Vetülettani és térképészeti alapismeretek
|
|
- Imre Faragó
- 9 évvel ezelőtt
- Látták:
Átírás
1 Vetülettani és térképészeti alapismeretek A geodéziában - mint ismeretes - a földalak első megközelítője a geoid. Geoidnak nevezzük a nehézségi erőtér potenciáljának azt a szintfelületét, amelynek potenciálértéke megegyezik az átlagos középtengerszintek potenciálértékével. A geoid, mint valamennyi más szintfelület szintén szabálytalan, ezért matematikai összefüggései gyakorlati célokra túl bonyolultak. (A nehézségi erő potenciálfelületei olyan felületek, amelyek minden pontjukban merőlegesek a nehézségi erő irányára. A nehézségi erő a Föld szabálytalan tömegeloszlása következtében szabálytalanul változik, ezért szabálytalanok a szintfelületek is.) A geoid szabálytalan felület, ezért vetületi alapfelületnek nem alkalmas. A földalak másik - jobban illeszkedő - megközelítője a normálszferoid, harmadik foka a forgási ellipszoid. Kisebb területek geodéziai felméréséhez a Földet gömbbel helyettesíthetjük. A gömböt úgy vesszük fel, hogy a forgási ellipszoidot az ábrázolandó terület közepe táján egy pontban másodrendűen érintse. Ebben az esetben ez az ún. közepessugarú gömb a vetítés alapfelülete. Ezt a gömböt a matematikában simulógömbnek vagy Gauss-gömbnek is nevezik. (A simulógömb olyan gömb, amely az ellipszoidot valamely pontjában másodfokúan érinti. Másodrendű érintéskor a két felület közös pontjában nemcsak a z = f (x, y) alakú függvények első differenciálhányadosai értékének, hanem a második differenciálhányadosok értékének is egyenlőknek kell lenniük a két felületre nézve.) Ha a Földet helyettesítő gömb tetszőleges átmérőjének egyik végpontját északi, a másik végpontját déli pólusnak (sarknak) tekintjük, akkor a gömb középpontjára illeszkedő és az előbbi átmérőre merőleges sík a gömb felületéből az egyenlítőnek nevezett gömbi főkört (legnagyobb gömbi kör) metszi ki. Az egyenlítő síkjára merőleges és az előbbi átmérőn átmenő síkokat meridiánsíkoknak nevezzük. A meridián-sík a gömb felszínéből a meridiánnak (délkör, hosszúsági kör, hosszúsági vonal) nevezett gömbi főkört metszi ki. Az egyenlítő síkjával párhuzamos síkok a gömbfelületből a paralelköröket (szélességi köröket, szélességi vonalakat) metszik ki. A meridiánok és paralelkörök vonalhálózatát földrajzi fokhálózatnak nevezzük. A gömbfelület pontjainak meghatározása földrajzi koordinátákkal, gömbfelületi derékszögű (ortogonális) vagy poláris (sarki) koordinátákkal, illetve térbeli derékszögű koordinátákkal történhet.
2 x = R cos φ cos λ, y = R sin φ sin λ z = R sin φ.
3 Az ellipszoidnak a Föld forgástengelyét képviselő kistengelye az ellipszoid felszínét az északi és a déli pólusban metszi. A forgástengelyre merőleges és az ellipszoid középpontján átmenő sík az egyenlítő síkja, amely a felszínből a kör alakú és a sugarú (a = fél nagytengely) egyenlítőt metszi ki. Az egyenlítővel párhuzamos síkok kör alakú metszetei a paralelkörök (szélességi körök, szélességi vonalak). A forgástengelyt tartalmazó és az egyenlítő síkjára merőleges síkok az ellipszis alakú meridiánokat (hosszúsági vonalakat) metszik ki. Az ellipszoid felszínén levő pontok meghatározása ugyanolyan rendszerű koordinátákkal történik, mint amilyeneket a gömbnél megismertünk. Mivel a vetülettani összefüggésekben a gömbi és ellipszoidi koordináták vegyesen fordulnak elő, az ellipszoidi koordinátákat megkülönböztetésül a görög ábécé nagybetűivel jelöljük. A földrajzi szélesség (Φ), a földrajzi hosszúság (Λ) és az azimut definíciója megegyezik a gömbre adottakkal. A felületi pont normálisa azonban csak az egyenlítőn és a pólusokban megy át az ellipszoid középpontján (ábra). A földi pontok földrajzi meghatározásához kezdőmeridiánul általában a greenwichi meridiánt alkalmazzák. A térbeli derékszögű (ortogonális) koordináta-rendszer kezdőpontját az ellipszoid középpontjába helyezzük, z tengelyül az ellipszoid kistengelyét, x tengelyül pedig az egyenlítő és a kezdőmeridián síkjának metszésvonalát választjuk. A középponton átmenő y tengelyt az egyenlítő síkjában az egyenlítőre merőlegesen vesszük fel. Valamely A felületi pont paraméteres egyenletei: x = N cos Φ cos Λ, y = N cos Φ sin Λ, 2 b z = N sinφ = N 1 e 2 a 2 ( ) sinφ.
4 Az alapfelületről a képfelületre vetítést háromféle módon hajthatjuk végre: 1. Az alapfelületen koordinátákkal meghatározott pontok képfelületi megfelelőinek koordinátáit kiszámítjuk a két felület között felállított vetületi egyenletek segítségével. Ezt az eljárást koordináta-módszernek nevezzük. 2. A másik mód az ún. redukciós módszer. A módszer alkalmazásának alapfeltétele az, hogy a képfelületen legyenek olyan pontjaink, amelyeknek a koordinátáit már korábban koordináta- vagy redukciós módszerrel kiszámították. A módszer lényege szerint az alapfelületen a pontokat legrövidebb vonalakkal összekötjük, és ezt a hálózatot úgy visszük át a képfelületre és illesztjük be a már korábban átszámított pontok közé, hogy a sarokpontok valódi képei a képfelületnek megfelelő legrövidebb vonalakkal legyenek összekötve. 3. A harmadik mód, hogy az alapfelületen egymást jól metsző görbeseregnek például egyes kerek foktávolságú meridiánok és paralelkörök rendszerének megfelelőit a vetületi egyenletek vagy részben a redukciós módszer segítségével, egyes esetekben rajzi szerkesztéssel a képfelületen előállítjuk, és ezek között interpoláljuk az egyes idomok képét. Ezt nevezzük a görbeseregek módszerének. Az első két módszer a geodéziai ábrázolás módszere, a harmadik főként a földrajzi térképek szerkesztésénél kerül alkalmazásra. A vetületek csoportosítása fontosabb szempontok szerint a) geometriai úton is, illetve csak matematikai úton előállítható vetületek b) A geometriailag is előállítható vetületeket megkülönböztetjük aszerint, hogy van-e vetítési központ vagy nincs. A vetítési központ lehet állandó (fix), de lehet mozgó is, amikor a központ meghatározott vonalon, meghatározott szabály szerint mozog. c) Az alapfelület lehet ellipszoid vagy gömb, a képfelület pedig gömb vagy sík, illetve síkba fejthető felület, nevezetesen kúp- vagy hengerfelület. A síkvetületeket három fő csoportba soroljuk: a kúpvetületek, az azimutális (tulajdonképpeni vagy közvetlen sík) vetületek és hengervetületek csoportjába. d) A kúp, a henger és a sík elhelyezése szerint a vetület lehet: - normális (poláris), ha a képfelületet adó idom tengelye a pólusokat összekötő egyenessel, tehát a Földet helyettesítő ellipszoid kistengelyével esik egybe, - egyenlítői (transzverzális, ekvatoriális), ha az idom tengelye az egyenlítő síkjában fekszik, és átmegy az alapfelület középpontján, - ferdetengelyű (horizontális), ha a tengely helyzete a két előbbi esettől eltérően tetszőleges.
5 e) Megkülönböztetést ad az a körülmény is, hogy a képfelület érinti, vagy metszi az alapfelületet, vagy esetleg az alapfelülettel nem is érintkezik, hanem azon kívül helyezkedik el. f) A síkvetületek lehetnek ún. valódi, és lehetnek ún. képzetes (módosított, ál, konvencionális) vetületek. A valódi síkvetületeket az jellemzi, hogy normális elhelyezésben a meridiánok (más elhelyezésben a segédmeridiánok) képei egyenesek, és ezek egy pontba futnak össze (ez a pont a végtelenben is lehet), a paralelkörök (segédparalelkörök) képe pedig olyan koncentrikus körök vagy körívek, melyeknek középpontja az a pont, amelyben a meridiánok találkoznak. Ha ez a pont a végtelenben van, akkor a paralelkör képek, mint végtelen sugarú koncentrikus körök, párhuzamos egyenesekké válnak. Minden olyan síkvetület, amelyen a fokhálózat (segédfokhálózat) képe másképp alakul, a képzetes vetületek csoportjába tartozik. Ezek lehetnek képzetes kúp-, képzetes hengervetületek, vagy pedig ezekbe az osztályokba nem sorolható egyéb képzetes vetületek. g) További megkülönböztetése a vetületeknek, hogy a meridiánok és a paralelkörök hálózatának képe derékszögű, vagy ferdeszögű rendszert alkot-e. h) Végül a torzulások szerint lehetséges csoportosítás szerint vannak általános torzulású, szögtartó (konform) és területtartó (ekvivalens) vetületek. Kúpvetület
6 Sztereografikus vetület Normális elhelyezésű érintő és metsző hengervetületek Ferdetengelyű érintő hengervetületek (HÉR, HKR, HDR)
7 Ferdetengelyű redukált (süllyesztett) hengervetület (EOV) EOV síkkoordináta rendszer
8 Gauss-Krüger vetület (ellipszoid egyenlítői elhelyezésű érintő szögtartó hengervetület) értelmezése Gauss-Krüger vetületi sávok A Gauss-Krüger vetületi rendszer alapfelülete a Kraszovszkij ellipszoid.
9 UTM (Universal Transverse Mercator, egyenlítői elhelyezésű (transzverzális) univerzális hengervetület) értelmezése Az UTM vetület alapfelülete Németországban pl. a Hayford ellipszoid, Nagy Britanniában az Airy ellipszoid, az Amerikai Egyesült Államokban és a kelet európai új NATO tagállamokban így Magyarországon is a WGS84 ellipszoid. (Forrás: Dr. Varga József, Vetülettan, elektronikus jegyzet,
10 Majzik-háromszögpár Derékszögű (ortogonális) beméréssel meghatározott részletpontok felrakására, őrkeresztek között numerikusan adott pontok felrakására, illetve lemérésére szolgáló eszköz. Majzik Miklós magyar mérnök találmánya. A Majzik-háromszögpár két egybevágó derékszögű fém háromszögből áll. Az egyik háromszög átfogójára a térkép méretarányának megfelelő osztások gyök2-vel való szorzatai vannak felrakva, a másik háromszög átfogóján ennek megfelelő (10 vagy 20 osztásos) nóniusz található. A nóniuszos háromszög mindkét befogója fazettás, hogy a befogó mindkét éle megfelelő bizonsággal legyen illeszthető a felrakandó (mérendő) ponthoz. A felrakó nagy előnye, hogy vele ugyanabban a helyzetben két egymásra merőleges irányban lehet távolságot felrakni és leolvasni. A Majzik-háromszögpár használata: a felrakóháromszög egyik befogóját az alappontokat összekötő mérési vonalra illesztjük úgy, hogy a másik befogó a kezdőponttól valamivel kívül essék. Az alapháromszög átfogóját teljesen a felrakóháromszög átfogójához illesztjük és leszorítjuk. A felrakóháromszöget úgy csúsztatjuk az alapháromszög mellett, hogy a mérési vonalra merőleges befogója a kiindulóponton menjen keresztül. Ebben a helyzetben leszorítjuk és az alapháromszöget toljuk el, amíg 0 osztása a felrakóháromszög nóniuszának 0 vonásával esik egybe. Az alapháromszöget leszorítva a felrakóháromszöget úgy csúsztatjuk tovább, hogy a nóniusz az egyes abszcisszaméretekre mutasson. Ezeken a helyeken a mérési vonalra merőleges befogó mellett éles ceruzával húzzuk meg az ordinátavonalakat. A mérési vonal végméretét a beosztásról leolvassuk és összehasonlítjuk a mérési vázlat adatával. Az eltérésnek a térképezésnél megadott hibahatáron belül kell lennie. Az ordinátavonalak felrakása után a Majzik-háromszögpárt visszaállítjuk a mérési vonalra. Most a rajzolóélt illesztjük az alappontokat összekötő vonalra, és ebben a helyzetben az alapháromszög 0 osztását csúsztatással illesztjük a felrakóháromszög nóniuszának 0 osztásához. Az alapháromszöget leszorítva, a felrakóháromszög nóniuszát sorban a már felrakott abszcisszán, ordinátavonalak ordinátaértékére állítjuk, és a megfelelő vonalat a rajzolóél mellett elmetsszük.
11 (Forrás: Marton Tibor: Földmérési térképek szerkesztése, rajzolása
Matematikai geodéziai számítások 4.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 4. MGS4 modul Vetületi átszámítások SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról
2. előadás: További gömbi fogalmak
2 előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak Valamely gömbi főkör ívének α azimutja az ív egy tetszőleges pontjában az a szög, amit az ív és a meridián érintői zárnak be egymással
(térképi ábrázolás) Az egész térképre érvényes meghatározása: Definíció
Az egész térképre érvényes meghatározása: A térkép hossztartó vonalain mért távolságnak és a valódi redukált vízszintes távolságnak a hányadosa. M = 1 / m, vagy M = 1 : m (m=méretarányszám) A méretarány
FÖLDMÉRÉS ÉS TÉRKÉPEZÉS
NYUGAT-MAGYARORSZÁGI EGYETEM ERDŐMÉRNÖKI KAR Környezetmérnöki Szak Dr. Bácsatyai László FÖLDMÉRÉS ÉS TÉRKÉPEZÉS Kézirat Sopron, 2002. Lektor: Dr. Bányai László tudományos osztályvezető a műszaki tudomány
Forgásfelületek származtatása és ábrázolása
Forgásfelületek származtatása és ábrázolása Ha egy rögzített egyenes körül egy tetszőleges görbét forgatunk, akkor a görbe úgynevezett forgásfelületet ír le; a rögzített egyenes, amely körül a görbe forog,
Az alap- és a képfelület fogalma, megadási módjai és tulajdonságai
A VETÜLETEK ALAP- ÉS KÉPFELÜLETE Az alap- és a képfelület fogalma, megadási módjai és tulajdonságai A geodézia, a térinformatika és a térképészet a görbült földfelületen elhelyezkedő geometriai alakzatokat
A tételsor a 12/2013. (III. 29.) NFM rendelet foglalt szakképesítés szakmai és vizsgakövetelménye alapján készült. 2/33
A vizsgafeladat ismertetése: A vizsgázó a térinformatika és a geodézia tudásterületei alapján összeállított komplex központi tételekből felel, folytat szakmai beszélgetést. Amennyiben a tétel kidolgozásához
Három dimenziós barlangtérkép elkészítésének matematikai problémái
Szegedi Tudományegyetem Természettudományi és Informatikai Kar Bolyai Intézet Geometria Tanszék Három dimenziós barlangtérkép elkészítésének matematikai problémái Szakdolgozat Írta: Pásztor Péter Matematika
3. Nevezetes ponthalmazok a síkban és a térben
3. Nevezetes ponthalmazok a síkban és a térben 1. 1. Alapfogalmak 2. Nevezetes sík- és térbeli alakzatok, definícióik 3. Thalész-tétel 4. Gyakorlati alkalmazás Pont: alapfogalom, nem definiáljuk Egyenes:
Ady Endre Líceum Nagyvárad XII.C. Matematika Informatika szak ÉRINTVE A GÖRBÉT. Készítette: Szigeti Zsolt. Felkészítő tanár: Báthori Éva.
Ady Endre Líceum Nagyvárad XII.C. Matematika Informatika szak ÉRINTVE A GÖRBÉT Készítette: Szigeti Zsolt Felkészítő tanár: Báthori Éva 2010 október Dolgozatom témája a különböző függvények, illetve mértani
MATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika 6. évfolyam TANULÓI MUNKAFÜZET 2. FÉLÉV A kiadvány KHF/4356-14/2008. engedélyszámon 2008.11.25. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő
NYUGAT-MAGYARORSZÁGI EGYETEM Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet. Dr. Bányai László GEOMATIKAI ISMERETEK
NYUGAT-MAGYAOSZÁGI EGYETEM Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet Dr. Bányai László GEOMATIKAI ISMEETEK Tankönyvpótló segédlet a természetvédelmi mérnökhallgatók részére Kézirat
Halmazelmélet. 2. fejezet 2-1
2. fejezet Halmazelmélet D 2.1 Két halmazt akkor és csak akkor tekintünk egyenl nek, ha elemeik ugyanazok. A halmazt, melynek nincs eleme, üres halmaznak nevezzük. Jele:. D 2.2 Az A halmazt a B halmaz
A vonatkoztatási rendszerek és transzformálásuk néhány kérdése. Dr. Busics György Óbudai Egyetem Alba Regia Műszaki Kar Székesfehérvár
A vonatkoztatási rendszerek és transzformálásuk néhány kérdése Dr. Busics György Óbudai Egyetem Alba Regia Műszaki Kar Székesfehérvár Tartalom Vonatkoztatási rendszer a térinformatikában Földi vonatkoztatási
IX. Az emberi szem és a látás biofizikája
IX. Az emberi szem és a látás biofizikája IX.1. Az emberi szem felépítése A szem az emberi szervezet legfontosabb érzékelő szerve, mivel a szem és a központi idegrendszer közreműködésével az elektromágneses
Síkban polarizált hullámok síkban polarizált lineárisan polarizált Síkban polarizált hullámok szuperpozíciója cirkulárisan polarizált
Síkban polarizált hullámok Tekintsünk egy z-tengely irányában haladó fénysugarat. Ha a tér egy adott pontjában az idő függvényeként figyeljük az elektromos (ill. mágneses) térerősség vektorokat, akkor
Matematikai és matematikai statisztikai alapismeretek
Kézirat a Matematikai és matematikai statisztikai alapismeretek című előadáshoz Dr. Győri István NEVELÉSTUDOMÁNYI PH.D. PROGRM 1999/2000 1 1. MTEMTIKI LPOGLMK 1.1. Halmazok Halmazon mindig bizonyos dolgok
2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika
2. OPTIKA 2.1. Elmélet Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert fényt bocsátanak ki, vagy a rájuk eső fényt visszaverik, és ezt a fényt a szemünk érzékeli. A
Tűgörgős csapágy szöghiba érzékenységének vizsgálata I.
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Tudományos Diákköri Konferencia Tűgörgős csapágy szöghiba érzékenységének vizsgálata I. Szöghézag és a beépítésből adódó szöghiba vizsgálata
GÉPÉSZETI ALAPISMERETEK ÉRETTSÉGI VIZSGA I. RÉSZLETES KÖVETELMÉNYEK
GÉPÉSZETI ALAPISMERETEK ÉRETTSÉGI VIZSGA I. RÉSZLETES KÖVETELMÉNYEK A Gépészeti alapismeretek szakmai előkészítő tantárgy érettségi vizsga részletes vizsgakövetelményeinek kidolgozása a műszaki szakterület
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 1613 ÉRETTSÉGI VIZSGA 016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
Gépelemek szerelésekor, gyártásakor használt mérőezközök fajtái, használhatóságuk a gyakorlatban
Molnár István Gépelemek szerelésekor, gyártásakor használt mérőezközök fajtái, használhatóságuk a gyakorlatban A követelménymodul megnevezése: Gépelemek szerelése A követelménymodul száma: 0221-06 A tartalomelem
PTE PMMK ÁBRÁZOLÓ GEOMETRIA 1. hét. 1. heti gyakorlat. Készítette: Schmidtné Szondi Györgyi 1/1
1. heti gyakorlat Készítette: Schmidtné Szondi Györgyi 1/1 Szerkesztő-rajzolással kapcsolatos tudnivalók. Az ábrázoló geometria tanulásához feladatokat dolgozunk ki rajzban, azaz szerkesztéseket végzünk.
Térképismeret ELTE TTK Földtudományi és Földrajz BSc. 2007
Térképismeret ELTE TTK Földtudományi és Földrajz BSc. 2007 Török Zsolt, Draskovits Zsuzsa ELTE IK Térképtudományi és Geoinformatikai Tanszék http://lazarus.elte.hu 4. Előadás Magyarországi topográfiai
Bevezetés. Párhuzamos vetítés és tulajdonságai
Bevezetés Az ábrázoló geometria célja a háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelműen és egyértelműen visszaállítható (rekonstruálható) módon történő való
Geodézia 4. Vízszintes helymeghatározás Gyenes, Róbert
Geodézia 4. Vízszintes helymeghatározás Gyenes, Róbert Geodézia 4.: Vízszintes helymeghatározás Gyenes, Róbert Lektor: Homolya, András Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel
Térképi vetületek és alapfelületek
Térképi vetületek és alapfelületek Dr. Timár Gábor Dr. Molnár Gábor Térképi vetületek és alapfelületek írta Dr. Timár Gábor és Dr. Molnár Gábor Szerkesztette és közreműködött: Dr. Timár Gábor és Dr. Molnár
A madymo program. 1. ábra Madymo alkalmazása
A madymo program Madymo (MAthematical DYnamic MOdel =Matematikai dinamikus modellezés) egy számítógépes program, melyet megtörtént, vagy lehetséges balesetek szimulálására használnak. A programot elsődlegesen
Nyugat-magyarországi Egyetem Geoinformatikai Kara. Gyenes Róbert. Geodézia 4. GED4 modul. Vízszintes helymeghatározás
Nyugat-magyarországi Egyetem Geoinformatikai Kara Gyenes Róbert Geodézia 4. GED4 modul Vízszintes helymeghatározás SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999. évi LXXVI. törvény
KATONAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2013. május 27. KATONAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2013. május 27. 14:00 I. Időtartam: 80 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Katonai
A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I.
Oktatási Hivatal A 11/1. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.
NYUGAT-MAGYARORSZÁGI EGYETEM Faipari Mérnöki Kar. Mőszaki Mechanika és Tartószerkezetek Intézet. Dr. Hajdu Endre egyetemi docens MECHANIKA I.
NYUGAT-MAGYARORSZÁGI EGYETEM aipari Mérnöki Kar Mőszaki Mechanika és Tartószerkezetek Intézet Dr Hajdu Endre egyetemi docens MECHANIKA I Sopron 9 javított kiadás TARTALOMJEGYZÉK I Bevezetés a mőszaki mechanika
Tartalom. Descartes-koordináták. Geometriai értelmezés. Pont. Egyenes. Klár Gergely tremere@elte.hu. 2010/2011. tavaszi félév
Tartalom Pont Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar Egyenes Sík Háromszög Gömb 2010/2011. tavaszi félév Descartes-koordináták Geometriai értelmezés
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten LINEÁRIS PROGRAMOZÁS Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 4 A lineáris
Geodézia. Felosztása:
Geodézia Görög eredetű szó. Geos = föld, geometria = földmérés A geodézia magyarul földméréstan, a Föld felületének, alakjána méreteinek, valamint a Föld felületén levő létesítmények és ponto helymeghatározásával,
EMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2006. május 9. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2006. május 9. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika
A rádió* I. Elektromos rezgések és hullámok.
A rádió* I. Elektromos rezgések és hullámok. A legtöbb test dörzsölés, nyomás következtében elektromos töltést nyer. E töltéstől függ a test elektromos feszültsége, akárcsak a hőtartalomtól a hőmérséklete;
5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke?
5. Trigonometria I. Feladatok 1. Mutassuk meg, hogy cos 0 cos 0 sin 0 3. KöMaL 010/október; C. 108.. Az ABC háromszög belsejében lévő P pontra PAB PBC PCA φ. Mutassuk meg, hogy ha a háromszög szögei α,
Matematika tanári szeminárium a Fazekasban 2012-2013/4.
atematika tanári szeminárium a Fazekasban 2012-2013/4. 4. foglalkozás öal. 4474. feladatra 1 sok szép megoldást hoztak Gyenes Zoltán diákjai, a 9.c osztály tanulói. példához nagyon hasonló kérdéssel a
Geometriai példatár 2.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Baboss Csaba Szabó Gábor Geometriai példatár 2 GEM2 modul Metrikus feladatok SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999 évi
Kollimáció hiba hatása Távcsőállás fok perc mp perc mp fok perc mp mp 10 I 209 00 00 08 07 208 59 54-14 42 II 28 59
KRITÉRIUM FELDTHOZ Kollimáció Vízszintes körleolvasások Irányérték hiba hatása Távcsőállás fok perc mp perc mp fok perc mp mp 10 I 09 00 00 08 07 08 59 54-14 4 II 8 59 59 41 40 Közepelés: (09-00-10 + 09-00-07)/=09-00-08
Mezei Ildikó-Ilona. Analitikus mértan
Mezei Ildikó-Ilona Analitikus mértan feladatgyűjtemény Kolozsvár 05 Tartalomjegyzék. Vektoralgebra 3.. Műveletek vektorokkal.................................. 3.. Egyenes vektoriális egyenlete..............................
COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA MATEMATIKA TANMENET
COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA MATEMATIKA TANMENET 5. osztály 2015/2016. tanév Készítette: Tóth Mária 1 Tananyagbeosztás Évi óraszám: 144 óra Heti óraszám: 4 óra Témakörök:
b) Adjunk meg 1-1 olyan ellenálláspárt, amely párhuzamos ill. soros kapcsolásnál minden szempontból helyettesíti az eredeti kapcsolást!
2006/I/I.1. * Ideális gázzal 31,4 J hőt közlünk. A gáz állandó, 1,4 10 4 Pa nyomáson tágul 0,3 liter térfogatról 0,8 liter térfogatúra. a) Mennyi munkát végzett a gáz? b) Mekkora a gáz belső energiájának
A csavarvonalról és a csavarmenetről
A csavarvonalról és a csavarmenetről A témáoz kapcsolódó korábbi dolgozatunk: Ricard I. A Gépészeti alapismeretek tantárgyban a csavarok mint gépelemek tanulmányozását a csavarvonal ismertetésével kezdjük.
2.3.2.2.1.2.1 Visszatérítő nyomaték és visszatérítő kar
2.3.2.2.1.2 Keresztirányú stabilitás nagy dőlésszögeknél A keresztirányú stabilitás számszerűsítésénél, amint korábban láttuk, korlátozott a metacentrikus magasságra való támaszkodás lehetősége. Csak olyankor
Lehet vagy nem? Konstrukciók és lehetetlenségi bizonyítások Dr. Katz Sándor, Bonyhád
Dr. Katz Sándor: Lehet vagy nem? Lehet vagy nem? Konstrukciók és lehetetlenségi bizonyítások Dr. Katz Sándor, Bonyhád A kreativitás fejlesztésének legközvetlenebb módja a konstrukciós feladatok megoldása.
A 2008/2009. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai fizikából. I.
Oktatási Hivatal A 8/9. tanévi FIZIKA Országos Közéiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.
Széchenyi István Egyetem, 2005
Gáspár Csaba, Molnárka Győző Lineáris algebra és többváltozós függvények Széchenyi István Egyetem, 25 Vektorterek Ebben a fejezetben a geometriai vektorfogalom ( irányított szakasz ) erős általánosítását
Pontszerű test, pontrendszer és merev test egyensúlya és mozgása (Vázlat)
Pontszerű test, pontrendszer és merev test egyensúlya és mozgása (Vázlat) I. Pontszerű test 1. Pontszerű test modellje. Pontszerű test egyensúlya 3. Pontszerű test mozgása a) Egyenes vonalú egyenletes
1. ZÁRTTÉRI TŰZ SZELLŐZETÉSI LEHETŐSÉGEI
A tűz oltásával egyidőben alkalmazható mobil ventilálás nemzetközi tapasztalatai A zárttéri tüzek oltására kiérkező tűzoltókat nemcsak a füstgázok magas hőmérséklete akadályozza, hanem annak toxicitása,
Topográfia 7. Topográfiai felmérési technológiák I. Mélykúti, Gábor
Topográfia 7. Topográfiai felmérési technológiák I. Mélykúti, Gábor Topográfia 7. : Topográfiai felmérési technológiák I. Mélykúti, Gábor Lektor : Alabér, László Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027
РОБОЧА ПРОГРАМА НАВЧАЛЬНОЇ ДИСЦИПЛІНИ TANTÁRGYI PROGRAM
Закарпатський угорський інститут імені Ференца Ракоці ІІ II. Rákóczi Ferenc Kárpátaljai Magyar Főiskola Кафедра географії і туризму / Földtudományi és Turizmus Tanszék ЗАТВЕРДЖУЮ / JÓVÁHAGYOM Проректор
MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK
MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: - középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell
19. Az elektron fajlagos töltése
19. Az elektron fajlagos töltése Hegyi Ádám 2015. február Tartalomjegyzék 1. Bevezetés 2 2. Mérési összeállítás 4 2.1. Helmholtz-tekercsek.............................. 5 2.2. Hall-szonda..................................
Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény
Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás
ISMÉT FÖLDKÖZELBEN A MARS!
nikai Vállalat, Audió, EVIG Egyesült Villamosgépgyár, Kismotor- és Gépgyár, Szerszámgép Fejlesztési Intézet (Halásztelek), Pestvidéki Gépgyár (Szigethalom), Ikladi ûszeripari ûvek (II), Kôbányai Vas- és
MUNKAANYAG. Földi László. Szögmérések, külső- és belső kúpos felületek mérése. A követelménymodul megnevezése:
Földi László Szögmérések, külső- és belső kúpos felületek mérése A követelménymodul megnevezése: Általános anyagvizsgálatok és geometriai mérések A követelménymodul száma: 0225-06 A tartalomelem azonosító
MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok
MATEMATIKA TANTERV Bevezetés A matematika tanítását minden szakmacsoportban és minden évfolyamon egységesen heti három órában tervezzük Az elsı évfolyamon mindhárom órát osztálybontásban tartjuk, segítve
ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2012. május 25. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. május 25. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI
ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK
Építészeti és építési alapismeretek középszint 0631 ÉRETTSÉGI VIZSGA 2006. október 24. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS
2007.5.30. Az Európai Unió Hivatalos Lapja L 137/1 RENDELETEK
2007.5.30. Az Európai Unió Hivatalos Lapja L 137/1 I (Az EK-Szerződés/Euratom-Szerződés alapján elfogadott jogi aktusok, amelyek közzététele kötelező) RENDELETEK Az Egyesült Nemzetek Szervezete Európai
Az ablakos problémához
1 Az ablakos problémához A Hajdu Endre által felvetett, egy ablak akadályoztatott kinyitásával kapcsolatos probléma a következő. Helyezzünk el egy d oldalhosszúságú, álló, négyzet alapú egyenes hasábot
A felmérési egység kódja:
A felmérési egység lajstromszáma: 0218 ÚMFT Programiroda A felmérési egység adatai A felmérési egység kódja: Épügépé//30/Ksz/Rok A kódrészletek jelentése: Épületgépész szakképesítés-csoportban, a célzott,
Nyugat-magyarországi Egyetem Geoinformatikai Kara. Dr. Engler Péter. Fotogrammetria 2. FOT2 modul. A fotogrammetria geometriai és matematikai alapjai
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Engler Péter Fotogrammetria 2. FOT2 modul A fotogrammetria geometriai és matematikai alapjai SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői
MŰSZAKI ÁBRÁZOLÁS II.
MŰSZAKI ÁBRÁZOLÁS II. A projekt címe: Egységesített Jármű- és mobilgépek képzés- és tananyagfejlesztés A megvalósítás érdekében létrehozott konzorcium résztvevői: KECSKEMÉTI FŐISKOLA BUDAPESTI MŰSZAKI
KÖZLEKEDÉSI ALAPISMERETEK (KÖZLEKEDÉSTECHNIKA)
ÉRETTSÉGI VIZSGA 2016. május 18. KÖZLEKEDÉSI ALAPISMERETEK (KÖZLEKEDÉSTECHNIKA) KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 18. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati
(1. és 2. kérdéshez van vet-en egy 20 oldalas pdf a Transzformátorokról, ide azt írtam le, amit én kiválasztanék belőle a zh-kérdéshez.
1. A transzformátor működési elve, felépítése, helyettesítő kapcsolása (működési elv, indukált feszültség, áttétel, felépítés, vasmag, tekercsek, helyettesítő kapcsolás és származtatása) (1. és 2. kérdéshez
2. Halmazelmélet (megoldások)
(megoldások) 1. A pozitív háromjegy páros számok halmaza. 2. Az olyan, 3-mal osztható egész számok halmaza, amelyek ( 100)-nál nagyobbak és 100-nál kisebbek. 3. Az olyan pozitív egész számok halmaza, amelyeknek
hogy a megismert fogalmakat és tételeket változatos területeken használhatjuk Az adatok, táblázatok, grafikonok értelmezésének megismerése nagyban
MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
4. sz. Füzet. A hibafa számszerű kiértékelése 2002.
M Ű S Z A K I B I Z O N S Á G I F Ő F E L Ü G Y E L E 4. sz. Füzet A hibafa számszerű kiértékelése 00. Sem a Műszaki Biztonsági Főfelügyelet, sem annak nevében, képviseletében vagy részéről eljáró személy
3. A földi helymeghatározás lényege, tengerszintfeletti magasság
1. A geodézia tárgya és a földmûvek, mûtárgyak kitûzése A földméréstan (geodézia) a Föld fizikai felszínén illetve a felszín alatt lévõ természetes és mesterséges alakzatok méreteinek és helyének meghatározásával,
Felkészülést segítő kérdések Gépszerkesztés alapjai tárgyból
Felkészülést segítő kérdések Gépszerkesztés alapjai tárgyból - Ismertesse a kézi rajzkészítési technikát (mikor használjuk, előny-hátrány stb.)! Kézi technikák közül a gondolatrögzítés leggyorsabb, praktikus
Mátrixaritmetika. Tartalom:
Mátrixaritmetika Tartalom: A vektor és mátrix fogalma Speciális mátrixok Relációk és műveletek mátrixokkal A mátrixok szorzása A diadikus szorzat. Hatványozás Gyakorlati alkalmazások Készítette: Dr. Ábrahám
Atommagok mágneses momentumának mérése
Korszerű mérési módszerek laboratórium Atommagok mágneses momentumának mérése Mérési jegyzőkönyv Rudolf Ádám Fizika BSc., Fizikus szakirány Mérőtársak: Kozics György, Laschober Dóra, Májer Imre Mérésvezető:
Méréssel kapcsolt 3. számpélda
Méréssel kapcsolt 3. számpélda Eredmények: m l m 1 m 3 m 2 l l ( 2 m1 m2 m l = 2 l2 ) l 2 m l 3 = m + m2 m1 Méréssel kapcsolt 4. számpélda Állítsuk össze az ábrán látható elrendezést. Használjuk a súlysorozat
Matematikai modellalkotás
Konferencia A Korszerű Oktatásért Almássy Téri Szabadidőközpont, 2004. november 22. Matematikai modellalkotás (ötletek, javaslatok) Kosztolányi József I. Elméleti kitekintés oktatási koncepciók 1. Realisztikus
15.KÚPKEREKEK MEGMUNKÁLÁSA ÉS SZERSZÁMAI
15.KÚPKEREKEK MEGMUNKÁLÁSA ÉS SZERSZÁMAI Alapadatok Egymást szög alatt metsző tengelyeknél a hajtást kúpkerékpárral valósítjuk meg (15.1 ábra). A gördülő felületek kúpok, ezeken van kiképezve a kerék fogazata.
NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat
NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Dr. Fried Katalin
Vázlatok és vázrajzok Térképek Analóg térkép Eredeti másolat /nyomat Tónusos (fotó-) térkép 1. ábra: Adatok a megjelenési forma szerint
Az adatok megjelenési formája alapján történo csoportosítás A megjelenítési forma szerinti elkülönítés gyakorlatilag a legegyszerubb csoportosítási módszer, mivel az adatok fizikai (vizuális) megjelenése
Minta MELLÉKLETEK. GÉPÉSZETI ALAPISMERETEK ÉRETTSÉGI VIZSGA ÍRÁSBELI TÉTEL Középszinten
MELLÉKLETEK GÉPÉSZETI ALAPISMERETEK ÉRETTSÉGI VIZSGA ÍRÁSBELI TÉTEL Középszinten Teszt 1. Méretezze be az 5mm vastag lemezből készült alkatrészt! A méreteket vonalzóval a saját rajzáról mérje le! 2 pont
5. gyakorlat. Lineáris leképezések. Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét!
5. gyakorlat Lineáris leképezések Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét! f : IR IR, f(x) 5x Mit rendel hozzá ez a függvény két szám összegéhez? x, x IR, f(x +
CSORVÁS VÁROS ÖNKORMÁNYZATA KÉPVISELŐ-TESTÜLETÉNEK 16/2014.(XI.30.) ö n k o r m á n y z a t i r e n d e l e t e
CSORVÁS VÁROS ÖNKORMÁNYZATA KÉPVISELŐ-TESTÜLETÉNEK 16/2014.(XI.30.) ö n k o r m á n y z a t i r e n d e l e t e a közterületek elnevezésének, az elnevezés megváltoztatásának, és a házszámozás szabályainak
1. Bevezetés, alapfogalmak
MHAV elméleti oktatási kézikönyv - 1 - Navigáció Malév Hungarian Airlines Virtual hivatalos elméleti oktatási anyag Navigáció Összeállította: Horváth Péter (HOP) 1. Bevezetés, alapfogalmak Ezen fejezet
Széchenyi István Egyetem. Alkalmazott Mechanika Tanszék
Széchenyi István Egyetem Szerkezetek dinamikája Alkalmazott Mechanika Tanszék Elméleti kérdések egyetemi mesterképzésben (MSc) résztvev járm mérnöki szakos hallgatók számára 1. Merev test impulzusának
I. BEVEZETÉS------------------------------------------------------------------2
TARTALOMJEGYZÉK I. BEVEZETÉS------------------------------------------------------------------2 II. EL ZMÉNYEK ---------------------------------------------------------------4 II. 1. A BENETTIN-STRELCYN
HITELESÍTÉSI ELŐÍRÁS TARTÁLYOK
HITELESÍTÉSI ELŐÍRÁS TARTÁLYOK GEOMETRIAI TARTÁLYHITELESÍTÉS HE 31/4-2000 TARTALOMJEGYZÉK 1. AZ ELŐÍRÁS HATÁLYA 2. MÉRTÉKEGYSÉGEK, JELÖLÉSEK 3. ALAPFOGALMAK 3.1 Tartályhitelesítés 3.2 Folyadékos (volumetrikus)
Add meg az összeadásban szereplő számok elnevezéseit!
1. 2. 3. 4. 5. Add meg az összeadásban szereplő Add meg a kivonásban szereplő Add meg a szorzásban szereplő Add meg az osztásban szereplő Hogyan függ két szám előjelétől a két szám szorzata, hányadosa?
Axonometria és perspektíva. Szemléltető céllal készülő ábrák
Axonometria és perspektíva Szemléltető céllal készülő ábrák Axonometria Jelentése: tengelyek mentén való mérés (axis: tengely, metrum: mérték) Az axonometria a koordinátarendszer tengelyein mért távolságok,
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM ÁRAMLÁSTAN TANSZÉK TOMPA TESTEK ELLENÁLLÁSTÉNYEZŐJÉNEK VIZSGÁLATA MÉRÉSI SEGÉDLET. 2013/14. 1.
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM ÁRAMLÁSTAN TANSZÉK M1 TOMPA TESTEK ELLENÁLLÁSTÉNYEZŐJÉNEK VIZSGÁLATA MÉRÉSI SEGÉDLET 013/14. 1. félév 1. Elméleti összefoglaló A folyadékáramlásban lévő,
Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint
TÁMOP-.1.4-08/2-2009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint Vasvár,
A figurális számokról (I.)
A figurális számokról (I.) Tuzson Zoltán, Székelyudvarhely A figurális számok felfedezését a pitagoreusoknak tulajdonítják, mert k a számokat kavicsokkal, magokkal szemléltették. Sok esetben így jelképezték
Matematikai geodéziai számítások 1.
Matematikai geodéziai számítások 1 Ellipszoidi számítások, ellipszoid, geoid és terep metszete Dr Bácsatyai, László Created by XMLmind XSL-FO Converter Matematikai geodéziai számítások 1: Ellipszoidi számítások,
A Kozmikus Geodéziai Obszervatórium
Földmérési és Távérzékelési Intézet Kozmikus Geodéziai Obszervatórium Nagy Sándor A Kozmikus Geodéziai Obszervatórium mint komplex geodinamikai állomás leírása Penc AD 2000. Dokumentum kísérõ ûrlap A dokumentum
TÉRINFORMATIKA I. Dr. Kulcsár Balázs egyetemi docens. Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék
TÉRINFORMATIKA I. Dr. Kulcsár Balázs egyetemi docens Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék 3. előadás MAGYARORSZÁGON ALKALMAZOTT MODERN TÉRKÉPRENDSZEREK Magyarország I. katonai felmérése
PONTASÍTÁSOK a 2015/S 126-230625 számú közbeszerzés belvízi csatorna-modellek előállítására vonatkozó Műszaki Dokumentációjához
PONTASÍTÁSOK a 2015/S 126-230625 számú közbeszerzés belvízi csatorna-modellek előállítására vonatkozó Műszaki Dokumentációjához A dokumentum célja Jelen dokumentum a 2015/S 126-230625 számú közbeszerzési
Szövegesek a szakkifejezések, a műszaki elírások, a gépkönyvek, az üzemeltetési, karbantartási, javítási dokumentációk.
GEOLÓGIA (bevezetés a grafikusműveletekbe) Tartalom: A grafikus műveletek Fúrási szelvény szerkesztése fúrómesteri leírásból Fúrási, észlelési mérési pontok felrakása topográfiai térképre Rétegszelvény
9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja.
9. ÉVFOLYAM Gondolkodási módszerek A szemléletes fogalmak definiálása, tudatosítása. Módszer keresése az összes eset áttekintéséhez. A szükséges és elégséges feltétel megkülönböztetése. A megismert számhalmazok
3. gyakorlat. 1/7. oldal file: T:\Gyak-ArchiCAD19\EpInf3_gyak_19_doc\Gyak3_Ar.doc Utolsó módosítás: 2015.09.17. 22:57:26
3. gyakorlat Kótázás, kitöltés (sraffozás), helyiségek használata, szintek kezelése: Olvassuk be a korábban elmentett Nyaraló nevű rajzunkat. Készítsük el az alaprajz kótáit. Ezt az alsó vízszintes kótasorral
BEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA
Pék Johanna BEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA (Matematika tanárszakos hallgatók számára) Tartalomjegyzék Előszó ii 0. Alapismeretek 1 0.1. Térgeometriai alapok............................. 1 0.2. Az ábrázoló