Valasek Gábor tavaszi félév
|
|
- Piroska Hegedüsné
- 5 évvel ezelőtt
- Látták:
Átírás
1 Valasek Gábor Eötvös Loránd Tudományegyetem Informatikai Kar tavaszi félév
2 Tartalom
3 Tartalom
4 Áttekintés Tartalom B-reṕ Attekintés Topológiai adatszerkezetek Szárnyas-él adatszerkezet Fél-él adatszerkezet Topológiai elemek kiterjesztése Nonmanifold kiterjesztések Euler műveletek
5 Áttekintés Határoló felületek alapú reprezentáció Egy térfogat egyértelműen reprezentálható ha leírjuk a határát (felületét) és ezt úgy tudjuk irányítani (orientálni), hogy mindenütt egyértelműen eldönthessük, hogy a felület melyik oldala van a térfogaton belül és kívül Azaz két dolgot kell eltárolnunk: a felület topológiáját, vagyis a felületet alkotó elemek (csúcsok, élek, lapok) szomszédossági és orientációs adatait, illetve a felületi elemek tényleges geometriáját, azaz a topológiai elemek térbeli megfelelőit
6 Áttekintés Topológia Történetileg a poliéderek leírásából indult a téma Ezért a központi elemek a csúcsok, élek és lapok Azonban ezek absztrakt, topológiai entitások: a feladatuk az egybeesések és szomszédosságok tárolása, egyéb geometriai információt (például hogy egy lap hogyan is néz ki a térben) nem tárolnak
7 Áttekintés Manifold Egy manifold felületi reprezentáció minden pontjára igaz, hogy létezik olyan környezete, amelyet a térfogat belseje és külseje pontosan két összefüggő tartományra oszt. Egy felület tehát manifold, ha minden pontjára igaz az, hogy létezik olyan kicsiny környezete, amely homeomorf a síkkal. Non-manifold egy rész, ahol ez nem teljesül.
8 Áttekintés Irányíthatóság Egy felület irányítható ha egy tetszőleges bejárási irányt választva (pl. cw vagy ccw) nem létezik olyan zárt út a felületen, amelyet egy folytonos leképezéssel a felületen az ellentétes bejárásúra lehet transzformálni önmetszés nélkül Az irányíthatóság ekvivelens azzal, hogy ne legyen olyan része a felületnek, ami homeomorf a Möbius-szalaggal Egyszerűbben fogalmazva, akkor irányítható, ha két oldala van
9 Áttekintés Möbius-szalag
10 Áttekintés Térfogatok A legtöbb rendszer zárt, irányítható manifold-ok modellezéséből indult Az ilyen térfogatok felülete három részre osztja a teret: a térfogat belsejére (interior), a határára (surface) és a külsejére (exterior)... de nem mindig bizonyulnak elégségesnek, mert már a regularizált műveletek is kivezetnek a manifoldok köréből
11 Áttekintés Nonmanifold
12 Áttekintés Nonmanifold
13 Áttekintés Nonmanifold
14 Áttekintés Nonmanifold esetek kezelése Három megközeĺıtéssel kezelhető: 1. Az objektumok topológiája és geometriája is manifold: azaz csak olyan műveletek engedélyezettek csak, amelyek manifold eredményt adnak. 2. Az objektumnak csak a topológiája manifold: azaz topológiailag különböző példányok (pl. két él) a térben eshet fizikailag egybe. Itt meg kell határozni, hogy topológiailag minek tekintsük a geometriailag egybeeső elemeket. 3. A geometria és a topológia is nonmanifold.
15 Áttekintés Nonmanifold Ez abból a szempontból szerencsésebb, hogy degenerált háromszögek nélkül is triangularizálható a test (hiszen a P1 és a P2, illetve hátoldali társaik külön-külön háromszögek csúcsai lennének.)
16 Áttekintés Nonmanifold Itt viszont az egybeesés (P1 = P2) miatt egy degenerált háromszöget kapnánk minden esetben, amiben P1P2 egy él.
17 Topológiai adatszerkezetek Tartalom B-reṕ Attekintés Topológiai adatszerkezetek Szárnyas-él adatszerkezet Fél-él adatszerkezet Topológiai elemek kiterjesztése Nonmanifold kiterjesztések Euler műveletek
18 Topológiai adatszerkezetek Szárnyas-él adatszerkezet Tárolás során csúcsokat, éleket és lapokat különböztet meg Az élek szempontjából tároljuk a szomszédossági adatokat Minden élhez fix számú adat tartozik Segítségével pl. gyorsan körbe lehet járni egy poligon éleit, közben megkapva minden szomszédot
19 Topológiai adatszerkezetek Szárnyas-él adatszerkezet - lapok Minden laphoz élsorozatok diszjunkt listáit rendeljük: Az első lista a lap határát megadó élsorozat A további listák pedig a lap belsejében található lyukakat körülölelő élsorozatok Egy éllistát egy tetszőleges élével (reprezentáns élével) el tudjuk tárolni (illetve az élen belül ki kell még választani az oldalt)
20 Topológiai adatszerkezetek Szárnyas-él adatszerkezet - csúcsok A csúcspontok élekhez illeszkednek (vagy belőle indul ki, vagy ő a célja) Tetszőleges, csúcsra illeszkedő élt eltároljuk a csúcshoz
21 Topológiai adatszerkezetek Szárnyas-él adatszerkezet - élek adatai Egy él két csúcsot köt össze - tároljuk ezeket az élben rendezett párként (mivel az élek irányítottak, ezért a két csúcs sorrendje fontos) 2 manifold esetben egy él legfeljebb két lap között futhat - az egyik a baloldali, a másik a jobboldali lap lesz, ezekre mutató pointereket (vagy indexeket) tárolunk A fenti két lapon egyúttal egy-egy élsorozat (az adott lapot alkotó élsorozat) része is az adott él - mindkét élsorozatban tároljuk a rákövetkezőjét és megelőzőjét az adott élnek az adott lap bejárási irányának megfelelően (!)
22 Topológiai adatszerkezetek Egyetlen él adatai csúcs lap balra jobbra él start vég bal jobb előző köv. előző köv. a B A 0 1 c b d e
23 Topológiai adatszerkezetek Egyéb táblázatok Csúcsok táblája csúcs ID csúcsból induló él Lapok táblája lap ID lap egy éle minden lapon belüli lyuk egy éle
24 Topológiai adatszerkezetek Példa: tetraéder
25 Topológiai adatszerkezetek Pl.: Egy lap összes szomszéd lapjának felsorolása d e f a l l N e i g h b o u r s ( face, edges, v e r t i c e s, f a c e s ) : s t a r t E d g e = f a c e s [ f a c e ] edge = s t a r t E d g e i f edges [ s t a r t E d g e ]. f a c e L e f t == f a c e : w h i l e edges [ edge ]. s u c c L e f t!= s t a r t E d g e : p r i n t edges [ edge ]. f a c e R i g h t edge = edges [ edge ]. s u c c L e f t e l s e : w h i l e edges [ edge ]. s u c c R i g h t!= s t a r t E d g e : p r i n t edges [ edge ]. f a c e L e f t edge = edges [ edge ]. s u c c R i g h t
26 Topológiai adatszerkezetek Pl.: Egy lap összes szomszéd lapjának felsorolása Azaz: induljunk el az adott lap reprezentáns éléből (amit tárolunk a laphoz) Ha ennek az élnek a baloldali lapja az adott lap: iteráljunk végig a baloldali éllistán és írjuk ki a jobboldali lapokat (a baloldali a lekérdezést kiváltó lap) Különben a jobboldali lap az adott lap, iteráljunk végig a jobboldali lap éllistáján Az iteráció érjen véget, amint visszaérünk az adott lap reprezentáns élébe
27 Topológiai adatszerkezetek Pl.: Egy adott csúcsot tartalmazó összes lap felsorolása d e f a l l F a c e s ( v e r t e x, edges, v e r t i c e s, f a c e s ) : s t a r t E d g e = v e r t i c e s [ v e r t e x ] edge = s t a r t E d g e done = F a l s e w h i l e not done : i f edges [ edge ]. v e r t S t a r t == v e r t e x : p r i n t edges [ edge ]. f a c e L e f t edge = edges [ edge ]. p r e d L e f t e l s e : p r i n t edges [ edge ]. f a c e R i g h t edge = edges [ edge ]. p r e d R i g h t
28 Topológiai adatszerkezetek Fél-él adatszerkezet A winged-edge élét vegyük szét két fél-élre! lényegében az élek lapra vett vetületével dolgozunk! A fél-élhez csak egy lap tartozhat + meg kell jegyeznünk a testvér fél-élét (az adott él másik oldali lapra vett vetületét) A reprezentáció központi eleme a fél-él
29 Topológiai adatszerkezetek Half-edge
30 Topológiai adatszerkezetek Half-edge
31 Topológiai adatszerkezetek Fél-él adatszerkezet Szigorú értelemben véve egy fél-élhez pontosan egy csúcs, él és lap tartozik (de gyakorlatban ennél többet tárolni hasznos lehet) A következőt tároljuk egy fél-élben: az fél-él cél csúcspontja (vertex), a fél-él testvére (sym), a fél-él lapja (face) és a lapot körbefogó fél-élsorozatban a rákövetkez?je (next) A lapokhoz egy tetszőleges alkotó fél-él pointerét jegyezzük fel A csúcspontokhoz egy befutó fél-élt HE sym sym = HE, HE next sym vertex = HE vertex stb.
32 Topológiai adatszerkezetek Pl.: Adott lap körbejárása d e f faceloop (HE ) : l o o p = HE do : p r i n t HE l o o p = HE. next w h i l e l o o p!= HE
33 Topológiai elemek kiterjesztése Tartalom B-reṕ Attekintés Topológiai adatszerkezetek Szárnyas-él adatszerkezet Fél-él adatszerkezet Topológiai elemek kiterjesztése Nonmanifold kiterjesztések Euler műveletek
34 Topológiai elemek kiterjesztése Kiterjesztés: élhurkok (loop) Lapok belsejében lévő lyukak/bemélyedések tárolására lapon belül elhelyezkedő élhurkokat használunk, hogy a lapból is elérhessük ezeket Általában a lap határéleihez képest fordított bejárással tároljuk el őket A laphoz pedig eltároljuk egy ciklikus listában az összes, hozzá tartozó élhurkot
35 Topológiai elemek kiterjesztése Kiterjesztés: héj (shell) és test (body) Objektumon belüli üregek reprezentálására (és az objektumhoz rendelésére) használjuk a héjakat Megkötjük, hogy a héjakat zárt 2-manifold felület határolja A testet alkotó héjakat pedig a testben eltároljuk, megint csak egy kétirányú listában
36 Topológiai elemek kiterjesztése Loop, shell
37 Nonmanifold kiterjesztések Tartalom B-reṕ Attekintés Topológiai adatszerkezetek Szárnyas-él adatszerkezet Fél-él adatszerkezet Topológiai elemek kiterjesztése Nonmanifold kiterjesztések Euler műveletek
38 Nonmanifold kiterjesztések Nonmanifold lap A lap egy véges területű elem amit csúcspontok és élek egy vagy több köre (cycle) határol A határoló csúcssorozat lehet degenerált (=ugyanaz a csúcs többször szerepel, vagy akár csak 1 csúcsból áll) Meg kell állapodni, hogy az éleket milyen bejárás szerint tároljuk (pl. a lap belseje mindig jobbra legyen) és hogy milyen normálisakat (pl. térfogat belsejéből kifelé mutató) használunk Magányos csúcs/él csak lap belsejében lehet (ez egy nulla területű lyuk a lapban)
39 Nonmanifold kiterjesztések Nonmanifold lap
40 Nonmanifold kiterjesztések Nonmanifold él Egy nonmanifold él a köveketőket tartalmazza: A kezdő és végpontokat Az illeszkedő lapok egy rendezett, ciklikus listáját A laplista elemeiből képzett párokat, amelyek azokat a lapokat határozzák meg amelyek között térfogat van Az egymás utáni lapokon alternál a bejárási irány!
41 Nonmanifold kiterjesztések Nonmanifold csúcs Egy csúcsban pedig eltároljuk a beeső éleket a beeső lapokat ahol a beeső lapok több kúpot is alkothatnak annak függvényében, hogy milyen nonmanifold esetet kezelünk.
42 Euler műveletek Tartalom B-reṕ Attekintés Topológiai adatszerkezetek Szárnyas-él adatszerkezet Fél-él adatszerkezet Topológiai elemek kiterjesztése Nonmanifold kiterjesztések Euler műveletek
43 Euler műveletek Euler-Poincaré formulák V a csúcsok száma E az élek száma F a lapok száma G a térfogat génusza ( a rajta áthaladó lyukak száma) S a héjak száma (de minden héjnak magának lehet további génusza). Maga a test is egy héjnak számít. L a külső (határoló) és belső (lyukakat körülvevő) élhurkok száma
44 Euler műveletek Euler-Poincaré formulák Konvex poliéderre: (Euler) V E + F 2 = 0 Olyan lyukas poliéderekre, amiket ha befoltozunk, akkor egy konvex poliédert kapunk: (Simon Lhuilier) V E + F 2(1 G) = 0 Ha lyukakon túl megengedünk a testen belül üregeket: (Henri Poincaré) V E + F (L F ) 2(S G) = 0
45 Euler műveletek Euler-Poincaré formulák 20 bizonyítás
46 Euler műveletek Euler-Poincaré formulák - kocka V E +F (L F ) 2(S G) = (6 6) 2(1 0) = 0
47 Euler műveletek Euler-Poincaré formulák - bemélyedés V E +F (L F ) 2(S G) = (12 11) 2(1 0) = 0
48 Euler műveletek Euler-Poincaré formulák - bemélyedés V E +F (L F ) 2(S G) = (12 10) 2(1 1) = 0
49 Euler műveletek Euler-Poincaré formulák - üreg V E +F (L F ) 2(S G) = (18 16) 2(2 1) = 0
50 Euler műveletek Génusz A génusz számítása nem triviális Nem elég ugyani azt megnézni, hogy a test külső felületén összesen mennyi lyuk van!
51 Euler műveletek Mennyi a génusza?
52 Euler műveletek Mennyi a génusza?
53 Euler műveletek Mennyi a génusza? 2!
54 Euler műveletek Euler műveleteknek Azokat a szerkesztési műveleteket, amik érvényben hagyják az Euler-Poincaré formulákat Euler műveleteknek hívjuk Az Euler-Poincaré formulák csak szükséges feltételt adnak a topológia konzisztenciájára! Attól, hogy a topológiai elemek számossága kielégíti őket, még nem következik, hogy helyes a felület, további megkötésekre van szükség A modell topologikus validációjának elégséges feltételéhez algebrai topológiai ismeretek szükségesek: részletek Hoffmann 3. fejezet
55 Euler műveletek Topologikusan valid Mäntylä belátta 1984-ben, hogy manifold testek modellezésének teljes művelettára feĺırható Euler műveletek segítségével Azaz tetszőleges, topologikusan helyes poliéder előálĺıtható egy kiindulási poliéder és véges számú Euler művelet segítségével
56 Euler műveletek Euler műveletek Kétféle művelet van: M(ake)x..z topológiai elem létrehozására és K(ill)x..z topológiai elem törlésére amikek az argumentumai a topológiai entitások listái, tehát egy string ami a csúcs (v), él (e), élhurk (l), lap (f), héj (s) azonosítóiból áll. Azaz például Mv csinál egy új csúcsot, MeKf csinál egy élt és töröl egy lapot stb.
57 Euler műveletek Euler műveletek Még ezekkel sem triviális a modellezés, hiszen ha vesszük például két csúcs éllel való összekötését, akkor rögtön három esetünk van: 1. elvágja a lap egy részét a többitől ekkor növelni kell a csúcsok, élek és lapok számát is eggyel 2. ugyanazon lap két loop-ját köti össze hozzáadunk egy élet és megszüntetünk egy loop-ot (pontosabban összevonunk kettő loop-ot) 3. a test határát köti össze egy üreg csúcspontjábal -1 héj és +1 él
58 Euler műveletek 1-es eset: Mefl
59 Euler műveletek 2-es eset: MeKl
60 Euler műveletek 3-as eset: MeKs
Valasek Gábor
Geometria és topológia tárolása Görbék reprezentációja Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2015/2016. őszi félév Geometria és topológia tárolása Görbék reprezentációja
RészletesebbenTartalom. Geometria közvetlen tárolása. Geometria tárolása - brute force. Valasek Gábor valasek@inf.elte.hu. Hermite interpoláció. Subdivision görbék
Tartalom Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2015/2016. őszi félév Geometria és topológia tárolása Geometria tárolása Topológia tárolása
Részletesebben3D számítógépes geometria és alakzatrekonstrukció
3D számítógépes geometria és alakzatrekonstrukció 12. Tömör testek modellezése http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME,
Részletesebben(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja.
Testmodellezés Testmodellezés (Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. A tervezés (modellezés) során megadjuk a objektum geometria
RészletesebbenTÉRINFORMATIKAI ALGORITMUSOK
Topológiai algoritmusok és adatszerkezetek TÉRINFORMATIKAI ALGORITMUSOK Cserép Máté mcserep@caesar.elte.hu 2015. november 18. EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR BEVEZETŐ Topológia: olyan matematikai
RészletesebbenTÉRINFORMATIKAI ALGORITMUSOK
Topológiai algoritmusok és adatszerkezetek TÉRINFORMATIKAI ALGORITMUSOK Cserép Máté mcserep@inf.elte.hu 2017. november 22. EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR BEVEZETŐ Topológia: olyan matematikai
RészletesebbenTermék modell. Definíció:
Definíció: Termék modell Összetett, többfunkciós, integrált modell (számítógépes reprezentáció) amely leír egy műszaki objektumot annak különböző életfázis szakaszaiban: tervezés, gyártás, szerelés, szervízelés,
RészletesebbenTÉRINFORMATIKAI ÉS TÁVÉRZÉKELÉSI ALKALMAZÁSOK FEJLESZTÉSE
Topológiai algoritmusok és adatszerkezetek TÉRINFORMATIKAI ÉS TÁVÉRZÉKELÉSI ALKALMAZÁSOK FEJLESZTÉSE Cserép Máté mcserep@caesar.elte.hu 2015. május 5. EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR BEVEZETŐ
Részletesebben22. GRÁFOK ÁBRÁZOLÁSA
22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is
RészletesebbenKlár Gergely 2010/2011. tavaszi félév
Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2010/2011. tavaszi félév Tartalom Virtuális világ tárolása 1 Virtuális világ tárolása 2 3 4 Virtuális világ
RészletesebbenEgyirányban láncolt lista
Egyirányban láncolt lista A tárhely (listaelem) az adatelem értékén kívül egy mutatót tartalmaz, amely a következő listaelem címét tartalmazza. A láncolt lista első elemének címét egy, a láncszerkezeten
RészletesebbenAlgoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek
Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek Tömb Ugyanolyan típusú elemeket tárol A mérete előre definiált kell legyen és nem lehet megváltoztatni futás során Legyen n a tömb mérete. Ekkor:
Részletesebben10. előadás. Konvex halmazok
10. előadás Konvex halmazok Konvex halmazok Definíció: A K ponthalmaz konvex, ha bármely két pontjának összekötő szakaszát tartalmazza. Állítás: Konvex halmazok metszete konvex. Konvex halmazok uniója
RészletesebbenGeometria 1 normál szint
Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!
RészletesebbenGeometria 1 normál szint
Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1 Írásban, 90 perc. 2 Személyazonosságot igazoló okmány nélkül
RészletesebbenEGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF
Összefoglaló Gráfok / EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Adott a G = (V, E) gráf ahol a V a csomópontok, E az élek halmaza E = {(x, y) x, y V, x y (nincs hurokél) és (x, y) = (y, x)) Jelölések:
RészletesebbenGeometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)
1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy
Részletesebben3D-s számítógépes geometria és alakzatrekonstrukció
3D-s számítógépes geometria és alakzatrekonstrukció Tesztkörnyezet II http://cg.iit.bme.hu/portal/node/312 https://portal.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki
RészletesebbenValasek Gábor tavaszi félév
Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2016-2017 tavaszi félév Tartalom Test- és felületmodellezés Test- és felületmodellezés Tartalom Test- és felületmodellezés
RészletesebbenFraktálok. Klasszikus fraktálpéldák I. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék
Fraktálok Klasszikus fraktálpéldák I Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 86 Bevezetés. 2 of 86 TARTALOMJEGYZÉK Bevezetés. Az önhasonlóságról intuitív módon Klasszikus
RészletesebbenLáthatósági kérdések
Láthatósági kérdések Láthatósági algoritmusok Adott térbeli objektum és adott nézőpont esetén el kell döntenünk, hogy mi látható az adott alakzatból a nézőpontból, vagy irányából nézve. Az algoritmusok
RészletesebbenSíkbarajzolható gráfok, duális gráf
Síkbarajzolható gráfok, duális gráf Papp László BME November 8, 2018 Gráfok lerajzolása Definíció: Egy G gráf diagramján a gráf olyan lerajzolását értjük ahol a csúcsok különböző síkbeli pontok, illetve
Részletesebben11. előadás. Konvex poliéderek
11. előadás Konvex poliéderek Konvex poliéder 1. definíció: Konvex poliédernek nevezzük a térben véges sok, nem egysíkú pont konvex burkát. 2. definíció: Konvex poliédernek nevezzük azokat a térbeli korlátos
RészletesebbenAdatszerkezetek és algoritmusok
2010. január 8. Bevezet El z órák anyagainak áttekintése Ismétlés Adatszerkezetek osztályozása Sor, Verem, Lengyelforma Statikus, tömbös reprezentáció Dinamikus, láncolt reprezentáció Láncolt lista Lassú
RészletesebbenValasek Gábor
Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. őszi félév Tartalom 1 Motiváció Görbék Hermite interpoláció Catmull-Rom spline Kochanek-Bartels spline Műveletek
RészletesebbenSíkba rajzolható gráfok
Síkba rajzolható gráfok Elmélet Definíció: egy G gráfot síkba rajzolható gráfnak nevezünk, ha az felrajzolható a síkra anélkül, hogy az élei metsszék egymást. Egy ilyen felrajzolását a G gráf síkbeli reprezentációjának
RészletesebbenGeometria brute force tárolása
Virtuális világ tárolása - kérdések Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar Hol táruljuk az adatokat? Mem. vagy HDD? Mire optimalizálunk? Rajzolás
RészletesebbenDiszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
RészletesebbenJogi terek modellezése a 3D kataszterben
Jogi terek modellezése a 3D kataszterben Iván Gyula főtanácsadó Fölmérési és Távérzékelési Intézet GIS OPEN 2012 Konferencia Felelni az alapkérdésekre Székesfehérvár, 2012. 03. 12-14. Tartalom A 2D és
Részletesebben3. előadás. Elemi geometria Terület, térfogat
3. előadás Elemi geometria Terület, térfogat Tetraéder Négy, nem egy síkban lévő pont által meghatározott test. 4 csúcs, 6 él, 4 lap Tetraéder Minden tetraédernek egyértelműen létezik körülírt- és beírt
RészletesebbenFelügyelt önálló tanulás - Analízis III.
Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:
RészletesebbenParametrikus tervezés
2012.03.31. Statikus modell Dinamikus modell Parametrikus tervezés Módosítások a tervezés folyamán Konstrukciós variánsok (termékcsaládok) Parametrikus Modell Parametrikus tervezés Paraméterek (változók
RészletesebbenGráfalgoritmusok és hatékony adatszerkezetek szemléltetése
Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése Készítette: Bognár Gergő Témavezető: Veszprémi Anna Eötvös Loránd Tudományegyetem Informatikai Kar Algoritmusok és Alkalmazásaik Tanszék Budapest,
RészletesebbenFRAKTÁLGEOMETRIA. Példák fraktálokra I. Czirbusz Sándor február 1. Komputeralgebra Tanszék ELTE Informatika Kar
Példák fraktálokra I Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar 2010. február 1. Vázlat 1 Mi a fraktál? 2 A konstrukció Egyszerű tulajdonságok Triadikus ábrázolás Transzlációk
RészletesebbenStruktúra nélküli adatszerkezetek
Struktúra nélküli adatszerkezetek Homogén adatszerkezetek (minden adatelem azonos típusú) osztályozása Struktúra nélküli (Nincs kapcsolat az adatelemek között.) Halmaz Multihalmaz Asszociatív 20:24 1 A
RészletesebbenFelületek differenciálgeometriai vizsgálata
Felületek differenciálgeometriai vizsgálata Felületek differenciálgeometriai értelemben Felület: Olyan alakzat, amely előállítható az (u,v) sík egy összefüggő tartományán értelmezett r(u,v) kétparaméteres
RészletesebbenSegédanyagok. Formális nyelvek a gyakorlatban. Szintaktikai helyesség. Fordítóprogramok. Formális nyelvek, 1. gyakorlat
Formális nyelvek a gyakorlatban Formális nyelvek, 1 gyakorlat Segédanyagok Célja: A programozási nyelvek szintaxisának leírására használatos eszközök, módszerek bemutatása Fogalmak: BNF, szabály, levezethető,
Részletesebben1. előadás: Halmazelmélet, számfogalom, teljes
1. előadás: Halmazelmélet, számfogalom, teljes indukció Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető,
RészletesebbenAdatszerkezetek 2. Dr. Iványi Péter
Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat
RészletesebbenAlapfogalmak II. Def.: Egy gráf összefüggő, ha bármely pontjából bármely pontjába eljuthatunk egy úton.
lapfogalmak II Nézzük meg mégegyszer a königsbergi séták problémáját! város lakói vasárnaponként szerettek sétálni a szigeteken. Felvetődött a kérdés, hogy hogyan lehetne olyan sétát tenni a városban,
Részletesebben5. SOR. Üres: S Sorba: S E S Sorból: S S E Első: S E
5. SOR A sor adatszerkezet is ismerős a mindennapokból, például a várakozási sornak számos előfordulásával van dolgunk, akár emberekről akár tárgyakról (pl. munkadarabokról) legyen szó. A sor adattípus
RészletesebbenDiszkrét matematika 2.
Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet
RészletesebbenGEOMETRIA 1, alapszint
GEOMETRIA 1, alapszint Kiss György 4-723 Fogadóóra: péntek 8. 15-10. 00 email: kissgy@cs.elte.hu Előadás: 11. 15-13. 45, közben egyszer 15 perc szünet GEOMETRIA 1, alapszint Ajánlott irodalom: Hajós Gy.:
RészletesebbenElengedhetetlen a játékokban, mozi produkciós eszközökben Nélküle kvantum hatás lép fel. Az objektumok áthaladnak a többi objektumon
Bevezetés Ütközés detektálás Elengedhetetlen a játékokban, mozi produkciós eszközökben Nélküle kvantum hatás lép fel Az objektumok áthaladnak a többi objektumon A valósághű megjelenítés része Nem tisztán
RészletesebbenKlár Gergely 2010/2011. tavaszi félév
Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2010/2011. tavaszi félév Tartalom Pont 1 Pont 2 3 4 5 Tartalom Pont Descartes-koordináták Homogén koordináták
RészletesebbenCAD Rendszerek I. Sajátosság alapú tervezés - Szinkron modellezés
CAD Rendszerek I. Sajátosság alapú tervezés - Szinkron modellezés Farkas Zsolt Budapesti Műszaki és Gazdaságtudományi Egyetem, Gép- és Terméktervezés Tanszék 1/ 14 Tartalom -Sajátosság alapú tervezés:
RészletesebbenDiszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét
RészletesebbenAdatszerkezetek 1. Dr. Iványi Péter
Adatszerkezetek 1. Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot kódoltan tároljuk
RészletesebbenDiszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenELTE IK Esti képzés tavaszi félév. Tartalom
Diszkrét Matematika 2 vizsgaanyag ELTE IK Esti képzés 2017. tavaszi félév Tartalom 1. Számfogalom bővítése, homomorfizmusok... 2 2. Csoportok... 9 3. Részcsoport... 11 4. Generátum... 14 5. Mellékosztály,
RészletesebbenDiszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Részletesebben3. Fuzzy aritmetika. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI
3. Fuzzy aritmetika Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Intervallum-aritmetika 2 Fuzzy intervallumok és fuzzy számok Fuzzy intervallumok LR fuzzy intervallumok
RészletesebbenAdatszerkezetek 1. előadás
Adatszerkezetek 1. előadás Irodalom: Lipschutz: Adatszerkezetek Morvay, Sebők: Számítógépes adatkezelés Cormen, Leiserson, Rives, Stein: Új algoritmusok http://it.inf.unideb.hu/~halasz http://it.inf.unideb.hu/adatszerk
RészletesebbenGeometriai modellezés. Szécsi László
Geometriai modellezés Szécsi László Adatáramlás vezérlés Animáció világleírás Modellezés kamera Virtuális világ kép Képszintézis A modellezés részfeladatai Geometria megadása [1. előadás] pont, görbe,
RészletesebbenGráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor
Gráfok 2. Legrövidebb utak, feszítőfák előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor Óbudai Egyetem,Neumann János Informatikai Kar Legrövidebb utak keresése Minimális feszítőfa keresése Gráfok 2
RészletesebbenProgramozás alapjai II. (7. ea) C++
Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1
Részletesebben30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK
30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK A gráfos alkalmazások között is találkozunk olyan problémákkal, amelyeket megoldását a részekre bontott gráfon határozzuk meg, majd ezeket alkalmas módon teljes megoldássá
RészletesebbenALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha
ALAPFOGALMAK 1 Á l l a p o t t é r Legyen I egy véges halmaz és legyenek A i, i I tetszőleges véges vagy megszámlálható, nem üres halmazok Ekkor az A= A i halmazt állapottérnek, az A i halmazokat pedig
RészletesebbenMindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1
Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,
RészletesebbenGenerikus osztályok, gyűjtemények és algoritmusok
Programozási, gyűjtemények és algoritmusok bejárása Informatikai Kar Eötvös Loránd Tudományegyetem 1 Tartalom 1 bejárása 2 bejárása 2 Java-ban és UML-ben bejárása Az UML-beli paraméteres osztályok a Java
Részletesebben21. Adatszerkezetek Az adattípus absztrakciós szintjei Absztrakt adattípus (ADT) Absztrakt adatszerkezet (ADS) Egyszerű adattípusok Tömbök
2. Adatszerkezetek Az adattípus absztrakciós szintjei http://people.inf.elte.hu/fekete/docs_/adt_ads.pdf Absztrakt adattípus (ADT) Az adattípust úgy specifikáljuk, hogy szerkezetére, reprezentálására,
RészletesebbenDiszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
RészletesebbenMindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.
HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak
RészletesebbenSpeciális adatszerkezetek. Programozás alapjai II. (8. ea) C++ Tömbök. Tömbök/2. N dimenziós tömb. Nagyméretű ritka tömbök
Programozás alapjai II. (8. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT Speciális adatszerkezetek A helyes adatábrázolás választása, a helyes adatszerkezet
RészletesebbenHázi feladatok megoldása. Nyelvek használata adatszerkezetek, képek leírására
Nyelvek használata adatszerkezetek, képek leírására Formális nyelvek, 2. gyakorlat 1. feladat Módosított : belsejében lehet _ jel is. Kezdődhet, de nem végződhet vele, két aláhúzás nem lehet egymás mellett.
RészletesebbenProgramozás alapjai II. (7. ea) C++ Speciális adatszerkezetek. Tömbök. Kiegészítő anyag: speciális adatszerkezetek
Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1
RészletesebbenAlgoritmusok és adatszerkezetek gyakorlat 07
Algoritmusok és adatszerkezetek gyakorlat 0 Keresőfák Fák Fa: összefüggő, körmentes gráf, melyre igaz, hogy: - (Általában) egy gyökér csúcsa van, melynek 0 vagy több részfája van - Pontosan egy út vezet
RészletesebbenDiszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenA szimplex algoritmus
A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás
RészletesebbenGráfRajz fejlesztői dokumentáció
GráfRajz Követelmények: A GráfRajz gráfokat jelenít meg grafikus eszközökkel. A gráfot többféleképpen lehet a programba betölteni. A program a gráfokat egyedi fájl szerkezetben tárolja. A fájlokból betölthetőek
RészletesebbenDiszkrét matematika 2.
Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika
Részletesebben17. előadás: Vektorok a térben
17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett
Részletesebben{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek
1. MAEMAIKAI ÖSSZEFOGLALÓ 1.1. Vektorok közötti műveletek Azok a fizikai mennyiségek, melyeknek nagyságukon kívül irányuk is van, vektoroknak nevezzük. A vektort egyértelműen megadhatjuk a hosszával és
RészletesebbenProgramozás I. - 11. gyakorlat
Programozás I. - 11. gyakorlat Struktúrák, gyakorlás Tar Péter 1 Pannon Egyetem M szaki Informatikai Kar Rendszer- és Számítástudományi Tanszék Utolsó frissítés: November 16, 2009 1 tar@dcs.vein.hu Tar
RészletesebbenPostGIS topológia használata esettanulmány
PostGIS topológia használata esettanulmány Kolesár András Földmérési és Távérzékelési Intézet Térinformatikai Igazgatóság probléma felületek nem illeszkednek egymáshoz pontosan szemre körülbelül rendben
RészletesebbenTÉRINFORMATIKAI MODELLEZÉS TÉRINFORMATIKAI MODELLEZÉS ALAPFOGALMAI A VALÓSÁG MODELLEZÉSE
TÉRINFORMATIKAI MODELLEZÉS ALAPFOGALMAI TÉRINFORMATIKAI MODELLEZÉS A VALÓSÁG MODELLEZÉSE a valóság elemei entitásosztályok: települések utak, folyók domborzat, növényzet az entitás digitális megjelenítése
RészletesebbenAdatszerkezetek II. 1. előadás
Adatszerkezetek II. 1. előadás Gráfok A gráf fogalma: Gráf(P,E): P pontok (csúcsok) és E P P élek halmaza Fogalmak: Irányított gráf : (p 1,p 2 ) E-ből nem következik, hogy (p 2,p 1 ) E Irányítatlan gráf
RészletesebbenDiszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.
RészletesebbenSzámítógépes Grafika mintafeladatok
Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk
Részletesebben3D számítógépes geometria és alakzatrekonstrukció
3D számítógépes geometria és alakzatrekonstrukció 2a. Háromszöghálók http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki
RészletesebbenAdatszerkezetek Tömb, sor, verem. Dr. Iványi Péter
Adatszerkezetek Tömb, sor, verem Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot
RészletesebbenDiszkrét matematika 2.
Diszkrét matematika 2. 2018. október 12. 1. Diszkrét matematika 2. 5. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. október 12. Diszkrét matematika
RészletesebbenKövetelmény a 7. évfolyamon félévkor matematikából
Követelmény a 7. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Elemek halmazba rendezése több szempont alapján. Halmazok ábrázolása. A nyelv logikai elemeinek helyes használata.
RészletesebbenElemi adatszerkezetek
2017/12/16 17:22 1/18 Elemi adatszerkezetek < Programozás Elemi adatszerkezetek Szerző: Sallai András Copyright Sallai András, 2011, 2014 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu
RészletesebbenFRAKTÁLGEOMETRIA Feladatok. Czirbusz Sándor április 16. A feladatok végén zárójelben a feladat pontértéke található.
FRAKTÁLGEOMETRIA Feladatok Czirbusz Sándor 010. április 16. I. rész Feladatok A feladatok végén zárójelben a feladat pontértéke található. 1. Példák fraktálokra 1.1. A Cantor - halmaz 1.1.1. Feladat. Igazoljuk,
RészletesebbenAdatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája
Adatszerkezetek Összetett adattípus Meghatározói: A felvehető értékek halmaza Az értékhalmaz struktúrája Az ábrázolás módja Műveletei Adatszerkezet fogalma Direkt szorzat Minden eleme a T i halmazokból
RészletesebbenElemi Alkalmazások Fejlesztése II.
Elemi Alkalmazások Fejlesztése II. Osztályok közötti kapcsolatok öröklődés asszociáció aggregáció kompozíció 1. Feladat Készítsünk programot, amellyel testek térfogatát határozhatjuk meg, illetve megadhatjuk
RészletesebbenTerületi primitívek: Zárt görbék által határolt területek (pl. kör, ellipszis, poligon) b) Minden belső pont kirajzolásával (kitöltött)
Grafikus primitívek kitöltése Téglalap kitöltése Poligon kitöltése Kör, ellipszis kitöltése Kitöltés mintával Grafikus primitívek kitöltése Területi primitívek: Zárt görbék által határolt területek (pl.
RészletesebbenIonogram releváns területeinek meghatározása és elemzésének automatikus megvalósítása
Ionogram releváns területeinek meghatározása és elemzésének automatikus megvalósítása Előadó: Pieler Gergely, MSc hallgató, Nyugat-magyarországi Egyetem Konzulens: Bencsik Gergely, PhD hallgató, Nyugat-magyarországi
RészletesebbenGráfok 1. Tárolási módok, bejárások. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor
Gráfok 1. Tárolási módok, bejárások előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Gráfok 1. Tárolási módok Szélességi
RészletesebbenDiszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
RészletesebbenSíkbarajzolható gráfok Április 26.
Síkbarajzolható gráfok 2017. Április 26. Síkgráfok Egy gráf síkgráf=síkba rajzolható gráf, ha lerajzolható úgy a síkba, hogy élei csak a szögpontokban metszik egymást. Ha egy gráf lerajzolható a síkba,
RészletesebbenGráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma
Készítette: Laczik Sándor János Gráfelmélet I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Definíció: a G=(V,E) párt egyszerű gráfnak nevezzük, (V elemeit a gráf csúcsainak/pontjainak,e elemeit
RészletesebbenMoussong Gábor. A Poincaré-sejtés
Moussong Gábor Poincaré-sejtés címmel 2006. szeptember 19-én elhangzott előadása alapján az összefoglalót készítette Balambér Dávid, Bohus Péter, Hraskó ndrás és Moussong Gábor 1. Poincaré-sejtés aktualitása
RészletesebbenDiszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenHalmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy
1. előadás: Halmazelmélet Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy hozzátartozik-e,
RészletesebbenGörbe- és felületmodellezés. Szplájnok Felületmodellezés
Görbe- és felületmodellezés Szplájnok Felületmodellezés Spline (szplájn) Spline: Szakaszosan, parametrikus polinomokkal leírt görbe A spline nevét arról a rugalmasan hajlítható vonalzóról kapta, melyet
RészletesebbenHAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör. Forrás: (
HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör Teljes gráf: Páros gráf, teljes páros gráf és Hamilton kör/út Hamilton kör: Minden csúcson áthaladó kör Hamilton kör Forrás: (http://www.math.klte.hur/~tujanyi/komb_j/k_win_doc/g0603.doc
RészletesebbenDiszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Részletesebben