + k 2 = abc000 + k pont Ha n > k, akkor k 499 és abc000 = xy alakú, tehát n 2 utolsó három számjegyét épp a k 2 utolsó három számjegye adja pont Ha n < k hasonlóan járunk el felcserélve n és kszerepét Ha n = k az állítás azonnali pont Megjegyzés: Konkrét értékekkel való kisérletezés legtöbb 2pontot ér (+1). Minden más olyan megoldási kisérlet amely elvezet a megoldáshoz pontozandó. 2. feladat. Az ábrán négy fogaskerék látható. A rajtuk lev számok a fogak számát mutatják. Amíg a legnagyobb egyszer körbefordul, hányszor fordul körbe a legkisebb? Megoldás. Mivel a fogaskerekek a fogak által össze vannak "kötve", ezért a mozgásuk is összekötött, egyszerre mozognak pont Tehát függetlenül attól, hogy a legnagyobb és a legkisebb fogaskerék között hány fogaskerék van, a legnagyobb és a legkisebb fogaskerék egyszerre mozog. Azaz akár az ábrán látható módon is elhelyezhetnénk ezeket és ez a feladaton nem változtatna pont Amíg a nagy egyszer körbefordul, addig a kicsi = 6-szor fordul körbe pont Indoklás (Ez azért van így, mert a kicsi fogaskerék egyszeri körbefordulása a nagyot éppen a kicsi fogaskerék hosszával viszi el re. Tehát meg kellene nézzük, hogy a kicsi fogaskerék hossza hányszor fér rá a nagyra. A nagy fogaskereket tekinthetjük 78 egység hosszúnak, a kicsit pedig 13-nak, mert ha például a nagy körre rajzolunk 78 fogat (azaz vonalkát), egy fog mentén "elvágjuk" a fogaskereket és kiegyenesítjük, akkor 79 vonalka keletkezik, ami 78 egységszakaszt határoz meg. Ugyanez van a kicsi fogaskerékkel is, amin - ahhoz, hogy a fogaskerekek m ködjenek - az egységek ugyanazok kell legyenek, mint a nagyon. Tehát csak azt kell megnézni, hogy a 13 hányszor van meg a 78-ban.) pont Kibontottabb megoldás. (Ha nem veszi észre a gyermek hogy mindegy, hogy középen hány fogaskerék van.) Mivel a fogaskerekek egyszerre mozognak, amíg az els egyszer körbefordul, addig a második szer fordul körbe. Amíg a második egyszer körbefordul, addig a harmadik szer fordul körbe. Amíg a harmadik egyszer körbefordul, addig a negyedik szor fordul körbe. Tehát amíg a legnagyobb fogaskerék egyszer körbefordul, addig a legkisebb = 6-szor fordul körbe. 11

12 3. feladat. Egy konvex sokszögnek pontosan három szöge tompaszög. Legfennebb hány oldala lehet a sokszögnek? Megoldás. Egy n oldalú konvex sokszög szögeinek összege (n 2) pont Ha a sokszögnek pontosan három tompaszöge van, akkor (n 3) a hegyesszögek száma pont Ezért (n 2) 180 < (n 3) 90, ahonnan következik, hogy n < 7. Tehát a sokszögnek legfennebb 6 oldala lehet pont Ilyen sokszöget valóban lehet rajzolni: pont 4. feladat. Az ABCD négyzet oldalhossza 12m. Az A csúcsból egyszerre induló két kutya (K 1 illetve K 2 ) a négyzet oldalain úgy szalad, hogy a K 1 kutya a D felé kétszer akkora sebességgel iramodik, mint K 2 a B felé. Közben az A pontból induló R robot úgy mozog, hogy minden pillanatban a két kutyát összeköt szakasz felez pontjában helyezkedik el. a) Hol találkoznak a kutyák? b) Rajzold meg a robot útját, közben részletesen indokolj! c) Igazold, hogy ennek az útnak a hossza nagyobb, mint 17m. Megoldás. Legyen E az AB, F a DE,Ma BC, Ra K 1 K 2 felez pontja K 1 D-be ér mígk 2 E-be, K 1 végigmegy DC-n míg K 2 az EB-n végülk 1 megteszi a CN, K 2 a BN távolságot ahol CN = 2BN. Tehát a kutyák a BC oldal N harmadoló pontjában találkoznak pont Ha K 1 az AD-n mozog, akkor: AK1 AK 2 = AD AE = 1tehát 2 K 1K 2 DE minden pillanatban. Mivel AF oldalfelez ADE háromszögben felez minden DE-vel párhuzamos szakaszt, tehát K 1 K 2 -t is ( hasonlósággal igazolható tulajdonság). Tehát a K 1 K 2 szakasz Rfelez pontja az AF szakaszon mozog pont Ha K 1 az DC-n mozog, akkor: az RMszakasz mindig a K 1 K 2 BCtrapéz középvonala, tehát a K 1 K 2 szakasz Rfelez pontja az F Mszakaszon mozog. Ha K 1 és K 2 a BC-n mozog, akkor az Raz MNszakaszon mozog pont Megjegyzés: csak a rajz indoklások nélkül legtöbb 1pontot ér. ADE derékszög háromszögben F a háromszög köré írható kör középpontja, ezért AF = 1 2 DE = = pont F M a DEBCtrapéz középvonala, tehát F M = DC+EB 2 = 9 MN = MB NB = 6 4 = pont AF + F M + MN = > = pont 12

IV. Matematikai tehetségnap 2013. szeptember 28. IV. osztály

IV. Matematikai tehetségnap 2013. szeptember 28. IV. osztály IV. osztály 1. feladat. Ha leejtünk egy labdát, akkor az feleakkora magasságra pattan fel, mint ahonnan leejtettük. Milyen magasról ejtettük le a labdát, ha ötödször 10 cm magasra pattant fel? 2. feladat.

Részletesebben

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Síkgeometria 1/6 Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

Németh László Matematikaverseny április 16. A osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny április 16. A osztályosok feladatainak javítókulcsa Németh László Matematikaverseny 007. április 16. A 9-10. osztályosok feladatainak javítókulcsa Feladatok csak 9. osztályosoknak 1. feladat a) Vegyük észre, hogy 7 + 5 felírható 1 + 3 + 6 + alakban, így

Részletesebben

ELLENİRIZD, HOGY A MEGFELELİ ÉVFOLYAMÚ FELADATSORT KAPTAD-E!

ELLENİRIZD, HOGY A MEGFELELİ ÉVFOLYAMÚ FELADATSORT KAPTAD-E! Varga Tamás Matematikaverseny iskolai forduló 2010. 1. feladat Kata egy dobozban tárolja 20 darab dobókockáját. Mindegyik kocka egyszínő, piros, fehér, zöld vagy fekete. 17 kocka nem zöld, 12 nem fehér,

Részletesebben

VIII. Vályi Gyula Emlékverseny 2001 november Mennyivel egyenlő ezen számjegyek összege?

VIII. Vályi Gyula Emlékverseny 2001 november Mennyivel egyenlő ezen számjegyek összege? VIII. Vályi Gyula Emlékverseny 001 november 3-5 VI osztály Csak az eredmény kérjük! 1. Frédi 3 naponként, Béni 4 naponként jár az uszodába, mindig pontosan délután 4-től 6-ig. Kedden találkoztak az uszodában.

Részletesebben

Megyei matematikaverseny évfolyam 2. forduló

Megyei matematikaverseny évfolyam 2. forduló Megyei matematikaverseny 0. 9. évfolyam. forduló. különbözı pozitív egész szám átlaga. Legfeljebb mekkora lehet ezen számok közül a legnagyobb? (A) (B) 8 (C) 9 (D) 78 (E) 44. 00 009 + 008 007 +... + 4

Részletesebben

Lehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.

Lehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van. Geometria, sokszögek, szögek, -, 2004_01/5 Lili rajzolt néhány síkidomot: egy háromszöget, egy deltoidot, egy paralelogrammát és egy trapézt. A következő állítások ezekre vonatkoznak. Tegyél * jelet a

Részletesebben

Geometriai feladatok, 9. évfolyam

Geometriai feladatok, 9. évfolyam Geometriai feladatok, 9. évfolyam Szögek 1. Nevezzük meg az ábrán látható szögpárokat. Mekkora a nagyságuk, ha α =52 o fok? 2. Mekkora az a szög, amelyik a, az egyenesszög 1/3-ad része b, pótszögénél 32

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ 2005. OKTÓBER 29. 5. osztály

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ 2005. OKTÓBER 29. 5. osztály 5. osztály Józsi bácsi egy farkassal, egy kecskével és egy fej káposztával egy folyóhoz érkezik, amin át szeretne kelni. Csak egy olyan csónak áll rendelkezésére, amellyel a felsoroltak közül csak egyet

Részletesebben

Megoldások IV. osztály

Megoldások IV. osztály Bolyai Farkas Elméleti Líceum Marosvásárhely, 2015. március 20-22. Megoldások IV. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől, hogy

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2009/2010-es tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2009/2010-es tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 009/00-es tanév első (iskolai) forduló haladók II.

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály Hány olyan háromjegyű szám létezik, amelyben a számjegyek összege 5? 15 darab ilyen szám van. 5 = 5+0+0 = 4+1+0 = 3+2+0 = 3+1+1=2+2+1 A keresett számok: 500, 401, 410, 104, 140, 302, 320,203,

Részletesebben

Izsák Imre Gyula természettudományos verseny

Izsák Imre Gyula természettudományos verseny 199 Jelölje m a, m b, m c egy háromszög magasságait, ρ a háromszög beírt körének a sugarát. Igazoljuk, hogy ma + mb + mc 9ρ Mikor áll fenn az egyenlség? Osszuk fel egy tetszleges ABCD konvex négyszög AB,

Részletesebben

1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre!

1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre! 1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre! a) a = 9 4 8 3 = 27 12 32 12 = 5 12 a = 5 12. a) b = 1 2 + 14 5 5 21 = 1 2 + 2 1 1 3 = 1 2 + 2 3

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 0/03-as tanév. forduló haladók III. kategória Megoldások és javítási útmutató. Egy kör kerületére felírjuk -től 3-ig az egészeket

Részletesebben

MEGOLDÁS ÉS PONTOZÁSI ÚTMUTATÓ

MEGOLDÁS ÉS PONTOZÁSI ÚTMUTATÓ 5. osztály Jelölje a 20-as és az 50-es közötti számokat a és b, a 20-as és a 80-as közöttieket c és d, az 50-es és a 80- as közöttieket pedig e és f. Ekkor tudjuk, hogy a+ b= 130, c+ d = 100 és e+ f =

Részletesebben

+ 3 5 2 3 : 1 4 : 1 1 A ) B ) C ) D ) 93

+ 3 5 2 3 : 1 4 : 1 1 A ) B ) C ) D ) 93 . Mennyi az alábbi művelet eredménye? 4 + 4 : 5 : 5 + 8 07 9 A ) B ) C ) D ) E ) 9 9 9 9 9. Egy digitális órát (amely 4 órás üzemmódban működik) pontosan beállítottunk. Kiderült azonban, hogy egy nap átlagosan

Részletesebben

Megoldások 9. osztály

Megoldások 9. osztály XXV. Nemzetközi Magyar Matematikaverseny Budapest, 2016. március 1115. Megoldások 9. osztály 1. feladat Nevezzünk egy számot prímösszeg nek, ha a tízes számrendszerben felírt szám számjegyeinek összege

Részletesebben

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY III. forduló MEGOLDÁSOK

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY III. forduló MEGOLDÁSOK 1. Gondoltam egy négyjegyű számot. Az első két számjegy 3, az utolsó kettőé pedig 7, és a középső két számjegyből alkotott szám osztható 4-gyel. Melyik számra gondolhattam? Határozd meg az összes lehetőséget!

Részletesebben

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik Szögek, szögpárok és fajtáik Szögfajták: Jelölés: Mindkét esetben: α + β = 180 Pótszögek: Olyan szögek, amelyeknek összege 90. Oldalak szerint csoportosítva A háromszögek Általános háromszög: Minden oldala

Részletesebben

XXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, április 8-12.

XXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, április 8-12. XXIV. NEMZETKÖZI MGYR MTEMTIKVERSENY Szabadka, 05. április 8-. IX. évfolyam. Egy -as négyzetháló négyzeteibe a bal felső mezőből indulva soronként sorra beirjuk az,,3,,400 pozitív egész számokat. Ezután

Részletesebben

Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1

Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Trigonometria Szögfüggvények alkalmazása derékszög háromszögekben 1. Az ABC hegyesszög háromszögben BC = 14 cm, AC = 1 cm, a BCA szög nagysága

Részletesebben

HASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 5 cm 3 cm. 2,4 cm

HASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 5 cm 3 cm. 2,4 cm HASONLÓSÁGGAL KAPCSOLATOS FELADATOK Egyszerű, hasonlósággal kapcsolatos feladatok 1. Határozd meg az x, y és z szakaszok hosszát! y cm cm z x 2, cm 2. Határozd meg az x, y, z és u szakaszok hosszát! x

Részletesebben

Láthatjuk, hogy az els szám a 19, amelyre pontosan 4 állítás teljesül, tehát ez lesz a legnagyobb. 1/5

Láthatjuk, hogy az els szám a 19, amelyre pontosan 4 állítás teljesül, tehát ez lesz a legnagyobb. 1/5 D1. Egy pozitív egész számról az alábbi 7 állítást tették: I. A szám kisebb, mint 23. II. A szám kisebb, mint 25. III. A szám kisebb, mint 27. IV. A szám kisebb, mint 29. V. A szám páros. VI. A szám hárommal

Részletesebben

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat

Részletesebben

1. FELADATLAP Eredmények I. rész

1. FELADATLAP Eredmények I. rész 05-06, I. félév. FELADATLAP Eredmények I. rész. Végezd el a következ½o m½uveleteket: (a) 56 + 56 56 56 56 = 56 (b) 5 ( ) 0 0 0 + 8 6 0 0 + 0 = (c) 98579 9 98576 9 + = 8 (d) ( + + 5 + : : : + 0) ( + + 6

Részletesebben

1. Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 14 B ) 20 C ) 21 D ) 24

1. Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 14 B ) 20 C ) 21 D ) 24 . Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 4 B ) 20 C ) 2 D ) 24 2. Mennyi az alábbi művelet eredménye? 2 + 2 =? 5 6 A ) B ) C ) D ) 0. Egy könyvszekrénynek három polca

Részletesebben

I. A gyökvonás. cd c) 6 d) 2 xx. 2 c) Szakaszvizsgára gyakorló feladatok 10. évfolyam. Kedves 10. osztályos diákok!

I. A gyökvonás. cd c) 6 d) 2 xx. 2 c) Szakaszvizsgára gyakorló feladatok 10. évfolyam. Kedves 10. osztályos diákok! Kedves 10. osztályos diákok! Szakaszvizsgára gyakorló feladatok 10. évfolyam Közeleg a szakaszvizsga időpontja, amelyre 019. április 1-én kerül sor. A könnyebb felkészülés érdekében adjuk közre ezt a feladatsort,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

Egyenes mert nincs se kezdő se végpontja

Egyenes mert nincs se kezdő se végpontja Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással

Részletesebben

48. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK = = 2019.

48. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK = = 2019. 8. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK 1. Bizonyítsd be, hogy 019 db egymást követő pozitív egész szám közül mindig kiválasztható 19 db úgy, hogy az összegük

Részletesebben

2004_02/10 Egy derékszögű trapéz alapjainak hossza a, illetve 2a. A rövidebb szára szintén a, a hosszabb b hosszúságú.

2004_02/10 Egy derékszögű trapéz alapjainak hossza a, illetve 2a. A rövidebb szára szintén a, a hosszabb b hosszúságú. Geometria háromszögek, négyszögek 2004_01/10 Az ABC háromszög C csúcsánál derékszög van. A derékszöget a CT és CD szakaszok három egyenlő részre osztják. A CT szakasz a háromszög egyik magassága is egyben.

Részletesebben

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat

Részletesebben

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4 . Orchidea Iskola VI. Matematika verseny 0/0 II. forduló = x + = x ++ = x +++ = x Ennek ismeretében mennyivel egyenlő ++++...+9+99=? A ) 0. D ) 0 000 6 C ) 0 D ) A Földközi-tengerben a só-víz aránya :

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk

Részletesebben

2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 9. osztály

2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 9. osztály A közölt megoldási utak a feladatoknak nem az egyetlen helyes megoldási módját adják meg, több eltérő megoldás is lehetséges. Az útmutatótól eltérő megoldásokat a kialakult tanári gyakorlat alapján, az

Részletesebben

Megoldások p a.) Sanyi költötte a legkevesebb pénzt b.) Sanyi 2250 Ft-ot gyűjtött. c.) Klára

Megoldások p a.) Sanyi költötte a legkevesebb pénzt b.) Sanyi 2250 Ft-ot gyűjtött. c.) Klára Megoldások 1. feladat: A testvérek, Anna, Klára és Sanyi édesanyjuknak ajándékra gyűjtenek. Anna ötször, Klára hatszor annyi pénzt gyűjtött, mint Sanyi. Anna az összegyűjtött pénzének 3/10 részéért, Klára

Részletesebben

Megoldások III. osztály

Megoldások III. osztály Bolyai Farkas Elméleti Líceum Marosvásárhely, 2015. március 20-22. Megoldások III. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől, hogy

Részletesebben

Dr. Enyedy Andor Református Általános Iskola, Óvoda és Bölcsőde 3450 Mezőcsát Szent István út 1-2.

Dr. Enyedy Andor Református Általános Iskola, Óvoda és Bölcsőde 3450 Mezőcsát Szent István út 1-2. 5. osztály 1. feladat: Éva egy füzet oldalainak számozásához 31 számjegyet használt fel. Hány lapja van a füzetnek, ha az oldalak számozását a legelső oldalon egyessel kezdte? 2. feladat: Janó néhány helység

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2 Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100

Részletesebben

XI. PANGEA Matematika Verseny I. forduló 9. évfolyam

XI. PANGEA Matematika Verseny I. forduló 9. évfolyam 1. Tekintsük a következő két halmazt: F = {11-nél nem nagyobb prímszámok} és G = {egyjegyű páratlan pozitív egészek}. Az alábbi halmazok közül melyiknek van a legkevesebb eleme? A) F B) G C) F G D) F G

Részletesebben

IV. Vályi Gyula Emlékverseny november 7-9.

IV. Vályi Gyula Emlékverseny november 7-9. IV. Vályi Gyula Emlékverseny 997. november 7-9. VII. osztály LOGIKAI VERSENY:. A triciklitolvajokat a rendőrök biciklin üldözik. Összesen tíz kereken gurulnak. Hány triciklit loptak el. (A) (B) 2 (C) 3

Részletesebben

(x 5) 5 = y 5 (1) 4 x = y (2) Helyettesítsük be az els egyenletbe a második alapján y helyére 4 x-et. Így (x 5) 5 = 4 x 5 adódik.

(x 5) 5 = y 5 (1) 4 x = y (2) Helyettesítsük be az els egyenletbe a második alapján y helyére 4 x-et. Így (x 5) 5 = 4 x 5 adódik. C1. A nagymamám azt gondolja, hogy egyre atalabb, hiszen 5 éve ötször annyi id s volt, mint én akkor, most pedig csak négyszer annyi id s, mint én most. a) Hány éves a nagymamám? b) Hány év múlva lesz

Részletesebben

1. Egy 30 cm sugarú körszelet körívének hossza 120 cm. Mekkora a körív középponti szöge?

1. Egy 30 cm sugarú körszelet körívének hossza 120 cm. Mekkora a körív középponti szöge? Matematika A 1. évfolyam II. negyedév témazáró A csoport 1. Egy 0 cm sugarú körszelet körívének hossza 10 cm. Mekkora a körív középponti szöge?. Egy szabályos négyoldalú gúla alakú piramis magassága 76

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben

Koordinátageometria. M veletek vektorokkal grakusan. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1

Koordinátageometria. M veletek vektorokkal grakusan. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Koordinátageometria M veletek vektorokkal grakusan 1. Az ABCD négyzet oldalvektorai közül a = AB és b = BC. Adja meg az AC és BD vektorokat a

Részletesebben

Gyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal:

Gyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal: Gyakorló feladatok 9.évf.. Mennyi az összes részhalmaza az A a c; d; e; f halmaznak, írd fel az öt elemű részhalmazokat!. Legyen U ;;;;;6;7;8;9, A ;;6;7; és B ;;8. Add meg a következő halmazokat és ábrázold

Részletesebben

VI. Vályi Gyula Emlékverseny november

VI. Vályi Gyula Emlékverseny november VI. Vályi Gyula Emlékverseny 1999. november 19-1. VI. osztály 1. Ki a legidősebb, ha Attila 10 000 órás, Balázs 8 000 napos, Csanád 16 éves, Dániel 8000000 perces, Ede 00 hónapos. (A) Attila (B) Balázs

Részletesebben

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA ( SZAKKÖZÉPISKOLA ) Javítási-értékelési útmutató

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA ( SZAKKÖZÉPISKOLA ) Javítási-értékelési útmutató OktatásiHivatal A 014/01. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA ( SZAKKÖZÉPISKOLA ) Javítási-értékelési útmutató 1. feladat: Adja meg az összes olyan (x,

Részletesebben

5 labda ára 5x. Ez 1000 Ft-tal kevesebb, mint a nyeremény 1p. 7 labda ára 7x. Ez 2200Ft-tal több, mint a nyeremény 1p 5 x x 2200

5 labda ára 5x. Ez 1000 Ft-tal kevesebb, mint a nyeremény 1p. 7 labda ára 7x. Ez 2200Ft-tal több, mint a nyeremény 1p 5 x x 2200 2014. november 28. 7. osztály Pontozási útmutató 1. Egy iskola kosárlabda csapata egy tornán sportszervásárlási utalványt nyert. A csapat edzője szeretne néhány kosárlabdát vásárolni az iskola számára.

Részletesebben

Kisérettségi feladatsorok matematikából

Kisérettségi feladatsorok matematikából Kisérettségi feladatsorok matematikából. feladatsor I. rész. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) Ha két egész szám összege páratlan, akkor a szorzatuk páros. b)

Részletesebben

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6 Kategória P 6 1. Írjátok le azt a számot, amely a csillag alatt rejtőzik: *. 5 = 9,55 2. Babszem Jankó 25 ször kisebb, mint Kukorica Jancsi. Írjátok le, hogy hány centiméter Babszem Jankó, ha Kukorica

Részletesebben

Érettségi feladatok: Koordináta-geometria 1/5

Érettségi feladatok: Koordináta-geometria 1/5 Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból

Részletesebben

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatok (középszint) Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy

Részletesebben

XVIII. Nemzetközi Magyar Matematika Verseny

XVIII. Nemzetközi Magyar Matematika Verseny 9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.

Részletesebben

Haladók III. kategória 2. (dönt ) forduló

Haladók III. kategória 2. (dönt ) forduló Haladók III. kategória 2. (dönt ) forduló 1. Tetsz leges n pozitív egész számra jelölje f (n) az olyan 2n-jegy számok számát, amelyek megegyeznek az utolsó n számjegyükb l alkotott szám négyzetével. Határozzuk

Részletesebben

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY IV. forduló MEGOLDÁSOK

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY IV. forduló MEGOLDÁSOK IV. forduló 1. Hány olyan legfeljebb 5 jegyű, 5-tel nem osztható természetes szám van, amelynek minden jegye prím? Mivel a feladatban számjegyekről van szó, akkor az egyjegyű prímszámokról lehet szó: 2;

Részletesebben

Gyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van!

Gyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van! 1. Melyik a nagyobb? a) 6 5 vagy 5 7 b) vagy 11 10 vagy Gyökvonás 5 11 vagy 6 8 55 e) 7 vagy 60 16 1. Hozd egyszerűbb alakra a következő kifejezéseket! a) 7 18 b) 1 5 75 8 160 810 650 8a 5 a 7a e) 15a

Részletesebben

2013. május 16. MINIVERSENY Csapatnév:

2013. május 16. MINIVERSENY Csapatnév: 1. Az ábrán látható ötszög belsejében helyezzetek el 3 pontot úgy, hogy az ötszög bármely három csúcsa által meghatározott háromszög belsejébe pontosan egy pont kerüljön! El lehet-e helyezni 4 pontot ugyanígy?

Részletesebben

( ) ( ) Bontsuk fel a zárójeleket: *1 pont Mindkét oldalon vonjunk össze, majd rendezzük az egyenletet: 34 = 2 x,

( ) ( ) Bontsuk fel a zárójeleket: *1 pont Mindkét oldalon vonjunk össze, majd rendezzük az egyenletet: 34 = 2 x, 1. Egy 31 fős osztály játékos rókavadászaton vett részt. Az erdőben elrejtett papír rókafejeket kellett összegyűjteniük. Minden lány 4 rókafejet talált, a fiúk mindegyike pedig 5 darabot. Ha minden lány

Részletesebben

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) Ezt a módszert akkor alkalmazzuk, amikor könnyebb bizonyítani egy állítás ellentettjét, mintsem az állítást direktben. Ez a módszer

Részletesebben

XXII. Vályi Gyula Emlékverseny április 8. V. osztály

XXII. Vályi Gyula Emlékverseny április 8. V. osztály V. osztály 1. Egy anya éveinek száma ugyanannyi, mint a lánya életkora hónapokban kifejezve. Mennyi idősek külön-külön, ha az anya 23 évvel és 10 hónappal idősebb a lányánál? 2. Melyek azok a 2016-nál

Részletesebben

1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen

1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen 10. osztály 1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy ( a + b + c) 3 4 ab + bc + ca Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen A feladatban szereplő kettős

Részletesebben

Kompetencia Alapú Levelező Matematika Verseny

Kompetencia Alapú Levelező Matematika Verseny Név: Iskola: Kompetencia Alapú Levelező Matematika Verseny 2012. december 10. 2. forduló Pótlapok száma: db. 1. Egy telek területe 2000 m 2. Adja meg az érdeklődő angol vevőnek, hány négyzetlábbal egyenlő

Részletesebben

XI. PANGEA Matematika Verseny I. forduló 8. évfolyam

XI. PANGEA Matematika Verseny I. forduló 8. évfolyam 1. A következő állítások közül hány igaz? Minden rombusz deltoid. A deltoidnak lehet 2 szimmetriatengelye. Minden rombusz szimmetrikus tengelyesen és középpontosan is. Van olyan paralelogramma, amelynek

Részletesebben

835 + 835 + 835 + 835 + 835 5

835 + 835 + 835 + 835 + 835 5 Orchidea Iskola VI. Matematika verseny 20/20 II. forduló. A macska és az egér jobbra indulnak el. Ha az egér négyzetet ugrik, akkor a macska 2 négyzetet lép előre. Melyik négyzetnél éri utol a macska az

Részletesebben

2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 11. évfolyam

2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 11. évfolyam 015. évi Bolyai János Megyei Matematikaverseny A közölt megoldási utak a feladatoknak nem az egyetlen helyes megoldási módját adják meg, több eltérő megoldás is lehetséges. Az útmutatótól eltérő megoldásokat

Részletesebben

10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2

10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2 10. Tétel Háromszög Tulajdonságok: - Háromszögnek nevezzük a sokszöget, ha 3 oldala, 3 csúcsa és 3 szöge van - A háromszög belső szögeinek összege 180 o - A háromszög külső szögeinek összege 360 o - A

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 6. évfolyam TANULÓI MUNKAFÜZET 2. FÉLÉV A kiadvány KHF/4356-14/2008. engedélyszámon 2008.11.25. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő

Részletesebben

mintásfal 60 40 2 2 mintásfal :m :sz :dbjobbra :dbfel

mintásfal 60 40 2 2 mintásfal :m :sz :dbjobbra :dbfel 6.osztály 1.foglalkozás 6.osztály 2.foglalkozás kocka kockafal :db minta Készítsd el ezt a mintát! A minta hosszú oldala 60 a rövid oldala 40 egység hosszú. A hosszú oldal harmada a négyzet oldala! A háromszög

Részletesebben

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója SZAKKÖZÉPISKOLA A 006-007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója. Feladat: Egy számtani sorozat három egymást követő tagjához rendre 3-at, -et, 3-at adva

Részletesebben

IV. RADÓ FERENC EMLÉKVERSENY. Kolozsvár, június 3. V. osztály

IV. RADÓ FERENC EMLÉKVERSENY. Kolozsvár, június 3. V. osztály Kolozsvár, 000. június 3. V. osztály. Határozd meg az 999 99...9 szorzás eredményében a számjegyek összegét! 999 db 9 es. Egy kerek asztal köré 6 széket helyeztünk el. Számozd meg a székeket a 0,,, 3,

Részletesebben

Az egyes feladatok részkérdéseinek a száma az osztály felkészültségének és teherbírásának megfelelően (a feladat tartalmához igazodva) csökkenthető!

Az egyes feladatok részkérdéseinek a száma az osztály felkészültségének és teherbírásának megfelelően (a feladat tartalmához igazodva) csökkenthető! 1 Az egyes feladatok részkérdéseinek a száma az osztály felkészültségének és teherbírásának megfelelően (a feladat tartalmához igazodva) csökkenthető! Szerkesztette: Huszka Jenő 2 A változat 1. Az ABCDEFGH

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez Számadó László (Budapest) 1. Számold ki! a) 1 2 3 + 4 5 6 ; b) 1 2 3 + 4 5 6. 2 3 4 5 6 7 2 3 5 6 7 a) 1 2 3 4 2 3 4 +5

Részletesebben

Középpontos hasonlóság szerkesztések

Középpontos hasonlóság szerkesztések Középpontos hasonlóság szerkesztések 1. Adott az AV B konvex szög és a belsejében egy P pont. Húzzunk a P ponton át egy egyenest úgy, hogy a szög száraiból kimetszett szeletek aránya 3 : 4 legyen. Legyen

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév kezdők III. kategória I. forduló

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév kezdők III. kategória I. forduló Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 01/013-as tanév kezdők I II. kategória II. forduló kezdők III. kategória I. forduló Megoldások és javítási útmutató 1. Egy osztályban

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd

Részletesebben

XX. Nemzetközi Magyar Matematika Verseny

XX. Nemzetközi Magyar Matematika Verseny XX. Nemzetközi Magyar Matematika Verseny Bonyhád, 011. március 11 15. 10. osztály 1. feladat: Legyen egy háromszög három oldalának a hossza a, b és c. Bizonyítsuk be, hogy 3 (a+b+c) ab+bc+ca 4 Mikor állhat

Részletesebben

Erdősné Németh Ágnes. Batthyány Lajos Gimnázium Nagykanizsa. agi@microprof.hu. INFO SAVARIA 2010. április 23. Erdősné Németh Ágnes, Nagykanizsa 1

Erdősné Németh Ágnes. Batthyány Lajos Gimnázium Nagykanizsa. agi@microprof.hu. INFO SAVARIA 2010. április 23. Erdősné Németh Ágnes, Nagykanizsa 1 Parkettázás s szabályos sokszögekkel Erdősné Németh Ágnes Batthyány Lajos Gimnázium Nagykanizsa agi@microprof.hu INFO SAVARIA 2010. április 23. Erdősné Németh Ágnes, Nagykanizsa 1 LOGO versenyfeladatok

Részletesebben

4,5 1,5 cm. Ezek alapján 8 és 1,5 cm lesz.

4,5 1,5 cm. Ezek alapján 8 és 1,5 cm lesz. 1. Tekintse az oldalsó ábrát! a. Mekkora lesz a 4. sor téglalap mérete? b. Számítsa ki az ábrán látható három téglalap területösszegét! c. Mekkora lesz a 018. sorban a téglalap oldalai? d. Hány téglalapot

Részletesebben

2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 12. évfolyam

2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 12. évfolyam 01. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 1. évfolyam A közölt megoldási utak a feladatoknak nem az egyetlen helyes megoldási módját adják meg, több eltérő megoldás

Részletesebben

2014. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 9. osztály

2014. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 9. osztály 01. évi Bolyai János Megyei Matematikaverseny A közölt megoldási utak a feladatoknak nem az egyetlen helyes megoldási módját adják meg, több eltérő megoldás is lehetséges. Az útmutatótól eltérő megoldásokat

Részletesebben

5.osztály 1.foglalkozás. 5.osztály 2.foglalkozás. hatszögéskörök

5.osztály 1.foglalkozás. 5.osztály 2.foglalkozás. hatszögéskörök 5.osztály 1.foglalkozás 5.osztály 2.foglalkozás hatszögéskörök cseresznye A cseresznye zöld száránál az egyeneshez képest 30-at kell fordulni! (30 fokot). A cseresznyék között 60 egység a térköz! Szétszedtem

Részletesebben

A TERMÉSZETES SZÁMOK

A TERMÉSZETES SZÁMOK Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2018/2019.

Részletesebben

Ismétlő feladatsor: 10.A/I.

Ismétlő feladatsor: 10.A/I. Ismétlő feladatsor: 0.A/I. Harasztos Barnabás 205. január. Feladat Mekkora az alábbi ábrán (szürkével) jelölt síkidom összterülete? A terület egységének a négyzetrács egy négyzetének területét tekintjük!

Részletesebben

JAVÍTÓKULCS 6. osztályosok számára B-2 feladatlap

JAVÍTÓKULCS 6. osztályosok számára B-2 feladatlap JAVÍTÓKULCS 6. osztályosok számára B-2 feladatlap 2001. február 7. 1. A jéghegyeknek csak 1/9 része van a vízfelszín felett. Hány tonnás az a jéghegy, amelynek víz alatti része 96 tonna tömegű? A válasz:

Részletesebben

XXIII. Vályi Gyula Emlékverseny május 13. V. osztály

XXIII. Vályi Gyula Emlékverseny május 13. V. osztály XXIII. Vályi Gyula Emlékverseny Marosvásárhely 207. május 3. V. osztály. Sári néni a piacon 00 db háromféle tojást vásárolt 00 RON értékben. Tudva azt, hogy a tyúktojás ára 50 bani, a libatojás 5 RON és

Részletesebben

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika Hasonlóság kísérleti feladatgyűjtemény 10. osztályos matematika POKG 2015. Hasonló háromszögek oldalaránya 0. Keressük meg az alábbi háromszögek összetartozó oldalpárjait és arányossággal számítsuk ki

Részletesebben

A) 0 B) 2 C) 8 D) 20 E) 32

A) 0 B) 2 C) 8 D) 20 E) 32 1. X és Y egyjegyű nemnegatív számok. Az X378Y ötjegyű szám osztható 72-vel. Mennyi X és Y szorzata? A) 0 B) 2 C) 8 D) 20 E) 32 2. Hány valós gyöke van a következő egyenletnek? (x 2 1) (x + 1) (x 2 1)

Részletesebben

b) B = a legnagyobb páros prímszám B = 2 Mivel csak egyetlen páros prímszám van, és ez a kettő, így egyben ő a legnagyobb is.

b) B = a legnagyobb páros prímszám B = 2 Mivel csak egyetlen páros prímszám van, és ez a kettő, így egyben ő a legnagyobb is. Teszt 01 a) A = 90 és 135 legkisebb közös többszöröse A = 270 Prímtényezős felbontás után: 90 = 2 3 3 5 és 135 = 3 3 3 5, így az l.k.k.t. a 2 3 3 3 5, ami pedig 27 10, azaz 270. b) B = a legnagyobb páros

Részletesebben

XXVI. Erdélyi Magyar Matematikaverseny Zilah, február II. forduló osztály

XXVI. Erdélyi Magyar Matematikaverseny Zilah, február II. forduló osztály . feladat: Szupercsiga egy függőleges falon mászik felfelé. Első nap 4 cm-t tesz meg, éjszaka cm-t visszacsúszik. Második napon 9 cm-t tesz meg, éjszaka 4 cm-t csúszik vissza, harmadik napon 6 cm-t mászik,

Részletesebben

II. forduló, országos döntő május 22. Pontozási útmutató

II. forduló, országos döntő május 22. Pontozási útmutató Apáczai Nevelési és Általános Művelődési Központ 76 Pécs, Apáczai körtér 1. II. forduló, országos döntő 01. május. Pontozási útmutató 1. feladat: Két természetes szám összege 77. Ha a kisebbik számot megszorozzuk

Részletesebben

Minden feladat teljes megoldása 7 pont

Minden feladat teljes megoldása 7 pont Postacím: 11 Budapest, Pf. 17. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. nap NEGYEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat teljes megoldása 7 pont 1. Hat futó: András, Bence, Csaba,

Részletesebben

Megoldások 11. osztály

Megoldások 11. osztály XXV. Nemzetközi Magyar Matematikaverseny Budapest, 016. március 1115. Megoldások 11. osztály 1. feladat Egy háromszög három oldalának mér száma, a, b, c ebben a sorrendben egy mértani sorozat három egymást

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók I. kategória

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók I. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók

Részletesebben

Varga Tamás Matematikaverseny Javítási útmutató Iskolai forduló 2018/ osztály

Varga Tamás Matematikaverseny Javítási útmutató Iskolai forduló 2018/ osztály 1. Marci, a teniszező a tavalyi évben az első 30 mérkőzéséből 24-et megnyert. Az év további részében játszott mérkőzéseinek már csak az egyharmadát nyerte meg. Így éves teljesítménye 50%-os lett, vagyis

Részletesebben

GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a

GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a GOMTRI ndrea Philippou, Marios ntoniades Szakaszok és félegyenesek gy szakasz felezőmerőlegese egy olyan egyenes, félegyenes vagy szakasz, ami áthalad a szakasz középpontján és merőleges a szakaszra. Tétel:

Részletesebben

Református Iskolák XX. Országos Matematikaversenye osztály

Református Iskolák XX. Országos Matematikaversenye osztály 1. Pisti beledobott egy kezdetben üres - kosárba valahány piros és kék labdát, amelyeknek legalább 90%-a piros. Jenő találomra kivett 50 labdát, közöttük 49 piros volt. Julcsi megnézte a kosárban maradt

Részletesebben