JOHANNES KEPLER (Weil der Stadt, december 27. Regensburg, Bajorország, november 15.)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "JOHANNES KEPLER (Weil der Stadt, december 27. Regensburg, Bajorország, november 15.)"

Átírás

1 SZABÁLYOS TESTEK

2 JOHANNES KEPLER (Weil der Stadt, december 27. Regensburg, Bajorország, november 15.) Német matematikus és csillagász, aki felfedezte a bolygómozgás törvényeit, amiket róla Keplertörvényeknek neveznek. Széles körűen foglalkozott más megfigyelésekkel is, köztük optikával. Az 1596-ban kiadott könyvében, a Mysterium Cosmographicumban (Das Weltgeheimnis) Kepler az akkor ismert hat bolygó pályáját az öt platóni testtel hozta kapcsolatba.

3 KEPLER PLÁTÓNI MODELLJE Johannes Kepler, amikor még körpályákban gondolkodott, úgy gondolta, hogy az akkor ismert hat bolygót (Merkúr, Vénusz, Föld, Mars, Jupiter, Szaturnusz) hordozó szférák (gömbök) közé a szabályos testek rakhatóak be sorban. Ezzel megmagyarázható volt az is, hogy a bolygók száma miért pont hat. Legbelül foglalt helyet az oktaéder, ezt követte az ikozaéder, majd a dodekaéder, a tetraéder és végül a kocka.

4 KEPLER PLÁTÓNI MODELLJE Úgy gondolta, hogy az egyes bolygópályák gömbjei között a kocka, a tetraéder, az oktaéder, a dodekaéder és az ikozaéder tartja a távolságot. Ebben a művében jelenik meg az a gondolat, hogy a bolygókat egy a Napból kiáradó erő tartja pályájukon. Ezt azzal indokolta, hogy ez az erő a Naptól távolabb gyengébb, ezért mennek lassabban a távoli bolygók. Ez az első eset, hogy valaki a bolygók mozgását valamilyen fizikai hatással próbálta magyarázni. A későbbiekben született Kepler törvények azonban módosították ezt a bolygómodellt.

5 SZABÁLYOS TESTEK Definíció: A szabályos testek vagy platóni testek a geometria területén olyan konvex testeket jelentenek, melyek oldalait egybevágó szabályos sokszögek határolják, minden lapszögük egyenlő és a csúcsalakzataik is egybevágók. A 3 dimenziós térben öt szabályos test létezik. Két dimenzióban végtelen sok szabályos sokszög létezik. Euler tétel: Legyen a P konvex (vagy egyszerű) poliéder éleinek száma e, a lapjainak száma l és a csúcsainak száma c. Ekkor fennáll a következő egyenlőség: c + l = e +2

6 TETRAÉDER Oldallapok száma: 4 Oldallapok fajtája: Szabályos háromszög Élek száma: 6 Csúcsok száma: 4

7 HEXAÉDER Oldallapok száma: 6 Oldallapok fajtája: Négyzet Élek száma: 12 Csúcsok száma: 8

8 OKTAÉDER Oldallapok száma: 8 Oldallapok fajtája: Szabályos háromszög Élek száma: 12 Csúcsok száma: 6

9 DODEKAÉDER Oldallapok száma: 12 Oldallapok fajtája: Szabályos ötszög Élek száma: 30 Csúcsok száma: 20

10 IKOZAÉDER Oldallapok száma: 20 Oldallapok fajtája: Szabályos háromszög Élek száma: 30 Csúcsok száma: 12

11 SZABÁLYOS TESTEK Csúcsok száma (c) Oldallapok száma (l) Tetraéder Hexaéder Oktaéder Dodekaéder Ikozaéder c+l Élek száma (e) Euler tétel: Legyen a P konvex (vagy egyszerű) poliéder éleinek száma e, a lapjainak száma l és a csúcsainak száma c. Ekkor fennáll a következő egyenlőség: c + l = e +2 Az Euler tétel következménye: több szabályos test nem létezik, csak ez az öt.

12 ARKHIMÉDÉSZI TESTEK

13 ARKHIMÉDESZI TESTEK Definíció: Az arkhimédészi testek (Arkhimédész-féle poliéderek) sokszimmetriájú, félig szabályosnak is nevezett, konvex testek. Két- vagy többféle szabályos sokszög alkotja a lapjaikat, és csúcsalakzataik is egybevágók (de már nem mindig szabályosak, mint az fönnáll a szabályos testekre). Különböznek tehát a platóni vagy szabályos testektől.

14 CSONKÍTOTT TETRAÉDER Oldallapok száma: 8 Lapok fajtája: 4 háromszög 4 hatszög Élek száma: 18 Csúcsok száma: 12

15 KUBOKTAÉDER Oldallapok száma: 14 Lapok fajtája: 8 háromszög 6 négyzet Élek száma: 24 Csúcsok száma: 12

16 CSONKÍTOTT HEXAÉDER Oldallapok száma: 14 Lapok fajtája: 8 háromszög 6 nyolcszög Élek száma: 36 Csúcsok száma: 24

17 CSONKÍTOTT OKTAÉDER Oldallapok száma: 14 Lapok fajtája: 6 négyzet 8 hatszög Élek száma: 36 Csúcsok száma: 24

18 ROMBIKUBOKTAÉDER Oldallapok száma: 26 Lapok fajtája: 18 négyzet 8 háromszög Élek száma: 48 Csúcsok száma: 24

19 CSONKÍTOTT KUBOKTAÉDER Oldallapok száma: 26 Lapok fajtája: 12 négyzet 8 hatszög 6 nyolcszög Élek száma: 72 Csúcsok száma: 48

20 PISZE HEXAÉDER (2 KIRÁLIS ALAK) Oldallapok száma: 38 Lapok fajtája: 6 négyzet 32 háromszög Élek száma: 60 Csúcsok száma: 24

21 IKOZIDODEKAÉDER Oldallapok száma: 32 Lapok fajtája: 12 ötszög 20 háromszög Élek száma: 60 Csúcsok száma: 30

22 CSONKÍTOTT DODEKAÉDER Oldallapok száma: 32 Lapok fajtája: 12 tízszög 20 háromszög Élek száma: 90 Csúcsok száma: 60

23 CSONKÍTOTT IKOZAÉDER Oldallapok száma: 32 Lapok fajtája: 12 ötszög 20 hatszög Élek száma: 90 Csúcsok száma: 60

24 ROMBIKOZIDODEKAÉDER Oldallapok száma: 62 Lapok fajtája: 12 ötszög 20 háromszög 30 négyzet Élek száma: 120 Csúcsok száma: 60

25 CSONKÍTOTT IKOZIDODEKAÉDER Oldallapok száma: 62 Lapok fajtája: 12 tízszög 20 hatszög 30 négyzet Élek száma: 180 Csúcsok száma: 120

26 PISZE DODEKAÉDER Oldallapok száma: 92 Lapok fajtája: 80 háromszög 12 ötszög Élek száma: 150 Csúcsok száma: 60 Forrás:

27 Euler tétel: Legyen a P konvex (vagy egyszerű) poliéder éleinek száma e, a lapjainak száma l és a csúcsainak száma c. Ekkor fennáll a következő egyenlőség: c + l = e +2 ARKHIMÉDÉSZI TESTEK Csúcsok száma (c) Oldallapok száma (l) c+l Élek száma (e) Csonkított tetraéder Kuboktaéder Csonkított hexaéder Csonkított oktaéder Rombikuboktaéder Csonkított kuboktaéder Pisze hexaéder Ikozidodekaéder Csonkított dodekaéder Csonkított ikozaéder Rombikozidodekaéder Csonkított ikozidodekaéder Pisze dodekaéder

28 TESTEK DUÁLISAI Minden poliédernek létezik egy duálisa, amikor a lapok és a csúcsok kölcsönösen fölcserélődnek. Minden szabályos platóni test duálisa egy másik platóni test, így ezek a testek duális párokba rendezhetők. A tetraéder önmagával alkot duális párt (duálisa egy másmilyen állású tetraéder). A kocka duálisa az oktaéder. A dodekaéder duálisa az ikozaéder.

29 TESTEK DUÁLISA

30 MOST PEDIG KEPLER MUNKÁSSÁGÁNAK FIZIKAI RÉSZÉRE TÉRÜNK ÁT

11. előadás. Konvex poliéderek

11. előadás. Konvex poliéderek 11. előadás Konvex poliéderek Konvex poliéder 1. definíció: Konvex poliédernek nevezzük a térben véges sok, nem egysíkú pont konvex burkát. 2. definíció: Konvex poliédernek nevezzük azokat a térbeli korlátos

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1 Írásban, 90 perc. 2 Személyazonosságot igazoló okmány nélkül

Részletesebben

Kora modern kori csillagászat. Johannes Kepler ( ) A Világ Harmóniája

Kora modern kori csillagászat. Johannes Kepler ( ) A Világ Harmóniája Kora modern kori csillagászat Johannes Kepler (1571-1630) A Világ Harmóniája Rövid életrajz: Született: Weil der Stadt (Német -Római Császárság) Protestáns környezet, vallásos nevelés (Művein érezni a

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

6 MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM TANÁRI KÉZIKÖNYV

6 MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM TANÁRI KÉZIKÖNYV 6 MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM TANÁRI KÉZIKÖNYV Módszertani megjegyzés: Ez a modul elsősorban a térszemlélet fejlesztését szolgálja, feladataiban és módszereiben eltér a szokványos feldolgozástól.

Részletesebben

Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag

Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag Síkbeli és térbeli alakzatok 1.3 Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag Életkor: Fogalmak, eljárások: 10 12 év sokszög, szabályos sokszög egybevágó lap, él, csúcs párhuzamos,

Részletesebben

Négydimenziós téridomok szemléltetése

Négydimenziós téridomok szemléltetése Négydimenziós téridomok szemléltetése Gévay Gábor 1 és Koji Miyazaki 2 1 Szegedi Tudományegyetem Bolyai Intézete, 6720 Szeged, Aradi vértanúk tere 1. gevay@math.u-szeged.hu 2 Graduate School of Human and

Részletesebben

HD ,06 M 5911 K

HD ,06 M 5911 K Bolygó Távolság(AU) Excentricitás Tömeg(Jup.) Tömeg(Nep.) Tömeg(Föld) Sugár(Jup.) Sugár(Nep.) Sugár(Föld) Inklináció( ) Merkúr 0,387 0,206 0,00017 0,0032 0,055 0,0341 0,099 0,382 3,38 Vénusz 0,723 0,007

Részletesebben

Geometriai alapismeretek

Geometriai alapismeretek Geometriai alapismeretek A geometria alapfogalmai a tapasztalat útján absztrakcióval alakultak ki. Térelemek: pont, egyenes, sík Térelemek kölcsönös helyzete, fontosabb alapesetek: Egy pont vagy illeszkedik

Részletesebben

Térgeometriai taneszközök síkba összenyomható és zsinóros térbeli modellek (9 10. évfolyam) Tanári eszközök. Szalóki Dezső

Térgeometriai taneszközök síkba összenyomható és zsinóros térbeli modellek (9 10. évfolyam) Tanári eszközök. Szalóki Dezső Térgeometriai taneszközök síkba összenyomható és zsinóros térbeli modellek (9 10. évfolyam) Tanári eszközök Szalóki Dezső matematika, fizika, ábrázoló-geometria és biológia szakos vezetőtanár Lektorálta:

Részletesebben

A GEOMETRIA TÉMAKÖR FELOSZTÁSA. Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria

A GEOMETRIA TÉMAKÖR FELOSZTÁSA. Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria GEOMETRIA A GEOMETRIA TÉMAKÖR FELOSZTÁSA Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria A SÍKGEOMETRIA TANÍTÁSA 5-10. OSZTÁLY Síkgeometriai fogalmak

Részletesebben

Számítógéppel segített modellezés és szimuláció a természettudományokban

Számítógéppel segített modellezés és szimuláció a természettudományokban Számítógéppel segített modellezés és szimuláció a természettudományokban Beszámoló előadás Németh Gábor 2008. 05. 08. A kurzusról Intenzív, 38 órás kurzus 2008. 03. 25. -2008. 03. 30-ig Három csoport:

Részletesebben

Minden jó válasz 4 pontot ér, hibás válasz 0 pont, ha üresen hagyja a válaszmezőt, 1 pont.

Minden jó válasz 4 pontot ér, hibás válasz 0 pont, ha üresen hagyja a válaszmezőt, 1 pont. 1. 1. Név: NEPTUN kód: Tanult középiskolai matematika szintje: közép, emelt szint. Munkaidő: 50 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható. A feladatlap üresen

Részletesebben

3. előadás. Elemi geometria Terület, térfogat

3. előadás. Elemi geometria Terület, térfogat 3. előadás Elemi geometria Terület, térfogat Tetraéder Négy, nem egy síkban lévő pont által meghatározott test. 4 csúcs, 6 él, 4 lap Tetraéder Minden tetraédernek egyértelműen létezik körülírt- és beírt

Részletesebben

Euler-formula, síkbarajzolható gráfok, szabályos testek

Euler-formula, síkbarajzolható gráfok, szabályos testek FEJEZET 5 Euler-formula, síkbarajzolható gráfok, szabályos testek "Minden emberi megismerés szemlélettel kezdődik, ebből fogalomalkotásba megy át és eszmékben végződik." I. Kant: A tiszta ész kritikája.

Részletesebben

Megoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei

Megoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei Számítástudomány alapjai Megoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei 90. A konvex poliéder egyes lapjait határoló élek száma legyen k! Egy konvex poliéder egy tetszőleges

Részletesebben

Erdősné Németh Ágnes. Batthyány Lajos Gimnázium Nagykanizsa. agi@microprof.hu. INFO SAVARIA 2010. április 23. Erdősné Németh Ágnes, Nagykanizsa 1

Erdősné Németh Ágnes. Batthyány Lajos Gimnázium Nagykanizsa. agi@microprof.hu. INFO SAVARIA 2010. április 23. Erdősné Németh Ágnes, Nagykanizsa 1 Parkettázás s szabályos sokszögekkel Erdősné Németh Ágnes Batthyány Lajos Gimnázium Nagykanizsa agi@microprof.hu INFO SAVARIA 2010. április 23. Erdősné Németh Ágnes, Nagykanizsa 1 LOGO versenyfeladatok

Részletesebben

A legfontosabb elért eredményeink (a mellékelt publikációs listának megfelelő sorrendben):

A legfontosabb elért eredményeink (a mellékelt publikációs listának megfelelő sorrendben): Az eredeti kutatási tervünknek megfelelően a diszkrét geometria több alapvető fontosságú, máig nyitott problémájával kapcsolatos kérdéseket vizsgáltunk (pl Kneser-Poulsen sejtés, gömbelhelyezések magasabb

Részletesebben

1. 27 egyforma R ellenállásból a következő hálózatot hozzuk létre. Mekkora az eredő ellenállás A és B között?

1. 27 egyforma R ellenállásból a következő hálózatot hozzuk létre. Mekkora az eredő ellenállás A és B között? Véges ellenálláshálók Szorgalmi feladatok mindenkinek, az első beadónak ötösért! - csillagot ér, ha a megoldásod nem bonyolultabb, mint az enyém, - csillagot ér, ha ellenállásokból megvalósítod, és leméred

Részletesebben

A poliéderek szerkezeti tulajdonságai SZAKDOLGOZAT

A poliéderek szerkezeti tulajdonságai SZAKDOLGOZAT EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR A poliéderek szerkezeti tulajdonságai SZAKDOLGOZAT Készítette: Sipos Evelin Matematika BSC tanári szakirány Témavezető: Szeghy Dávid egyetemi tanársegéd

Részletesebben

VIII. Vályi Gyula Emlékverseny 2001 november Mennyivel egyenlő ezen számjegyek összege?

VIII. Vályi Gyula Emlékverseny 2001 november Mennyivel egyenlő ezen számjegyek összege? VIII. Vályi Gyula Emlékverseny 001 november 3-5 VI osztály Csak az eredmény kérjük! 1. Frédi 3 naponként, Béni 4 naponként jár az uszodába, mindig pontosan délután 4-től 6-ig. Kedden találkoztak az uszodában.

Részletesebben

DIMENZIÓK 13 Matematikai Közlemények VI. kötet, 2018 &'( )''(!( * +**

DIMENZIÓK 13 Matematikai Közlemények VI. kötet, 2018 &'( )''(!( * +** DIMENZIÓK 13 Matematikai Közlemények VI. kötet, 2018 doi:10.20312/dim.2018.02 &'( )''(!( * +** Talata István Szent István Egyetem, Ybl Miklós Építéstudományi Kar, Budapest, és Dunaújvárosi Egyetem, Dunaújváros

Részletesebben

I. A testek ábrázolása, jellemzése

I. A testek ábrázolása, jellemzése 10 MATEMATIKA A 9. ÉVFOLYAM Tanári útmutató I. A testek ábrázolása, jellemzése Bevezetés Módszertani megjegyzés: Ennek a modulnak a fő célja a térelemek megismerése, megtapasztalása térszemléletet fejlesztő

Részletesebben

TE IS LáTOd, AMIT Én LáTOk?

TE IS LáTOd, AMIT Én LáTOk? MATEMATIKAI KOMPETENCIATERÜLET TE IS LáTOd, AMIT Én LáTOk? TÉRSZEMLÉLET FEJLESZTÉS 5 12. ÉVFOLYAM I. RÉSZ módszertani ajánlások FELADATlapok A kiadvány az Educatio Kht. Kompetenciafejlesztő oktatási program

Részletesebben

A világtörvény keresése

A világtörvény keresése A világtörvény keresése Kopernikusz, Kepler, Galilei után is sokan kételkedtek a heliocent. elméletben Ennek okai: vallási politikai Új elméletek: mozgásformák (egyenletes, gyorsuló, egyenes, görbe vonalú,...)

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III. Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak

Részletesebben

Lehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.

Lehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van. Geometria, sokszögek, szögek, -, 2004_01/5 Lili rajzolt néhány síkidomot: egy háromszöget, egy deltoidot, egy paralelogrammát és egy trapézt. A következő állítások ezekre vonatkoznak. Tegyél * jelet a

Részletesebben

Szabályos mozaikok vizsgálata

Szabályos mozaikok vizsgálata Szabályos mozaikok vizsgálata PhD értekezés Németh László Témavezető: Dr. ermes Imre Dr. Molnár Emil Budapesti Műszaki és Gazdaságtudományi Egyetem Matematika Intézet, Geometria Tanszék Budapest 2007 Németh

Részletesebben

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes.

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes. Heti 4 óra esetén, 37 tanítási hétre összesen 148 óra áll rendelkezésre. A tanmenet 132 óra beosztását tartalmazza. Heti 5 óra esetén összesen 37-tel több órában dolgozhatunk. Ez összesen 185 óra. Itt

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória Megoldások és javítási útmutató 1. Az a b pozitív egészek és tudjuk hogy a 2

Részletesebben

Hogyan óvjuk meg értékes festményeinket?

Hogyan óvjuk meg értékes festményeinket? Hogyan óvjuk meg értékes festményeinket? Hajnal Péter Bolyai Intézet, SZTE, Szeged 2013. április Bevezető példa I. Feladat Adott egy konvex nyolcszög. Bevezető példa I. Feladat Adott egy konvex nyolcszög.

Részletesebben

A matematika természete a természet matematikája

A matematika természete a természet matematikája A matematika természete a természet matematikája A Bevezetés evezetése: mi és a minket körülvevő világ Földtől eloldja az eget a hajnal s tiszta, lágy szavára a ogarak, a gyerekek kipörögnek a napvilágra;

Részletesebben

Modern matematikai paradoxonok

Modern matematikai paradoxonok Modern matematikai paradoxonok Juhász Péter ELTE Matematikai Intézet Számítógéptudományi Tanszék 2013. január 21. Juhász Péter (ELTE) Modern paradoxonok 2013. január 21. 1 / 36 Jelentés Mit jelent a paradoxon

Részletesebben

KONVEX GEOMETRIA. Tantárgykód: MTB2104. Konvex burok. Képtár probléma

KONVEX GEOMETRIA. Tantárgykód: MTB2104. Konvex burok. Képtár probléma KONVEX GEOMETRIA Tantárgykód: MTB2104 Konvex burok. Képtár probléma Konvex alakzatok közös része (metszete) is konvex. Egy alakzat konvex burka az alakzatot tartalmazó konvex alakzatok metszete. (Szemléletesen:

Részletesebben

ANALITIKUS MÉRTAN I. VEKTORALGEBRA. 1. Adott egy ABCD tetraéder. Határozzuk meg az alábbi összegeket: a) AD + BC = BD + AC.

ANALITIKUS MÉRTAN I. VEKTORALGEBRA. 1. Adott egy ABCD tetraéder. Határozzuk meg az alábbi összegeket: a) AD + BC = BD + AC. ANALITIKUS MÉRTAN INFORMATIKA CSOPORT I. VEKTORALGEBRA 1. Feladatlap Műveletek vektorokkal 1. Adott egy ABCD tetraéder. Határozzuk meg az alábbi összegeket: a) AB + BD + DC; b) AD + CB + DC; c) AB + BC

Részletesebben

Síkbarajzolható gráfok Április 26.

Síkbarajzolható gráfok Április 26. Síkbarajzolható gráfok 2017. Április 26. Síkgráfok Egy gráf síkgráf=síkba rajzolható gráf, ha lerajzolható úgy a síkba, hogy élei csak a szögpontokban metszik egymást. Ha egy gráf lerajzolható a síkba,

Részletesebben

Elemi Alkalmazások Fejlesztése II.

Elemi Alkalmazások Fejlesztése II. Elemi Alkalmazások Fejlesztése II. Osztályok közötti kapcsolatok öröklődés asszociáció aggregáció kompozíció 1. Feladat Készítsünk programot, amellyel testek térfogatát határozhatjuk meg, illetve megadhatjuk

Részletesebben

MUNKÁCSY KATALIN. A trónörökös mértankönyve. Das Geometriebuch des Kronprinzen

MUNKÁCSY KATALIN. A trónörökös mértankönyve. Das Geometriebuch des Kronprinzen MUNKÁCSY KATALIN A trónörökös mértankönyve Das Geometriebuch des Kronprinzen A 17. században Németországban megjelent metszetes mértankönyv igazi ritkaság. A benne lévő, a matematikai tartalomtól független

Részletesebben

Összehasonlító vizsgálatok a gömb és a sík geometriájában

Összehasonlító vizsgálatok a gömb és a sík geometriájában Eötvös Loránd Tudományegyetem Természettudományi Kar Matematikatanítási és Módszertani Központ Összehasonlító vizsgálatok a gömb és a sík geometriájában Körzőrózsák és hozzáírt körsorozatok Szakdolgozat

Részletesebben

Diszkrét démonok A Borsuk-probléma

Diszkrét démonok A Borsuk-probléma A Borsuk-probléma Bessenyei Mihály DE TTK Matematikai Intézet, Analízis Tanszék Regionális Matematika Szakkör (megnyitó el adás) Debrecen, 2017. október 16. Bevezetés Magyarázat a címhez... Napjainkban

Részletesebben

Elemi feladatsorok; 2G

Elemi feladatsorok; 2G Elemi feladatsorok; 2G 1. Hányféle végeredménye lehet egy olyan futóversenynek, melyen 90-en vesznek részt és az első öt helyezést rögzítik? 2. Hányféle lottóhúzás lehetséges a 90-ből 5-öt lottón? 3. Ha

Részletesebben

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 7 KRISTÁLYTAN VII. A KRIsTÁLYOK szimmetriája 1. BEVEZETÉs Az elemi cella és ebből eredően a térrácsnak a szimmetriáját a kristályok esetében az atomok, ionok

Részletesebben

9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel;

9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel; Síkok és egyenesek FELADATLAP Írjuk fel annak az egyenesnek az egyenletét, amely átmegy az M 0(,, ) ponton és a) az M(,, 0) ponton; b) párhuzamos a d(,, 5) vektorral; c) merőleges a x y + z 0 = 0 síkra;

Részletesebben

Egyenes mert nincs se kezdő se végpontja

Egyenes mert nincs se kezdő se végpontja Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással

Részletesebben

VII.1. POLIÉDER-LABIRINTUSOK. A feladatsor jellemzői

VII.1. POLIÉDER-LABIRINTUSOK. A feladatsor jellemzői VII.1. POLIÉDER-LABIRINTUSOK Tárgy, téma A feladatsor jellemzői Testek makettjének elkészítése, ismerkedés a testekkel szórakoztató formában. Előzmények Cél Egyszerűbb testek, tulajdonságaik. A térgeometriai

Részletesebben

10. előadás. Konvex halmazok

10. előadás. Konvex halmazok 10. előadás Konvex halmazok Konvex halmazok Definíció: A K ponthalmaz konvex, ha bármely két pontjának összekötő szakaszát tartalmazza. Állítás: Konvex halmazok metszete konvex. Konvex halmazok uniója

Részletesebben

21. Térgeometria. A pont, az egyenes és a sík fogalmát nem definiáljuk, alapfogalomnak tekintjük.

21. Térgeometria. A pont, az egyenes és a sík fogalmát nem definiáljuk, alapfogalomnak tekintjük. 1. Térgeometria I. Elméleti összefoglaló Térelemek: A pont, az egyenes és a sík fogalmát nem definiáljuk, alapfogalomnak tekintjük. Térelemek kölcsönös helyzete Két egyenes metsző, ha egy közös pontjuk

Részletesebben

Térgeometria Tematikus terv 11. osztály, alap óraszámú tanterv

Térgeometria Tematikus terv 11. osztály, alap óraszámú tanterv Térgeometria Tematikus terv 11. osztály, alap óraszámú tanterv Kurzus: Matematika tanítása 4. Kód: mm5t2ms8g Dátum: 2018. április 25. Készítették: Haluska Katalin, Georgita Kamilla Óraszám Óra témája Ismeretanyag

Részletesebben

A tudományos görög csillagászat kialakulása. A csillagászat története, október 10.

A tudományos görög csillagászat kialakulása. A csillagászat története, október 10. A tudományos görög csillagászat kialakulása A csillagászat története, 2018. október 10. Az Akadémia I.e. 399: Szókratészt kivégzik tanítványai később iskolákat alapítanak Platón: létrehozza az Akadémiát

Részletesebben

GEOMETRIA 1, alapszint

GEOMETRIA 1, alapszint GEOMETRIA 1, alapszint Kiss György 4-723 Fogadóóra: péntek 8. 15-10. 00 email: kissgy@cs.elte.hu Előadás: 11. 15-13. 45, közben egyszer 15 perc szünet GEOMETRIA 1, alapszint Ajánlott irodalom: Hajós Gy.:

Részletesebben

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 9. évfolyam 1. félév ESZKÖZÖK Matematika A 9. évfolyam 1. modul 1.1 dominó { 5-re végződő páros számok } { az x < 0 egyenlet megoldásai } { a Föld holdjai }

Részletesebben

2. ELŐADÁS. Transzformációk Egyszerű alakzatok

2. ELŐADÁS. Transzformációk Egyszerű alakzatok 2. ELŐADÁS Transzformációk Egyszerű alakzatok Eltolás A tér bármely P és P pontpárjához pontosan egy olyan eltolás létezik, amely P-t P -be viszi. Bármely eltolás tetszőleges egyenest vele párhuzamos egyenesbe

Részletesebben

Geometriai feladatok, 9. évfolyam

Geometriai feladatok, 9. évfolyam Geometriai feladatok, 9. évfolyam Szögek 1. Nevezzük meg az ábrán látható szögpárokat. Mekkora a nagyságuk, ha α =52 o fok? 2. Mekkora az a szög, amelyik a, az egyenesszög 1/3-ad része b, pótszögénél 32

Részletesebben

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 8 KRISTÁLYTAN VIII. A KRIsTÁLYOK külső FORMÁJA (KRIsTÁLYMORFOLÓGIA) 1. KRIsTÁLYFORMÁK A kristályforma a kristálylapok azon csoportját jelenti, melyeket a szimmetria

Részletesebben

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Síkgeometria 1/6 Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

CSILLAGÁSZATI TESZT. 1. Csillagászati totó

CSILLAGÁSZATI TESZT. 1. Csillagászati totó CSILLAGÁSZATI TESZT Név: Iskola: Osztály: 1. Csillagászati totó 1. Melyik bolygót nevezzük a vörös bolygónak? 1 Jupiter 2 Mars x Merkúr 2. Melyik bolygónak nincs holdja? 1 Vénusz 2 Merkúr x Szaturnusz

Részletesebben

VEKTOROK. 1. B Legyen a( 3; 2; 4), b( 2; 1; 2), c(3; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(30; 10; 30)]

VEKTOROK. 1. B Legyen a( 3; 2; 4), b( 2; 1; 2), c(3; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(30; 10; 30)] Bodó Beáta 1 VEKTOROK 1. B Legyen a( ; 2; 4), b( 2; 1; 2), c(; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(0; 10; 0)] (b) c + b 7a [(18; 15; 29)] (c) 2d c + b [ (5; ; ) = 6, 56] (d) 4a + 8b 7c [ ( 49; 44; 5) =

Részletesebben

λ 1 u 1 + λ 2 v 1 + λ 3 w 1 = 0 λ 1 u 2 + λ 2 v 2 + λ 3 w 2 = 0 λ 1 u 3 + λ 2 v 3 + λ 3 w 3 = 0

λ 1 u 1 + λ 2 v 1 + λ 3 w 1 = 0 λ 1 u 2 + λ 2 v 2 + λ 3 w 2 = 0 λ 1 u 3 + λ 2 v 3 + λ 3 w 3 = 0 Vektorok a térben Egy (v 1,v 2,v 3 ) valós számokból álló hármast vektornak nevezzünk a térben (R 3 -ban). Használni fogjuk a v = (v 1,v 2,v 3 ) jelölést. A v 1,v 2,v 3 -at a v vektor komponenseinek nevezzük.

Részletesebben

Matematika az építészetben

Matematika az építészetben Matematika az építészetben Molnár-Sáska Katalin Főisk.docens YMÉK Bevezetés - Történeti áttekintés - A geometria helye a főiskolai képzésben - Újraindítás és körülményei Részletes tanmenet Megjegyzések:

Részletesebben

1. Feladatlap - VEKTORALGEBRA. Műveletek vektorokkal. AD + BC = BD + AC. Igaz ez az összefüggés

1. Feladatlap - VEKTORALGEBRA. Műveletek vektorokkal. AD + BC = BD + AC. Igaz ez az összefüggés 1 Feladatlap - VEKTORALGEBRA Műveletek vektorokkal 1 Adott egy ABCD tetraéder Határozzuk meg az alábbi összegeket: a) AB + BD + DC; b) AD + CB + DC; c) AB + BC + DA + CD 2 Adott az ABCD tetraéder Igazoljuk,

Részletesebben

. Számítsuk ki a megadott szög melletti befogó hosszát.

. Számítsuk ki a megadott szög melletti befogó hosszát. Szögek átváltása fokról radiánra és fordítva 2456. Hány fokosak a következő, radiánban (ívmértékben) megadott szögek? π π π π 2π 5π 3π 4π 7π a) π ; ; ; ; ; b) ; ; ; ;. 2 3 4 8 3 6 4 3 6 2457. Hány fokosak

Részletesebben

2. A tantárgy tartalma Előadás Az axiomatikus módszer a matematikában. A geometria axiomatikus megalapozásáról.

2. A tantárgy tartalma Előadás Az axiomatikus módszer a matematikában. A geometria axiomatikus megalapozásáról. Tantárgy neve Geometria I Tantárgy kódja MTB1015 Meghirdetés féléve 1 Kreditpont 4k Összóraszám (elm+gyak) 2+2 Számonkérés módja kollokvium Előfeltétel (tantárgyi kód) MTB1003 Tantárgyfelelős neve Kovács

Részletesebben

Síkbarajzolható gráfok, duális gráf

Síkbarajzolható gráfok, duális gráf Síkbarajzolható gráfok, duális gráf Papp László BME November 8, 2018 Gráfok lerajzolása Definíció: Egy G gráf diagramján a gráf olyan lerajzolását értjük ahol a csúcsok különböző síkbeli pontok, illetve

Részletesebben

XY_TANULÓ FELADATSOR 6. ÉVFOLYAM MATEMATIKA

XY_TANULÓ FELADATSOR 6. ÉVFOLYAM MATEMATIKA XY_TANULÓ FELADATSOR 6. ÉVFOLYAM MATEMATIKA 1. 2. feladat: havi benzinköltség mc01901 Gábor szeretné megbecsülni, hogy autójának mennyi a havi benzinköltsége. Gábor autóval jár dolgozni, és így átlagosan

Részletesebben

Háromszögek, négyszögek, sokszögek 9. évfolyam

Háromszögek, négyszögek, sokszögek 9. évfolyam Háromszögek, négyszögek, sokszögek 9. évfolyam I. Pontok, egyenesek, síkok és ezek kölcsönös helyzetet 1) a pont, az egyenes, a sík és az illeszkedés alapfogalmak 2) két egyenes metsző, ha van közös pontjuk

Részletesebben

Naprendszer mozgásai

Naprendszer mozgásai Bevezetés a csillagászatba 2. Muraközy Judit Debreceni Egyetem, TTK 2017. 09. 28. Bevezetés a csillagászatba- Naprendszer mozgásai 2017. szeptember 28. 1 / 33 Kitekintés Miről lesz szó a mai órán? Naprendszer

Részletesebben

A figurális számokról (II.)

A figurális számokról (II.) A figurális számokról (II.) Tuzso Zoltá, Székelyudvarhely A figurális számok jelölése em egységes, ugyais mide yelve más-más féle képpe jelölik, legtöbb esetbe a megevez szó els betjével. A továbbiakba

Részletesebben

Síkba rajzolható gráfok

Síkba rajzolható gráfok Síkba rajzolható gráfok Elmélet Definíció: egy G gráfot síkba rajzolható gráfnak nevezünk, ha az felrajzolható a síkra anélkül, hogy az élei metsszék egymást. Egy ilyen felrajzolását a G gráf síkbeli reprezentációjának

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 0/03-as tanév. forduló haladók III. kategória Megoldások és javítási útmutató. Egy kör kerületére felírjuk -től 3-ig az egészeket

Részletesebben

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) Ezt a módszert akkor alkalmazzuk, amikor könnyebb bizonyítani egy állítás ellentettjét, mintsem az állítást direktben. Ez a módszer

Részletesebben

Egy újabb térmértani feladat. Az [ 1 ] könyvben az interneten találtuk az alábbi érdekes feladatot is 1. ábra.

Egy újabb térmértani feladat. Az [ 1 ] könyvben az interneten találtuk az alábbi érdekes feladatot is 1. ábra. 1 Egy újabb térmértani feladat Az [ 1 ] könyvben az interneten találtuk az alábbi érdekes feladatot is 1. ábra. Úgy látjuk, érdekes és tanulságos lesz végigvenni. 2 A feladat Egy szabályos n - szög alapú

Részletesebben

Négydimenziós konvex politóp ábrázolása GeoGebrával

Négydimenziós konvex politóp ábrázolása GeoGebrával DIMENZIÓK 11 Matematikai Közlemények V. kötet, 2017 doi:10.20312/dim.2017.02 Négydimenziós konvex politóp ábrázolása GeoGebrával Talata István Szent István Egyetem, Ybl Miklós Építéstudományi Kar, Budapest,

Részletesebben

Bán Tamás: Aranymetszés és asztrológia

Bán Tamás: Aranymetszés és asztrológia Bán Tamás: Aranymetszés és asztrológia A 2002.06.08.-án a Fészek Művészklubban elhangzott előadás szerkesztett változata. Mi is az aranymetszés? Először az aranymetszés szépségét, tökéletességét, művészi

Részletesebben

Programozási nyelvek 2. előadás

Programozási nyelvek 2. előadás Programozási nyelvek 2. előadás Logo forgatás tétel Forgatás tétel Ha az ismétlendő rész T fok fordulatot végez és a kezdőhelyére visszatér, akkor az ismétlések által rajzolt ábrák egymás T fokkal elforgatottjai

Részletesebben

A Föld helye a Világegyetemben. A Naprendszer

A Föld helye a Világegyetemben. A Naprendszer A Föld helye a Világegyetemben A Naprendszer Mértékegységek: Fényév: az a távolság, amelyet a fény egy év alatt tesz meg. (A fény terjedési sebessége: 300.000 km.s -1.) Egy év alatt: 60.60.24.365.300 000

Részletesebben

Az egyes feladatok részkérdéseinek a száma az osztály felkészültségének és teherbírásának megfelelően (a feladat tartalmához igazodva) csökkenthető!

Az egyes feladatok részkérdéseinek a száma az osztály felkészültségének és teherbírásának megfelelően (a feladat tartalmához igazodva) csökkenthető! 1 Az egyes feladatok részkérdéseinek a száma az osztály felkészültségének és teherbírásának megfelelően (a feladat tartalmához igazodva) csökkenthető! Szerkesztette: Huszka Jenő 2 A változat 1. Az ABCDEFGH

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

Tanítóképzős hallgatók geometriai ismeretei

Tanítóképzős hallgatók geometriai ismeretei Tanítóképzős hallgatók geometriai ismeretei Debrenti Edith PKE Nagyvárad, Közgazdaságtudományi Kar, Nagyvárad edit.debrenti@gmail.com A geometriai tapasztalatszerzés, a térbeli megjelenítés, a térbenlátás,

Részletesebben

2. Síkmértani szerkesztések

2. Síkmértani szerkesztések 2. Síkmértani szerkesztések Euklidész görög matematikus (i. e. 325 körül) szerint azokat az eljárásokat tekintjük szerkesztésnek, amelyek egy egyenes vonalzóval és egy körz vel véges számú lépésben elvégezhet

Részletesebben

NULLADIK MATEMATIKA szeptember 7.

NULLADIK MATEMATIKA szeptember 7. A NULLADIK MATEMATIKA ZÁRTHELYI 0. szeptember Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható. Válaszait csak az üres mezőkbe írja! A javítók a szürke

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok II. Vektorok II. DEFINÍCIÓ: (Vektorok hajlásszöge) Két vektor hajlásszögének azt a φ (0 φ 180 ) szöget nevezzük, amelyet a vektorok egy közös pontból felmért reprezentánsai által meghatározott félegyenesek

Részletesebben

XVIII. Nemzetközi Magyar Matematika Verseny

XVIII. Nemzetközi Magyar Matematika Verseny 9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.

Részletesebben

Megoldatlan (elemi) matematikai problémák Diszkrét geometriai problémák

Megoldatlan (elemi) matematikai problémák Diszkrét geometriai problémák Megoldatlan (elemi) matematikai problémák Diszkrét geometriai problémák Csikós Balázs ELTE TTK Matematikai Intézet Országos Diákkutatói Program, 2009.11.13. Csikós B. (ELTE TTK Matematikai Intézet) Diszkrét

Részletesebben

A Fermat-Torricelli pont

A Fermat-Torricelli pont Vígh Viktor SZTE Bolyai Intézet 2014. november 26. Huhn András Díj 2014 Így kezdődött... Valamikor 1996 tavaszán, a Kalmár László Matematikaverseny megyei fordulóján, a hetedik osztályosok versenyén. [Korhű

Részletesebben

Szabályos mozaikok. Kovács Anita Mária. Matematika BSc. Szakdolgozat. Témavezet : Dr. Moussong Gábor egyetemi adjunktus Geometriai Tanszék

Szabályos mozaikok. Kovács Anita Mária. Matematika BSc. Szakdolgozat. Témavezet : Dr. Moussong Gábor egyetemi adjunktus Geometriai Tanszék Szabályos mozaikok Kovács Anita Mária Matematika BSc Szakdolgozat Témavezet : Dr. Moussong Gábor egyetemi adjunktus Geometriai Tanszék Eötvös Loránd Tudományegyetem Természettudományi Kar Budaest, 016

Részletesebben

3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben.

3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben. 3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben. TÁVOLSÁG Általános definíció: két alakzat távolsága a két alakzat pontjai között húzható legrövidebb szakasz hosszaa távolság

Részletesebben

2. előadás A KRISTÁLYTAN ALAPJAI. 1. A kristályok belső rendezettsége (kristályszerkezet) 2. A kristályok külső alakja (kristálymorfológia)

2. előadás A KRISTÁLYTAN ALAPJAI. 1. A kristályok belső rendezettsége (kristályszerkezet) 2. A kristályok külső alakja (kristálymorfológia) 2. előadás A KRISTÁLYTAN ALAPJAI 1. A kristályok belső rendezettsége (kristályszerkezet) 2. A kristályok külső alakja (kristálymorfológia) KRISTÁLY FOGALOM A MÚLTBAN Ókorban: jég (= krüsztallosz), a színtelen

Részletesebben

Földünk a világegyetemben

Földünk a világegyetemben Földünk a világegyetemben A Tejútrendszer a Lokális Galaxiscsoport egyik küllős spirálgalaxisa, melyben a Naprendszer és ezen belül Földünk található. 200-400 milliárd csillag található benne, átmérője

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

Geometria I. Szilágyi Ibolya. Matematika és Informatika Intézet EKF, Eger április 21.

Geometria I. Szilágyi Ibolya. Matematika és Informatika Intézet EKF, Eger április 21. Geometria I. Szilágyi Ibolya szibolya@ektf.hu Matematika és Informatika Intézet EKF, Eger 2006. április 21. Szilágyi Ibolya (EKF) Geometria 2006. április 21. 1 / 77 Outline Szimmetrikus alakzatok, speciális

Részletesebben

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat

Részletesebben

Tömegvonzás, bolygómozgás

Tömegvonzás, bolygómozgás Tömegvonzás, bolygómozgás Gravitációs erő tömegvonzás A gravitációs kölcsönhatásban csak vonzóerő van, taszító erő nincs. Bármely két test között van gravitációs vonzás. Ez az erő nagyobb, ha a két test

Részletesebben

Szabályos gráfok paraméterei

Szabályos gráfok paraméterei Eötvös Loránd Tudományegyetem Természettudományi Kar Szabályos gráfok paraméterei Szakdolgozat Témavezető: Dr. Sziklai Péter egyetemi docens Készítette: Deák Réka Budapest 2016 Szabályos gráfok paraméterei

Részletesebben

Véges ponthalmazok legrövidebb hálózatai Kábelrakás kis költséggel

Véges ponthalmazok legrövidebb hálózatai Kábelrakás kis költséggel Véges ponthalmazok legrövidebb hálózatai Bessenyei Mihály U.M. Debreceni Egyetem, Matematikai Intézet, Analízis Tanszék (Szabó Gréta egyetemi hallgatóval közös munka alapján) Medve Matektábor, Pusztafalu,

Részletesebben

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő

Részletesebben

Feladatok az elemi geometria körébıl

Feladatok az elemi geometria körébıl Sokszögek szögösszege, külsıszög tétel Feladatok az elemi geometria körébıl 1. Melyik az a legkisebb oldalszámú konvex sokszög, amelynek külsı szögei között már biztosan van hegyesszög? (87) 2. Bizonyítsa

Részletesebben

Geometria 1 összefoglalás o konvex szögek

Geometria 1 összefoglalás o konvex szögek Geometria 1 összefoglalás Alapfogalmak: a pont, az egyenes és a sík Axiómák: 1. Bármely 2 pontra illeszkedik egy és csak egy egyenes. 2. Három nem egy egyenesre eső pontra illeszkedik egy és csak egy sík.

Részletesebben

Költô vagy mérnök? a világ dolgainak geometrikus letapogatása

Költô vagy mérnök? a világ dolgainak geometrikus letapogatása Néhány sor Csörgô Attiláról Csörgô Attila mûvészetében minden mozog, él és mûködik. Azt is gondolhatnánk, hogy nem is ember, hanem egy játékos kedvû manó alkotta meg ezeket a mûveket. De ez mind semmi,

Részletesebben