Adatszerkezetek 1. Dr. Iványi Péter

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Adatszerkezetek 1. Dr. Iványi Péter"

Átírás

1 Adatszerkezetek 1. Dr. Iványi Péter 1

2 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2

3 Adat típusa Az adatot kódoltan tároljuk Az adat típusa számunkra azt jelenti, hogy mi is az amit tárolunk. Ez csak nekünk bír jelentőséggel, a számítógép ezt másképp értelmezi. 3

4 Adat ábrázolás Ugyanakkor az adat típusa a számítógép számára is hordoz fontos információt A fordító programnak tudnia kell, hogy az adatnak mekkora helyet kell lefoglalni a memóriában és hogyan kell kódolni. Ez az adat belső ábrázolása. 4

5 Adat ábrázolás Az emberek számára a belső ábrázolás érthetetlen A ki- és beviteli utasítások számára más ábrázolásra van szükséges, amely az ember számára is olvasható és írható Ez az adat külső ábrázolása. 5

6 Adat A típus azt is meghatározza a fordító számára hogy milyen műveleteket lehet végezni az adatokon. A fordító program nem dönthet a típusról ezért a programban deklarálnunk kell az adatok típusát. 6

7 Adat Deklarálnunk kell a programban használt: Változók Függvények típusát A programba közvetlenül beírt adat (konstans) típusát nem kell deklarálni, mert a fordító program az adat alakjáról felismeri a típusát. 7

8 Változók még egyszer A változó az adat tárolására alkalmas memória hely, melynek van: Azonosítója, neve Értéke Típusa 8

9 Számábrázolás Egyszerű adatok 9

10 Mutatók A memóriában tárolt adatoknak mindig van címük. Azokat a változókat, melyek más adatok címét tartalmazzák mutatónak vagy pointer-nek nevezzük. adat1 adat2 adat3 memória címe mutató1 10

11 Adatszerkezetek Egyszerű adatszerkezetek összeépítésével lehet létrehozni Általában beépített adatszerkezet Tömb Halmaz Rekord Implementált adatszerkezetek Sor (FIFO) Verem Lista Fa Gráf 11

12 Tömb Azonos típusú adatokat tárolunk egymás után Tömböt alkotó adatok az elemek Az elemekre a tömb indexével hivatkozunk Deklaráció Tömb elemeinek típusa Tömb mérete 12

13 Tömb Ha a tömbnek egy indexe van, akkor egy dimenziós tömb: vektor Ha a tömbnek két indexe van, akkor két dimenziós tömb: mátrix Index egész számok sorozata nullától vagy egytől Tárolás sorfolytonosan, elemeket egymás után Több dimenziós tömböket leképezzük egy dimenziós tömbre 13

14 Tömb tárolás a A(1,1) A(1,2) A(1,3) b c A(2,1) A(2,2) A(2,3) A(3,1) A(3,2) A(3,3) a b c 14

15 Tömbök feldolgozása A tömbök feldolgozása szorosan összefügg a ciklusokkal Tömb minden egyes elemét feldogozzuk Számláló ciklus Tömb elemein valamilyen tulajdonság meglétét vizsgáljuk Elől- vagy hátultesztelő ciklus 15

16 Halmaz Halmaz elemei ugyanolyan típusúak Egy elem csak egyszer fordulhat elő Nem minden programozási nyelvben van ilyen típus 16

17 Rekord Elemei különböző típusúak Egy rekord komponenseit mezőnek nevezzük Lehet fix és változó méretű Változó méret esetén Egy mező értékétől függően a többi mező típusa vagy mérete is változhat Rekordokból is lehet tömböket definiálni 17

18 Jellemzők Az eddigi adatszerkezetek a programozási nyelvekben általában megtalálhatók. A további adatszerkezeteket a programozónak kell létrehoznia. További adatszerkezetek alapja az egy-dimenziós tömb. 18

19 Sor Az egymás után beírt adatokat a beírás sorrendjében vehetjük ki. FIFO First In First Out Például: Két nem egyforma sebességgel működő rendszer közötti adatátvitelt akarunk biztosítani, vagy Adatok átadása nem folyamatos, pl. lökésszerű 19

20 Két alap utasítás van: Sor IN: egy elemet betesz a sorba Ha megtelt a sor hibaüzenetet kell adni OUT: kiveszi a sor következő elemét Ha a sor üres akkor is hibaüzenet, vagy Olyan adatot adunk vissza ami nem fordulhat elő egyébként 20

21 Megvalósítás 1. Egy dimenziós tömb: tomb Egy mutató, mely megmutatja, hogy hol van a következő üres elem a tömbben: mutato A mutató 0-től indul n-1 ig (mint a C nyelvben) 21

22 Megvalósítás, IN függvény in be: adat ha mutato = n akkor ki: sor megtelt különben tomb[mutato] = adat mutato = mutato + 1 ki: érvényes elágazás vége függvény vége O(1) 22

23 Megvalósítás, OUT függvény out O(n) ha mutató = 0 akkor ki: üres sor különben ki: tomb[0] /* első elem kivétele */ ciklus i = 2 mutato tomb[i-1] = tomb[i] ciklus vége mutato = mutato - 1 elágazás vége függvény vége A ciklus lassítja a kivételt, a megvalósítás hátránya!!! 23

24 Működési példa 1. mutato Inicializálás mutato IN(5) 24

25 Működési példa 2. mutato IN(6) mutato OUT 5 25

26 Megvalósítás 2. Egy dimenziós tömb: tomb Két mutató A mutató 0-tól indul n-1 ig (mint a C nyelvben) psorba: ahova a következő elemet be kell tenni psorbol: ahonnan a következő elemet ki kell venni Ha bármelyik mutató túlmutat a tömb utolsó elemén akkor a mutatót a tömb első elemére irányítjuk. 26

27 Megvalósítás 2. Normális esetben a két mutató nem mutathat ugyanoda Mikor üres a sor? Ha a psorba egyenlő a psorbol mutatóval. Mikor van tele egy sor? Ha a a psorba utoléri a psorbol mutatót. Ugyanaz nem jelentheti mindkét eseményt!!! 27

28 Megvalósítás 2. Tele sor jele ha: psorbol = psorba+1 Beírás utoléri a kivételt psorba... Üres sor jele ha: psorba = psorbol+1 Kivétel utoléri a beírást psorbol psorbol... psorba 28

29 Megvalósítás, IN psorba = 1 psorbol = 0 O(1) függvény in be: adat ha (psorba+1) = psorbol akkor ki: tele van a sor, érvénytelen különben tomb[psorba] = adat psorba = psorba + 1 psorba ki: érvényes elágazás vége függvény vége psorbol... 29

30 Megvalósítás, OUT függvény out ha (psorbol+1) = psorba akkor ki: üres sor különben psorbol = psorbol + 1 ki: tomb[psorbol] elágazás vége függvény vége O(1) psorba 1 psorbol... 30

31 Végtelenítjük a sort Megvalósítás 2. Ha bármelyik mutató túlmutat a tömb utolsó elemén akkor a mutatót a tömb első elemére irányítjuk. Maradék osztást használunk index index mod

32 Megvalósítás, IN psorba = 1 psorbol = 0 függvény in be: adat ha ((psorba+1) mod n) = psorbol akkor ki: tele van a sor, érvénytelen különben tomb[psorba] = adat psorba = (psorba + 1) mod n ki: érvényes elágazás vége függvény vége 32

33 Megvalósítás, OUT függvény out ha ((psorbol+1) mod n) = psorba akkor ki: üres sor különben psorbol = (psorbol + 1) mod n ki: tomb[psorbol] elágazás vége függvény vége 33

34 Működési példa 1. psorba Inicializálás psorbol psorba 1 IN(1) psorbol 34

35 Működési példa 2. psorba 1 OUT 1 psorbol psorba 1 OUT üres sor psorbol 35

36 Működési példa psorba IN(4) psorbol psorba 1 4 psorbol OUT 4 36

37 Működési példa 4. 0 psorba IN(3) psorba = mod 4 = 4 mod 4 = 0 psorbol psorba IN(5) psorbol 37

38 Működési példa 5. 0 psorba psorbol IN(6) a sor tele 38

39 Verem Az utoljára bevitt adatot lehet először kivenni LIFO Last In First Out Stack nek is szokták nevezni Sok helyen használják Operációs rendszerek Függvények hívása Verem (véges) és verem mutató (stack pointer) 39

40 PUSH Elem betétele Ha tele a verem, hiba POP Elem kivétele Ha üres a verem, hiba Verem műveletek 40

41 Megvalósítás, PUSH függvény PUSH be:adat ha verem_mutato = n akkor ki: tele van a verem különben verem[verem_mutato] = adat verem_mutato = verem_mutato + 1 elágazás vége függvény vége 41

42 Megvalósítás, POP függvény POP ha verem_mutato = 0 akkor ki: üres a verem különben verem_mutato = verem_mutato - 1 ki: verem[verem_mutato] elágazás vége függvény vége 42

43 Működési példa n = 4 verem_mutato = 0 Inicializálás 3 PUSH(112) verem_mutato = 1 43

44 Működési példa verem_mutato = 2 PUSH(33) verem_mutato = 1 POP 33 44

45 Működési példa 3. 3 POP verem_mutato = 0 3 POP hiba verem_mutato = 0 45

46 Postscript Programozási nyelv, Adobe Systems Inc. PDF elődje Stack alapú Szótárakat (dictionary) használ Interpreter alapú Postscript interpreter értelmezi a programot 46

47 Post-fix jelölés Postscript műveletek Matematikai jelöles 6 33 add 6+33 Az operandus PUSH-t jelent A művelet kiveszi a stack-ből az értékeket, majd az eredményt visszateszi a stack-re 6 33 add

48 6+ 3 / 8 Post-fix jelöléssel: 3 8 div 6 add 3 8 div 6 add

49 6+ 3 / 8 Post-fix jelöléssel: div add div add

50 8 7 * 3 Két módszerrel: mul sub 7 3 mul 8 exch sub 7 3 mul 8 exch sub

51 Példa program %!PS-Adobe-2.0 /inch {72 mul} def /wedge { newpath 0 0 moveto 1 0 translate 15 rotate 0 15 sin translate sin arc closepath } def gsave 4.25 inch 4.25 inch translate 1.75 inch 1.75 inch scale 0.02 setlinewidth { 12 div setgray gsave wedge gsave fill grestore 0 setgray stroke grestore 30 rotate } for grestore showpage 51

52 Példa program eredménye 52

53 Láncolt lista Akkor használjuk ha a már tárolt adatok közé kell beszúrni új adatokat vagy A meglevő adatok közül kell törölni Egy lista elem két mezőből áll: A tárolandó adat Egy mutató Mindig van egy lista fej List első elemére mutat Ha nincs elem, speciális elem: NIL 53

54 Egyirányú láncolt lista A listában szereplő elemek láncot alkotnak Lista utolsó eleme: a mutató NIL Példa lista: listafej Üres lista: listafej NIL 1.elem 2.elem 3.elem NIL 54

55 Egyirányú láncolt lista A lista elemeit csak úgy érhetjük el, hogy a fejtől indulva végigmegyünk a lista elemein és minden elem feldolgozása után a következő elemre ugrunk. O(n) komplexitás Egy elem egy rekord: adat mező: maga a tárolandó adat kovetkezo mező: a következő elem a listában 55

56 Lista bejárása, kiírása függvény lista_kiírása i = listafej ciklus i kovetkezo <> NIL ki: i adat i = i kovetkezo ciklus vége függvény vége : rekordbeli mezőre hivatkozás 56

57 Elem keresése függvény keresés be: elem i = listafej ciklus (i <> NIL ÉS i adat <> elem) i = i kovetkezo ciklus vége ha i <> NIL akkor ki: i különben ki: nem létezik a listában elágazás vége függvény vége O(n) 57

58 Elem beillesztése 1. függvény elem_beilleszt be:elem elem kovetkezo = listafej kovetkezo listafej kovetkezo = elem függvény vége elem listafej 2.elem 1.elem 3.elem NIL 58

59 Elem beillesztése 2. elem kovetkezo = listafej kovetkezo elem listafej 2.elem 1.elem 3.elem NIL 59

60 Elem beillesztése 3. listafej kovetkezo = elem elem listafej 2.elem 1.elem 3.elem NIL 60

61 Elem törlése 1. függvény elem_torles be: elem elozo = NIL i = listafej ciklus (i <> NIL ÉS i adat <> elem) elozo = i i = i kovetkezo ciklus vége ha i <> NIL akkor elozo kovetkezo = i kovetkezo elágazás vége függvény vége O(n) 61

62 Elem törlése 2. listafej elozo elem = 2. elem 1.elem i 2.elem 3.elem NIL 62

63 Elem törlése 3. elozo kovetkezo = i kovetkezo listafej elozo 1.elem i Mi lesz ezzel? 2.elem 3.elem NIL 63

64 Lista kezelés Minden listakezelő rendszerben két listát tartunk 1. A foglalt elemek listája 2. A szabad elemek listája Egy elem törlése azt jelenti, hogy a szabad listába tesszük át az elemet!!! 64

65 Lista kezelés 1. Szabad lista Új lista F F N N 65

66 Lista kezelés, beillesztés 1. Szabad lista F Új lista F N N 66

67 Lista kezelés, beillesztés 1., másképp Szabad lista F Új lista F N N 67

68 Lista kezelés, beillesztés 2. Szabad lista F Új lista F N N 68

69 Lista kezelés, beillesztés 3. Szabad lista F Új lista F N N 69

70 Lista kezelés, törlés 1. Szabad lista F Új lista F N N 70

71 Kétirányú lista listafej adat 1 adat 2 NIL Elejétől vagy végétől is be lehet járni a listát. Egyszerű a beillesztés a lista elejére vagy végére adat 3 NIL 71

72 Felhasznált irodalom Vitéz András: Programozás alapjai, előadás vázlat, Fábián Zoltán: Adatszerkezetek és programozási tételek,

Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter

Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter Adatszerkezetek Tömb, sor, verem Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot

Részletesebben

Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek

Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek Tömb Ugyanolyan típusú elemeket tárol A mérete előre definiált kell legyen és nem lehet megváltoztatni futás során Legyen n a tömb mérete. Ekkor:

Részletesebben

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája Adatszerkezetek Összetett adattípus Meghatározói: A felvehető értékek halmaza Az értékhalmaz struktúrája Az ábrázolás módja Műveletei Adatszerkezet fogalma Direkt szorzat Minden eleme a T i halmazokból

Részletesebben

Információs Technológia

Információs Technológia Információs Technológia Sor és verem adatszerkezet Fodor Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2009. november 19. Alapötlet

Részletesebben

Programozás alapjai II. (7. ea) C++ Speciális adatszerkezetek. Tömbök. Kiegészítő anyag: speciális adatszerkezetek

Programozás alapjai II. (7. ea) C++ Speciális adatszerkezetek. Tömbök. Kiegészítő anyag: speciális adatszerkezetek Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1

Részletesebben

Speciális adatszerkezetek. Programozás alapjai II. (8. ea) C++ Tömbök. Tömbök/2. N dimenziós tömb. Nagyméretű ritka tömbök

Speciális adatszerkezetek. Programozás alapjai II. (8. ea) C++ Tömbök. Tömbök/2. N dimenziós tömb. Nagyméretű ritka tömbök Programozás alapjai II. (8. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT Speciális adatszerkezetek A helyes adatábrázolás választása, a helyes adatszerkezet

Részletesebben

5. SOR. Üres: S Sorba: S E S Sorból: S S E Első: S E

5. SOR. Üres: S Sorba: S E S Sorból: S S E Első: S E 5. SOR A sor adatszerkezet is ismerős a mindennapokból, például a várakozási sornak számos előfordulásával van dolgunk, akár emberekről akár tárgyakról (pl. munkadarabokról) legyen szó. A sor adattípus

Részletesebben

Programozás alapjai II. (7. ea) C++

Programozás alapjai II. (7. ea) C++ Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1

Részletesebben

Egyirányban láncolt lista

Egyirányban láncolt lista Egyirányban láncolt lista A tárhely (listaelem) az adatelem értékén kívül egy mutatót tartalmaz, amely a következő listaelem címét tartalmazza. A láncolt lista első elemének címét egy, a láncszerkezeten

Részletesebben

Algoritmusok és adatszerkezetek I. 1. előadás

Algoritmusok és adatszerkezetek I. 1. előadás Algoritmusok és adatszerkezetek I 1 előadás Típusok osztályozása Összetettség (strukturáltság) szempontjából: elemi (vagy skalár, vagy strukturálatlan) összetett (más szóval strukturált) Strukturálási

Részletesebben

Láncolt listák. Egyszerű, rendezett és speciális láncolt listák. Programozás II. előadás. Szénási Sándor

Láncolt listák. Egyszerű, rendezett és speciális láncolt listák. Programozás II. előadás.  Szénási Sándor Láncolt listák Egyszerű, rendezett és speciális láncolt listák előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Láncolt

Részletesebben

Elemi adatszerkezetek

Elemi adatszerkezetek 2017/12/16 17:22 1/18 Elemi adatszerkezetek < Programozás Elemi adatszerkezetek Szerző: Sallai András Copyright Sallai András, 2011, 2014 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu

Részletesebben

Verem Verem mutató 01

Verem Verem mutató 01 A számítástechnikában a verem (stack) egy speciális adatszerkezet, amiben csak kétféle művelet van. A berak (push) egy elemet a verembe rak, a kivesz (pop) egy elemet elvesz a verem tetejéről. Mindig az

Részletesebben

Láncolt listák Témakörök. Lista alapfogalmak

Láncolt listák Témakörök. Lista alapfogalmak Láncolt listák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Lista alapfogalmai Egyirányú egyszerű láncolt lista Egyirányú rendezett láncolt lista Speciális láncolt listák Témakörök

Részletesebben

Láncolt Listák. Adat1 Adat2 Adat3 ø. Adat1 Adat2 ø Adat3

Láncolt Listák. Adat1 Adat2 Adat3 ø. Adat1 Adat2 ø Adat3 Láncolt Listák Adatszerkezetek Adatszerkezet: Az adatelemek egy olyan véges halmaza, amelyben az adatelemek között szerkezeti összefüggések vannak Megvalósítások: - Tömb, Láncolt lista, Fa, Kupac, Gráf,

Részletesebben

A programozás alapjai előadás. [<struktúra változó azonosítók>] ; Dinamikus adatszerkezetek:

A programozás alapjai előadás. [<struktúra változó azonosítók>] ; Dinamikus adatszerkezetek: A programozás alapjai 1 Dinamikus adatszerkezetek:. előadás Híradástechnikai Tanszék Dinamikus adatszerkezetek: Adott építőelemekből, adott szabályok szerint felépített, de nem rögzített méretű adatszerkezetek.

Részletesebben

Miről lesz ma szó? A PROGAMOZÁS ALAPJAI 1. Bemutatkozás. Bemutatkozás. Bemutatkozás. Bemutatkozás. 1. előadás. A tárgy címe: A programozás alapjai 1

Miről lesz ma szó? A PROGAMOZÁS ALAPJAI 1. Bemutatkozás. Bemutatkozás. Bemutatkozás. Bemutatkozás. 1. előadás. A tárgy címe: A programozás alapjai 1 Miről lesz ma szó? A PROGAMOZÁS ALAPJAI 1 Ajánlott irodalom A programozás fogalma Vitéz András egyetemi adjunktus BME Híradástechnikai Tanszék vitez@hit.bme.hu 2012. február 7. A tárgy címe: A tárgy adminisztratív

Részletesebben

Rekurzió. Dr. Iványi Péter

Rekurzió. Dr. Iványi Péter Rekurzió Dr. Iványi Péter 1 Függvényhívás void f3(int a3) { printf( %d,a3); } void f2(int a2) { f3(a2); a2 = (a2+1); } void f1() { int a1 = 1; int b1; b1 = f2(a1); } 2 Függvényhívás void f3(int a3) { printf(

Részletesebben

7. fejezet: Mutatók és tömbök

7. fejezet: Mutatók és tömbök 7. fejezet: Mutatók és tömbök Minden komolyabb programozási nyelvben vannak tömbök, amelyek gondos kezekben komoly fegyvert jelenthetnek. Először is tanuljunk meg tömböt deklarálni! //Tömbök használata

Részletesebben

Láncolt listák. PPT 2007/2008 tavasz.

Láncolt listák. PPT 2007/2008 tavasz. Láncolt listák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Láncolt listák elvi felépítése Egyirányú egyszerű láncolt lista Egyirányú rendezett láncolt lista Láncolt

Részletesebben

8. gyakorlat Pointerek, dinamikus memóriakezelés

8. gyakorlat Pointerek, dinamikus memóriakezelés 8. gyakorlat Pointerek, dinamikus memóriakezelés Házi ellenőrzés Egy számtani sorozat első két tagja A1 és A2. Számítsa ki a sorozat N- dik tagját! (f0051) Egy mértani sorozat első két tagja A1 és A2.

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Hash tábla A bináris fáknál O(log n) a legjobb eset a keresésre. Ha valamilyen közvetlen címzést használunk, akkor akár O(1) is elérhető. A hash tábla a tömb általánosításaként

Részletesebben

A programozás alapjai előadás. Amiről szólesz: A tárgy címe: A programozás alapjai

A programozás alapjai előadás. Amiről szólesz: A tárgy címe: A programozás alapjai A programozás alapjai 1 1. előadás Híradástechnikai Tanszék Amiről szólesz: A tárgy címe: A programozás alapjai A számítógép részegységei, alacsony- és magasszintű programnyelvek, az imperatív programozási

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek 2. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 15. Sergyán (OE NIK) AAO 02 2011. szeptember 15.

Részletesebben

Adatszerkezetek és algoritmusok

Adatszerkezetek és algoritmusok 2009. november 13. Ismétlés El z órai anyagok áttekintése Ismétlés Specikáció Típusok, kifejezések, m veletek, adatok ábrázolása, típusabsztakció Vezérlési szerkezetek Függvények, paraméterátadás, rekurziók

Részletesebben

Struktúra nélküli adatszerkezetek

Struktúra nélküli adatszerkezetek Struktúra nélküli adatszerkezetek Homogén adatszerkezetek (minden adatelem azonos típusú) osztályozása Struktúra nélküli (Nincs kapcsolat az adatelemek között.) Halmaz Multihalmaz Asszociatív 20:24 1 A

Részletesebben

C programozási nyelv Pointerek, tömbök, pointer aritmetika

C programozási nyelv Pointerek, tömbök, pointer aritmetika C programozási nyelv Pointerek, tömbök, pointer aritmetika Dr. Schuster György 2011. június 16. C programozási nyelv Pointerek, tömbök, pointer aritmetika 2011. június 16. 1 / 15 Pointerek (mutatók) Pointerek

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

Adatszerkezetek 1. előadás

Adatszerkezetek 1. előadás Adatszerkezetek 1. előadás Irodalom: Lipschutz: Adatszerkezetek Morvay, Sebők: Számítógépes adatkezelés Cormen, Leiserson, Rives, Stein: Új algoritmusok http://it.inf.unideb.hu/~halasz http://it.inf.unideb.hu/adatszerk

Részletesebben

Adatszerkezetek 7a. Dr. IványiPéter

Adatszerkezetek 7a. Dr. IványiPéter Adatszerkezetek 7a. Dr. IványiPéter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér () Nincsennek hurkok!!! 2 Bináris fák Azokat a

Részletesebben

A verem (stack) A verem egy olyan struktúra, aminek a tetejéről kivehetünk egy (vagy sorban több) elemet. A verem felhasználása

A verem (stack) A verem egy olyan struktúra, aminek a tetejéről kivehetünk egy (vagy sorban több) elemet. A verem felhasználása A verem (stack) A verem egy olyan struktúra, aminek a tetejére betehetünk egy új (vagy sorban több) elemet a tetejéről kivehetünk egy (vagy sorban több) elemet A verem felhasználása Függvény visszatérési

Részletesebben

Adatszerkezetek Listák. Dr. Iványi Péter

Adatszerkezetek Listák. Dr. Iványi Péter Adatszerkezetek Listák Dr. Iványi Péter 1 Láncolt lista Akkor használjuk ha a már tárolt adatok közé kell beszúrni új adatokat vagy A meglevő adatok közül kell törölni Egy lista elem két mezőből áll: A

Részletesebben

Programozási nyelvek Java

Programozási nyelvek Java statikus programszerkezet Programozási nyelvek Java Kozsik Tamás előadása alapján Készítette: Nagy Krisztián 2. előadás csomag könyvtárak könyvtárak forrásfájlok bájtkódok (.java) (.class) primitív osztály

Részletesebben

Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával)

Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával) Adatszerkezetek I. 7. előadás (Horváth Gyula anyagai felhasználásával) Bináris fa A fa (bináris fa) rekurzív adatszerkezet: BinFa:= Fa := ÜresFa Rekord(Elem,BinFa,BinFa) ÜresFa Rekord(Elem,Fák) 2/37 Bináris

Részletesebben

ADATSZERKEZETEK (VEREM, SOR)

ADATSZERKEZETEK (VEREM, SOR) ADATSZERKEZETEK (VEREM, SOR) 1. ADATSZERKEZET FOGALMA Az adatszerkezet egymással kapcsolatban álló adatok összessége, amelyen meghatározott, az adatszerkezetre jellemző műveletek végezhetők el. Az adatok

Részletesebben

Adatszerkezetek Bevezetés Adatszerkezet Adatszerkezet típusok Műveletek Bonyolultság

Adatszerkezetek Bevezetés Adatszerkezet Adatszerkezet típusok Műveletek Bonyolultság datszerkezetek Bevezetés datszerkezet adatok rendszerének matematikai, logikai modellje elég jó ahhoz, hogy tükrözze a valós kapcsolatokat elég egyszerű a kezeléshez datszerkezet típusok Tömbök lineáris

Részletesebben

Miről lesz ma szó? A PROGAMOZÁS ALAPJAI 1. Dinamikus adatszerkezetek. Dinamikus adatszerkezetek. Önhivatkozó struktúrák. Önhivatkozó struktúrák

Miről lesz ma szó? A PROGAMOZÁS ALAPJAI 1. Dinamikus adatszerkezetek. Dinamikus adatszerkezetek. Önhivatkozó struktúrák. Önhivatkozó struktúrák 2012. március 27. A PROGAMOZÁS ALAPJAI 1 Vitéz András egyetemi adjunktus BME Híradástechnikai Tanszék vitez@hit.bme.hu Miről lesz ma szó? Dinamikus adatszerkezetek Önhivatkozó struktúra keresés, beszúrás,

Részletesebben

.Net adatstruktúrák. Készítette: Major Péter

.Net adatstruktúrák. Készítette: Major Péter .Net adatstruktúrák Készítette: Major Péter Adatstruktúrák általában A.Net-ben számos nyelvvel ellentétben nem kell bajlódnunk a változó hosszúságú tömbök, listák, sorok stb. implementálásával, mert ezek

Részletesebben

21. Adatszerkezetek Az adattípus absztrakciós szintjei Absztrakt adattípus (ADT) Absztrakt adatszerkezet (ADS) Egyszerű adattípusok Tömbök

21. Adatszerkezetek Az adattípus absztrakciós szintjei Absztrakt adattípus (ADT) Absztrakt adatszerkezet (ADS) Egyszerű adattípusok Tömbök 2. Adatszerkezetek Az adattípus absztrakciós szintjei http://people.inf.elte.hu/fekete/docs_/adt_ads.pdf Absztrakt adattípus (ADT) Az adattípust úgy specifikáljuk, hogy szerkezetére, reprezentálására,

Részletesebben

Adatszerkezetek II. 1. előadás

Adatszerkezetek II. 1. előadás Adatszerkezetek II. 1. előadás Gráfok A gráf fogalma: Gráf(P,E): P pontok (csúcsok) és E P P élek halmaza Fogalmak: Irányított gráf : (p 1,p 2 ) E-ből nem következik, hogy (p 2,p 1 ) E Irányítatlan gráf

Részletesebben

Assembly Matematika Assembly-ben. Iványi Péter

Assembly Matematika Assembly-ben. Iványi Péter Assembly Matematika Assembly-ben Iványi Péter Speciális kódolás BCD aritmetika Minden számjegy egy nibble-ben (4 bit) tárolunk Dec 0 1 2 3 4 BCD 0000 0001 0010 0011 0100 Dec 5 6 7 8 9 BCD 0101 0110 0111

Részletesebben

A lista adatszerkezet A lista elemek egymásutániságát jelenti. Fajtái: statikus, dinamikus lista.

A lista adatszerkezet A lista elemek egymásutániságát jelenti. Fajtái: statikus, dinamikus lista. Lista adatszerkezet A lista adatszerkezet jellemzői 1 Különböző problémák számítógépes megoldása során gyakran van szükség olyan adatszerkezetre, amely nagyszámú, azonos típusú elem tárolására alkalmas,

Részletesebben

Buborékrendezés: Hanoi Tornyai: Asszimptótikus fv.ek: Láncolt ábrázolás: For ciklussal:

Buborékrendezés: Hanoi Tornyai: Asszimptótikus fv.ek: Láncolt ábrázolás: For ciklussal: Buborékrendezés: For ciklussal: Hanoi Tornyai: Asszimptótikus fv.ek: Láncolt ábr.: ha p egy mutató típusú változó akkor p^ az általa mutatott adatelem, p^.adat;p^.mut. A semmibe mutató ponter a NIL.Szabad

Részletesebben

end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t..

end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t.. A Név: l 2014.04.09 Neptun kód: Gyakorlat vezető: HG BP MN l 1. Adott egy (12 nem nulla értékû elemmel rendelkezõ) 6x7 méretû ritka mátrix hiányos 4+2 soros reprezentációja. SOR: 1 1 2 2 2 3 3 4 4 5 6

Részletesebben

Amortizációs költségelemzés

Amortizációs költségelemzés Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük

Részletesebben

C++ programozási nyelv

C++ programozási nyelv C++ programozási nyelv Gyakorlat - 13. hét Nyugat-Magyarországi Egyetem Faipari Mérnöki Kar Informatikai Intézet Soós Sándor 2004. december A C++ programozási nyelv Soós Sándor 1/10 Tartalomjegyzék Objektumok

Részletesebben

Bevezetés a Programozásba II 12. előadás. Adatszerkezetek alkalmazása (Standard Template Library)

Bevezetés a Programozásba II 12. előadás. Adatszerkezetek alkalmazása (Standard Template Library) Pázmány Péter Katolikus Egyetem Információs Technológiai és Bionikai Kar Bevezetés a Programozásba II 12. előadás (Standard Template Library) 2014.05.19. Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto

Részletesebben

Java II. I A Java programozási nyelv alapelemei

Java II. I A Java programozási nyelv alapelemei Java2 / 1 Java II. I A Java programozási nyelv alapelemei Miskolci Egyetem Általános Informatikai Tanszék Utolsó módosítás: 2009. 02. 09. Java II.: Alapelemek JAVA2 / 1 A Java formalizmusa A C, illetve

Részletesebben

Érdekes informatika feladatok

Érdekes informatika feladatok A keres,kkel és adatbázissal ellátott lengyel honlap számos díjat kapott: Spirit of Delphi '98, Delphi Community Award, Poland on the Internet, Golden Bagel Award stb. Az itt megtalálható komponenseket

Részletesebben

Programozás alapjai C nyelv 8. gyakorlat. Mutatók és címek (ism.) Indirekció (ism)

Programozás alapjai C nyelv 8. gyakorlat. Mutatók és címek (ism.) Indirekció (ism) Programozás alapjai C nyelv 8. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.11.07. -1- Mutatók és címek (ism.) Minden változó és függvény

Részletesebben

Programozás I. - 11. gyakorlat

Programozás I. - 11. gyakorlat Programozás I. - 11. gyakorlat Struktúrák, gyakorlás Tar Péter 1 Pannon Egyetem M szaki Informatikai Kar Rendszer- és Számítástudományi Tanszék Utolsó frissítés: November 16, 2009 1 tar@dcs.vein.hu Tar

Részletesebben

Java II. I A Java programozási nyelv alapelemei

Java II. I A Java programozási nyelv alapelemei Java II. I A Java programozási nyelv alapelemei Miskolci Egyetem Általános Informatikai Tanszék Utolsó módosítás: 2008. 02. 19. Java II.: Alapelemek JAVA2 / 1 A Java formalizmusa A C, illetve az annak

Részletesebben

Mutatók és címek (ism.) Programozás alapjai C nyelv 8. gyakorlat. Indirekció (ism) Néhány dolog érthetőbb (ism.) Változók a memóriában

Mutatók és címek (ism.) Programozás alapjai C nyelv 8. gyakorlat. Indirekció (ism) Néhány dolog érthetőbb (ism.) Változók a memóriában Programozás alapjai C nyelv 8. gyakorlat Szeberényi mre BME T Programozás alapjai. (C nyelv, gyakorlat) BME-T Sz.. 2005.11.07. -1- Mutatók és címek (ism.) Minden változó és függvény

Részletesebben

Bevezetés a programozásba. 5. Előadás: Tömbök

Bevezetés a programozásba. 5. Előadás: Tömbök Bevezetés a programozásba 5. Előadás: Tömbök ISMÉTLÉS Specifikáció Előfeltétel: milyen körülmények között követelünk helyes működést Utófeltétel: mit várunk a kimenettől, mi az összefüggés a kimenet és

Részletesebben

Programozás alapjai 6. előadás. Wagner György Általános Informatikai Tanszék

Programozás alapjai 6. előadás. Wagner György Általános Informatikai Tanszék Programozás alapjai 6. előadás Wagner György Általános Informatikai Tanszék Record A valós életben a nyilvántartásra kerülő adatok nem azonos típusúak. Pl.: Név Cím Telefon GySz Fiz Kis Béla Miskolc Török

Részletesebben

1. Template (sablon) 1.1. Függvénysablon Függvénysablon példányosítás Osztálysablon

1. Template (sablon) 1.1. Függvénysablon Függvénysablon példányosítás Osztálysablon 1. Template (sablon) 1.1. Függvénysablon Maximum függvény megvalósítása függvénynév túlterheléssel. i n l i n e f l o a t Max ( f l o a t a, f l o a t b ) { return a>b? a : b ; i n l i n e double Max (

Részletesebben

2018, Diszkrét matematika

2018, Diszkrét matematika Diszkrét matematika 3. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: természetes

Részletesebben

Adatszerkezetek I. 8. előadás. (Horváth Gyula anyagai felhasználásával)

Adatszerkezetek I. 8. előadás. (Horváth Gyula anyagai felhasználásával) Adatszerkezetek I. 8. előadás (Horváth Gyula anyagai felhasználásával) Kereső- és rendezőfák Közös tulajdonságok: A gyökérelem (vagy kulcsértéke) nagyobb vagy egyenlő minden tőle balra levő elemnél. A

Részletesebben

Web-programozó Web-programozó

Web-programozó Web-programozó Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Algoritmusok és adatszerkezetek I. 4. előadás

Algoritmusok és adatszerkezetek I. 4. előadás Algoritmusok és adatszerkezetek I. 4. előadás A lista olyan sorozat, amelyben műveleteket egy kiválasztott, az ún. aktuális elemmel lehet végezni. A lista rendelkezik az alábbi műveletekkel: Üres: Lista

Részletesebben

Programozas 1. Strukturak, mutatok

Programozas 1. Strukturak, mutatok Programozas 1 Strukturak, mutatok Strukturak Tömb: több egyforma típusú változó együttese Struktúra: több különböző típusú de logikailag egybetartozó változó együttese, amelyet az egyszerű kezelhetőség

Részletesebben

22. GRÁFOK ÁBRÁZOLÁSA

22. GRÁFOK ÁBRÁZOLÁSA 22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is

Részletesebben

Gráfok 1. Tárolási módok, bejárások. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor

Gráfok 1. Tárolási módok, bejárások. Szoftvertervezés és -fejlesztés II. előadás.   Szénási Sándor Gráfok 1. Tárolási módok, bejárások előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Gráfok 1. Tárolási módok Szélességi

Részletesebben

A C programozási nyelv III. Pointerek és tömbök.

A C programozási nyelv III. Pointerek és tömbök. A C programozási nyelv III. Pointerek és tömbök. Miskolci Egyetem Általános Informatikai Tanszék A C programozási nyelv III. (Pointerek, tömbök) CBEV3 / 1 Mutató (pointer) fogalma A mutató olyan változó,

Részletesebben

Adatszerkezetek Hasító táblák. Dr. Iványi Péter

Adatszerkezetek Hasító táblák. Dr. Iványi Péter Adatszerkezetek Hasító táblák Dr. Iványi Péter 1 Hash tábla A bináris fáknál O(log n) a legjobb eset a keresésre. Ha valamilyen közvetlen címzést használunk, akkor akár O(1) is elérhető. A hash tábla a

Részletesebben

17. A 2-3 fák és B-fák. 2-3 fák

17. A 2-3 fák és B-fák. 2-3 fák 17. A 2-3 fák és B-fák 2-3 fák Fontos jelentősége, hogy belőlük fejlődtek ki a B-fák. Def.: Minden belső csúcsnak 2 vagy 3 gyermeke van. A levelek egy szinten helyezkednek el. Az adatrekordok/kulcsok csak

Részletesebben

Adatszerkezetek és algoritmusok

Adatszerkezetek és algoritmusok 2010. január 8. Bevezet El z órák anyagainak áttekintése Ismétlés Adatszerkezetek osztályozása Sor, Verem, Lengyelforma Statikus, tömbös reprezentáció Dinamikus, láncolt reprezentáció Láncolt lista Lassú

Részletesebben

Programozási nyelvek Java

Programozási nyelvek Java -en objektumot tárolunk. Automatikus változók Programozási nyelvek Java Kozsik Tamás előadása alapján Készítette: Nagy Krisztián 3. előadás - végrehajtási vermen (execution stack) jönnek létre - alprogramok

Részletesebben

Algoritmusok és adatszerkezetek I. 3. előadás

Algoritmusok és adatszerkezetek I. 3. előadás Algoritmusok és adatszerkezetek I. 3. előadás Kupac A kupac olyan véges elemsokaság, amely rendelkezik az alábbi tulajdonságokkal: 1. Minden elemnek legfeljebb két rákövetkezője (leszármazottja) lehet.

Részletesebben

Mutatók és mutató-aritmetika C-ben március 19.

Mutatók és mutató-aritmetika C-ben március 19. Mutatók és mutató-aritmetika C-ben 2018 március 19 Memória a Neumann-architektúrában Neumann-architektúra: a memória egységes a címzéshez a természetes számokat használjuk Ugyanabban a memóriában van:

Részletesebben

A C programozási nyelv III. Pointerek és tömbök.

A C programozási nyelv III. Pointerek és tömbök. A C programozási nyelv III. Pointerek és tömbök. Miskolci Egyetem Általános Informatikai Tanszék A C programozási nyelv III. (Pointerek, tömbök) CBEV3 / 1 Mutató (pointer) fogalma A mutató olyan változó,

Részletesebben

Eljárások és függvények

Eljárások és függvények Eljárások és függvények Jegyzet Összeállította: Faludi Anita 2012. Bevezetés Ez a jegyzet elsősorban azoknak a diákoknak készült, akiket tanítok, ezért a jegyzet erőteljesen hiányos. Az olvasó egy percig

Részletesebben

Adatszerkezetek I. 4. előadás

Adatszerkezetek I. 4. előadás Adatszerkezetek I. 4. előadás Kupac A kupac olyan véges elemsokaság, amely rendelkezik az alábbi tulajdonságokkal: 1. Minden elemnek legfeljebb két rákövetkezője (leszármazottja) lehet. Azaz bináris fának

Részletesebben

15. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30.

15. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30. 15. tétel Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30. Edényrendezés Tegyük fel, hogy tudjuk, hogy a bemenő elemek (A[1..n] elemei) egy m elemű U halmazból kerülnek ki, pl. " A[i]-re

Részletesebben

Számítógépek felépítése

Számítógépek felépítése Számítógépek felépítése Emil Vatai 2014-2015 Emil Vatai Számítógépek felépítése 2014-2015 1 / 14 Outline 1 Alap fogalmak Bit, Byte, Word 2 Számítógép részei A processzor részei Processzor architektúrák

Részletesebben

Emlékeztető: a fordítás lépései. Szimbólumtábla-kezelés. Információáramlás. Információáramlás. Információáramlás.

Emlékeztető: a fordítás lépései. Szimbólumtábla-kezelés. Információáramlás. Információáramlás. Információáramlás. Emlékeztető: a fordítás lépései Forrás-kezelő (source handler) Szimbólumtábla-kezelés Fordítóprogramok előadás (A, C, T szakirány) Lexikális elemző (scanner) Szintaktikus elemző (parser) Szemantikus elemző

Részletesebben

Felvételi vizsga mintatételsor Informatika írásbeli vizsga

Felvételi vizsga mintatételsor Informatika írásbeli vizsga BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) Felvételi vizsga mintatételsor Informatika írásbeli vizsga 1. (5p) Egy x biten tárolt egész adattípus (x szigorúan pozitív

Részletesebben

Apple Swift kurzus 3. gyakorlat

Apple Swift kurzus 3. gyakorlat Készítette: Jánki Zoltán Richárd Dátum: 2016.09.20. Apple Swift kurzus 3. gyakorlat Kollekciók: Tömb: - let array = [] - üres konstans tömb - var array = [] - üres változó tömb - var array = [String]()

Részletesebben

INFORMATIKA javítókulcs 2016

INFORMATIKA javítókulcs 2016 INFORMATIKA javítókulcs 2016 ELMÉLETI TÉTEL: Járd körbe a tömb fogalmát (Pascal vagy C/C++): definíció, egy-, két-, több-dimenziós tömbök, kezdőértékadás definíciókor, tömb típusú paraméterek átadása alprogramoknak.

Részletesebben

Tömbök kezelése. Példa: Vonalkód ellenőrzőjegyének kiszámítása

Tömbök kezelése. Példa: Vonalkód ellenőrzőjegyének kiszámítása Tömbök kezelése Példa: Vonalkód ellenőrzőjegyének kiszámítása A számokkal jellemzett adatok, pl. személyi szám, adószám, taj-szám, vonalkód, bankszámlaszám esetében az elírásból származó hibát ún. ellenőrző

Részletesebben

Fogalmak: Adatbázis Tábla Adatbázis sorai: Adatbázis oszlopai azonosító mező, egyedi kulcs Lekérdezések Jelentés Adattípusok: Szöveg Feljegyzés Szám

Fogalmak: Adatbázis Tábla Adatbázis sorai: Adatbázis oszlopai azonosító mező, egyedi kulcs Lekérdezések Jelentés Adattípusok: Szöveg Feljegyzés Szám Fogalmak: Adatbázis: logikailag összefüggő információ vagy adatgyőjtemény. Tábla: logikailag összetartozó adatok sorokból és oszlopokból álló elrendezése. Adatbázis sorai: (adat)rekord Adatbázis oszlopai:

Részletesebben

Tuesday, March 6, 12. Hasító táblázatok

Tuesday, March 6, 12. Hasító táblázatok Hasító táblázatok Halmaz adattípus U (kulcsuniverzum) K (aktuális kulcsok) Függvény adattípus U (univerzum) ÉT (értelmezési tartomány) ÉK (érték készlet) Milyen az univerzum? Közvetlen címzésű táblázatok

Részletesebben

Programozás alapjai. 10. előadás

Programozás alapjai. 10. előadás 10. előadás Wagner György Általános Informatikai Tanszék Pointerek, dinamikus memóriakezelés A PC-s Pascal (is) az IBM PC memóriáját 4 fő részre osztja: kódszegmens adatszegmens stackszegmens heap Alapja:

Részletesebben

C++ referencia. Izsó Tamás február 17. A C++ nyelvben nagyon sok félreértés van a referenciával kapcsolatban. A Legyakoribb hibák:

C++ referencia. Izsó Tamás február 17. A C++ nyelvben nagyon sok félreértés van a referenciával kapcsolatban. A Legyakoribb hibák: C++ referencia Izsó Tamás 2017. február 17. 1. Bevezetés A C++ nyelvben nagyon sok félreértés van a referenciával kapcsolatban. A Legyakoribb hibák: Sokan összetévesztik a pointerrel. Keveset alkalmazzák

Részletesebben

Táblázatok fontosabb műveletei 1

Táblázatok fontosabb műveletei 1 Táblázatok fontosabb műveletei 1 - - Soros táblázat procedure BESZÚR1(TÁBLA, újelem) - - beszúrás soros táblázatba - - a táblázatot egy rekordokat tartalmazó dinamikus vektorral reprezentáljuk - - a rekordok

Részletesebben

1. Jelölje meg az összes igaz állítást a következők közül!

1. Jelölje meg az összes igaz állítást a következők közül! 1. Jelölje meg az összes igaz állítást a következők közül! a) A while ciklusban a feltétel teljesülése esetén végrehajtódik a ciklusmag. b) A do while ciklusban a ciklusmag után egy kilépési feltétel van.

Részletesebben

5-6. ea Created by mrjrm & Pogácsa, frissítette: Félix

5-6. ea Created by mrjrm & Pogácsa, frissítette: Félix 2. Adattípusonként különböző regisztertér Célja: az adatfeldolgozás gyorsítása - különös tekintettel a lebegőpontos adatábrázolásra. Szorzás esetén karakterisztika összeadódik, mantissza összeszorzódik.

Részletesebben

6. LISTÁK ábra. A lista absztrakt adatszerkezet (ADS)

6. LISTÁK ábra. A lista absztrakt adatszerkezet (ADS) 6. LISTÁK Az előző fejezetekben megismerkedtünk a láncolt ábrázolással. Láttuk a verem és a sor, valamint előre tekintve a keresőfa pointeres megvalósításának a lehetőségét és előnyeit. A láncolt ábrázolással

Részletesebben

Pásztor Attila. Algoritmizálás és programozás tankönyv az emeltszintű érettségihez

Pásztor Attila. Algoritmizálás és programozás tankönyv az emeltszintű érettségihez Pásztor Attila Algoritmizálás és programozás tankönyv az emeltszintű érettségihez 3. ADATTÍPUSOK...26 3.1. AZ ADATOK LEGFONTOSABB JELLEMZŐI:...26 3.2. ELEMI ADATTÍPUSOK...27 3.3. ÖSSZETETT ADATTÍPUSOK...28

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 3. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

Programozás I gyakorlat. 10. Stringek, mutatók

Programozás I gyakorlat. 10. Stringek, mutatók Programozás I gyakorlat 10. Stringek, mutatók Karakter típus A char típusú változókat karakerként is kiírhatjuk: #include char c = 'A'; printf("%c\n", c); c = 80; printf("%c\n", c); printf("%c\n",

Részletesebben

Assembly Utasítások, programok. Iványi Péter

Assembly Utasítások, programok. Iványi Péter Assembly Utasítások, programok Iványi Péter Assembly programozás Egyszerű logikán alapul Egy utasítás CSAK egy dolgot csinál Magas szintű nyelven: x = 5 * z + y; /* 3 darab művelet */ Assembly: Szorozzuk

Részletesebben

Algoritmizálás és adatmodellezés 2. előadás

Algoritmizálás és adatmodellezés 2. előadás Algoritmizálás és adatmodellezés 2 előadás Összetett típusok 1 Rekord 2 Halmaz (+multialmaz, intervallumalmaz) 3 Tömb (vektor, mátrix) 4 Szekvenciális fájl (input, output) Pap Gáborné, Zsakó László: Algoritmizálás,

Részletesebben

Más szavakkal formálisan:, ahol olyan egész szám, hogy. Más szavakkal formálisan:, ahol olyan egész szám, hogy.

Más szavakkal formálisan:, ahol olyan egész szám, hogy. Más szavakkal formálisan:, ahol olyan egész szám, hogy. Bevezetés 1. Definíció. Az alsó egészrész függvény minden valós számhoz egy egész számot rendel hozzá, éppen azt, amely a tőle nem nagyobb egészek közül a legnagyobb. Az alsó egészrész függvény jele:,

Részletesebben

10. gyakorlat Struktúrák, uniók, típusdefiníciók

10. gyakorlat Struktúrák, uniók, típusdefiníciók 10. gyakorlat Struktúrák, uniók, típusdefiníciók Házi - (f0218) Olvass be 5 darab maximum 99 karakter hosszú szót úgy, hogy mindegyiknek pontosan annyi helyet foglalsz, amennyi kell! A sztringeket írasd

Részletesebben

Adatszerkezetek és algoritmusok

Adatszerkezetek és algoritmusok 2009. november 20. Bevezet El z órák anyagainak áttekintése Ismétlés Adatszerkezetek osztályozása Sor, Verem, Lengyelforma Statikus, tömbös reprezentáció Dinamikus, láncolt reprezentáció El z órák anyagainak

Részletesebben

A számok kiírása is alapvetően karakterek kiírásán alapul, azonban figyelembe kell venni, hogy a számjegyeket, mint karaktereket kell kiírni.

A számok kiírása is alapvetően karakterek kiírásán alapul, azonban figyelembe kell venni, hogy a számjegyeket, mint karaktereket kell kiírni. Példák számok kiírására A számok kiírása is alapvetően karakterek kiírásán alapul, azonban figyelembe kell venni, hogy a számjegyeket, mint karaktereket kell kiírni. Decimális számok kiírása Az alábbi

Részletesebben

Informatika érettségi vizsga

Informatika érettségi vizsga Informatika 11/L/BJ Informatika érettségi vizsga ÍRÁSBELI GYAKORLATI VIZSGA (180 PERC - 120 PONT) SZÓBELI SZÓBELI VIZSGA (30 PERC FELKÉSZÜLÉS 10 PERC FELELET - 30 PONT) Szövegszerkesztés (40 pont) Prezentáció-készítés

Részletesebben

Alkalmazott modul: Programozás 4. előadás. Procedurális programozás: iteratív és rekurzív alprogramok. Alprogramok. Alprogramok.

Alkalmazott modul: Programozás 4. előadás. Procedurális programozás: iteratív és rekurzív alprogramok. Alprogramok. Alprogramok. Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás 4. előadás Procedurális programozás: iteratív és rekurzív alprogramok Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto

Részletesebben

Rekurzió. Működése, programtranszformációk. Programozás II. előadás. Szénási Sándor.

Rekurzió. Működése, programtranszformációk. Programozás II. előadás.   Szénási Sándor. Rekurzió Működése, programtranszformációk előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Rekurzió Rekurzió alapjai Rekurzív

Részletesebben