Atommagok mágneses momentumának mérése
|
|
- Hunor Fehér
- 9 évvel ezelőtt
- Látták:
Átírás
1 Korszerű mérési módszerek laboratórium Atommagok mágneses momentumának mérése Mérési jegyzőkönyv Rudolf Ádám Fizika BSc., Fizikus szakirány Mérőtársak: Kozics György, Laschober Dóra, Májer Imre Mérésvezető: Csorba Ottó Mérés időpontja: április 5. Leadás időpontja: április 28.
2 1. Elmélet és mérési összeállítás A laborgyakorlat során proton, és fluor atommag mágneses momentumát vizsgáltuk, és elvégeztük az ehhez szükséges méréseket. Vizsgáltuk továbbá a mérés során felmerülő hibaforrásokat és a használt mágneses tér homogenitását. Egy mágneses momentummal rendelkező atommag E 0 nívója külső mágneses tér hatására a következőképpen hasad fel. E m =E 0 g mag H 0 m ahol g az atommag úgynevezett g-faktora, μ mag pedig a magmagneton. A (közel) homogén, sztatikus mágneses térre (H 0 ) merőlegesen alkalmazunk egy sinusos perturbáló teret, aminek köszönhetően a mag vált a két szomszédos állapot között. Felírhatjuk ak övetkező egyenletet: h =g mag H 0 ahol ν a változó mágneses tér frekvenciája, a jobboldalon pedig az energia-változás áll. Ha az egyenlet teljesül, a frekvenciát rezonanciafrekvenciának nevezzük, és ekkor a minta a külső térből energiát nyel el, amit észlelni tudunk. Tehnikailag az az egyszerűbb módszer, ha állandó H 0 tér mellet a gerjesztő tér frekvenciáját lassan változtatva keressük meg az abszorpciót. Ezzel a módszerrel a fenti egyenletből meghatározható a vizsgált atommag g-faktora. A H 0 teret egy többezer menetes elektromágnessel hoztuk létre, amin 0,8 A A áramot folyattunk. Ezt egy 25 Hz-es jellel megmoduláltuk, aminek amplitúdója 1-2%-a volt az eredeti áramnak. Ehhez a rezonancia megfigyelése miatt volt szükség. A rezonanciát egy oszcilloszkóp segítségével mérjük. Ha megtaláltuk, H 0 -at egy ballisztikus galvanométerrel mértük, ami egy, a maximális térből kb. nulla térbe kihúzott tekercsen átáramlott töltésmennyiséget méri, ebből meghatározható a tér nagysága. A frekvenciát egy különálló, antennálval elátott oszcillátor segítségével mérjük olyanképpen, hogy annak frekvenciáját változtatva a lebegést figyeljük az oszcilloszkópon. Elméletileg ha az egyik frekvencia tart a másikhoz, a lebegés periódusideje tart a végtelenhez, ezért a legnagyobb megtalált frekvenciánál olvassuk le a beállított értéket, és ezt tekintjük a rezonanciafrekvenciának. A felhasznált képleteket és elméleti részleteket majd az alkalmazásukkor közlöm.
3 2. Proton g-faktorának mérése Elsőként rézgálicos vizet tartalmazó mintatartót helyeztünk a tekercsek közé. A vízben található hidrogén protonjának g-faktorát határoztuk meg. Az 1. táblázatban láthatók a beállított áramerősségek (I), a hozzájuk tartozó mágneses terek (H0) és rezonanciafrekvenciák (ν) a hibákkal (ezek indoklását lásd a 4. pontban). Beillesztettem továbbá a leolvasott jelnagyságokat is, amik igen pontatlanok, csak tájékoztató jellegűek, majd a fluor minta mérésénél lesz szerepük. f (MHz) Δf (MHz) H0 (mt) ΔH0 (mt) I (A) Jelnagyság 3,6 0, ,6 0,87 1,0 4,0 0, ,6 0,96 1,1 4,1 0, ,7 1,06 1,2 4,5 0, ,7 1,12 1,6 4,9 0, ,8 1,33 2,0 5,6 0, ,9 1,57 3,0 6,4 0, ,0 1,81 3,6 7,0 0, ,2 2,02 3,6 7,7 0, ,3 2,25 3,0 8,4 0, ,5 2,47 2,2 1. táblázat. Proton g-faktorának meghatározásához szükséges mért adatok a számolt hibáikkal, amiknek részletesebb kifejtését a 4. pontban írtam le. A rezonanciafrekvencia egyenesen arányos a gerjesztő tér nagyságával: = g mag h H 0 Így ha a ν rezonanciafrekvenciákra H 0 függvényében egyenest illesztünk, akkor h és μ mag ismeretében kiszámolhatjuk g-t. Az illesztést elvégeztem, a grafikont az 1. ábra mutatja. Az egyenes meredeksége: g mag h = 0,0433±0,00090 MHz mt Ebből: g=5,7±0,12 Az irodalmi érték: g irod = 5,59. Ez hibán belül van, így a mérést jónak tekintem.
4 1. ábra. Hidrogén g fakrotának meghatározása: rezonanciafrekvenciák a homogén, sztatikus tér függvényében, hibákkal és az ezt figyelembe vevő illesztett egyenessel. 3. Fluor g-faktorának meghatározása A proton g-faktorának ismeretében már nem kell végigcsinálni az előző eljárást a fluor g-faktorának meghatározásához, ugyanis ismert a következő kifejezés: F p = g F g p Átrendezve: g F = F p g p Az előző mérésnél feljegyeztük a jelnagyságokat is. Ez azért volt célszrű, mert most ezeken a helyeken mérünk a legjobb jel/zaj arány érdekében. Ez azért különösen szükséges ezen mérés esetében, mert a fluor csúcsa jóval kisebb a protonénál. Az előző mérések alapján ez 1,9 A - 2 A környékén teljesül. Így ezen a két helyen megmértük a proton és a fluor rezonanciafrekvenciáit is. Az eredményeket a 2. táblázat tartalmazza.
5 I (A) 1,90 2,00 ν_p (MHz) 7,015 7,286 ν_f (MHz) 6,600 6,857 g 5,21 5,21 2. táblázat. Fluor g-faktorának meghatározása. A két mérés két tizedesjegyre megegyezik, de a számolás során két frekvenciaértéket használtunk, amiknek egyesével 5%-os hibája van (lásd 4. pont). Mivel ilyen esetben a relatív hiba összeadódik, ezért 10%-os hibávan számoltam. Összefoglalva: g F =5,2±0,52 4. Hibaforrások Alapvetően kétféle hibát különböztetünk meg: a szubjektív hibát, ami a mérést végző személytől függ, például leolvasási hiba, reakcióidőből eredő hiba, stb., és az objektív hibát, amit a mérőműszerek pontatlansága, és egyéb kiküszöbölhetetlen források okozhatnak, a mérést végzőtől függetlenül. A mágneses tér mérésekor a következő hibaforrások merülhetnek fel. A ballisztikus galvanométerről a mutató mozgása közben kell leolvasnunk a maximális kitérését, ami becslésünk szerint 1 beoszutás, azaz 3,35 mt nagyságú. Ez a szubjektív hiba. Az objektív hibák ismertek: 0,01 mt kalibrációs, és maximum 5% mérőművi hiba. Ezek négyzetösszege lesz a mágneses tér hibája. A frekencia mérésénél a következő hibaforrások léptek fel. A mérőművi hiba itt is 5%. A szubjektív hiba az, hogy mit veszünk pontosan a lebegési frekvenciának, hogy a digitális kijelzőről mit olvasunk le, ha annak utolsó számjegye mozog. Azonban ezek mind khz nagyságrendűek, ami elhanyagolható a mérőművi hiba mellett. Fontos megemlítendő még, hogy technikai okokból az általam használt program (GNUPLOT) csak y irányú hibák figyelembevételére képes egyenesillesztésnél. A bizonytalanságot úgy vettem figyelembe, mintha a két irányú relatív hiba összege jelenne meg y irányú relatív hibaként. Ezzel biztosan nem becsültem alá a hibát. Ennek ellenére az ábrán a rendes x és y irányú hibákat jelöltem.
6 5. A mágneses tér homogenitása 2. ábra. Az elektromágnes pofái, és a benne foglalt ellpiszis alapú hasáb formájú térrész, amin belül a mágneses teret homogénnek tekintjük. Mivel az eddig leírt számolások homogén H 0 tér esetén igazak, nem közömbös, hogy tekinthetjük-e homogénnek a teret a mágnespofák között. Utolsó feladatként ennek a vizsgálatát kaptuk. Azonban nem triviális, hogy egyáltalán mit nevezünk homogén térnek, ugyanis egzaktul homogén tér nyilván nincs a valóságban. Mivel a berendezés hengeres, ezért a mágnespofák között egy henger formájú részben tekintjük a teret homogénnek. Ám mivel a minta nem pontszerű, az a térrész, ahol a mintát mozgathatjuk, egy ellipszis alapú hasábbal közelíthető. A laborban a csapat a következő kritériumokat állította fel: Mikor megtaláltuk az abszorpciós csúcsot, a mérőfej mozgatásával megkerestük azokata határokat, ahol a csúcs nagysága 1 beosztásnyinál kisebbre csökken (kb. eddig megfigyelhető), vagy elmozdul a vízszintes tengelyen fél beosztásnyit (5 khz eltérés, ami kb. a rezonanciafrekvencia ezredrésze a MHz nagyságrendű értékek miatt). Ha csak az egyik feltétel is teljesült, azt a homogén tér határának tekintettük.
7 A kapott értékek a mérés és számolás módjával (a jelölések világos módon leolvashatók a 2. ábráról): L értéke: Egyszerű mérés alapján L = 2,4 cm Φ értéke: Φ = 10 cm l számolása: A henger távolsága a bal vaspofától 4,5 mm, a jobb vaspofától 5 mm. Világos, hogy l = L - (4,5 mm + 5 mm) = L - 9,5 mm = 1,5 cm d számolása: A határok: 25 cm - 21 cm = 4 cm. Mivel a mérőtekercsnek van egy kb. 1 cm-es kiterjedése, ezért: d = 5 cm. D számolása: Azonos indoklással: 41 cm - 36,5 cm = 4,5 cm, így D = 5,5 cm. L és Φ értékek nagyjából pontosnak tekinthetők, kb. 1-2 mm hibával, azonban l, d és D értékek pontatlansága becslésem szerint 1 cm is lehet a sok lehetséges hibaforrás miatt, pl. nehezen hozzáférhető helyen kellett leolvasni az értékeket, vagy mert nagy volt a holtjátéka a mérőtekercset tartó állványnak. Mindezeket tekintve saját definíciónk szerint a g-faktor méréseket biztosan homogén térben végeztük, és sikeresen feltérképeztük, hogy geometriailag ez hol tehető meg.
Ha vasalják a szinusz-görbét
A dolgozat szerzőjének neve: Szabó Szilárd, Lorenzovici Zsombor Intézmény megnevezése: Bolyai Farkas Elméleti Líceum Témavezető tanár neve: Szász Ágota Beosztása: Fizika Ha vasalják a szinusz-görbét Tartalomjegyzék
Váltakozó áram. A váltakozó áram előállítása
Váltakozó áram A váltakozó áram előállítása Mágneses térben vezető keretet fogatunk. A mágneses erővonalakat metsző vezetőpárban elektromos feszültség (illetve áram) indukálódik. Az indukált feszültség
Feladatok GEFIT021B. 3 km
Feladatok GEFT021B 1. Egy autóbusz sebessége 30 km/h. z iskolához legközelebb eső két megálló távolsága az iskola kapujától a menetirány sorrendjében 200 m, illetve 140 m. Két fiú beszélget a buszon. ndrás
Fizika 2. Feladatsor
Fizika 2. Felaatsor 1. Egy Q1 és egy Q2 =4Q1 töltésű részecske egymástól 1m-re van rögzítve. Hol vannak azok a pontok amelyekben a két töltéstől származó ereő térerősség nulla? ( Q 1 töltéstől 1/3 méterre
Mössbauer Spektroszkópia
Mössbauer Spektroszkópia Homa Gábor, Markó Gergely Mérés dátuma: 2008. 10. 15., 2008. 10. 22., 2008. 11. 05. Leadás dátuma: 2008. 11. 23. Figure 1: Rezonancia-abszorpció és szórás 1 Elméleti összefoglaló
Méréstechnika 5. Galla Jánosné 2014
Méréstechnika 5. Galla Jánosné 014 A mérési hiba (error) a mérendő mennyiség értékének és a mérendő mennyiség referencia értékének különbsége: ahol: H i = x i x ref H i - a mérési hiba; x i - a mért érték;
Mag-mágneses rezonancia
Mag-mágneses rezonancia jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csorba Ottó Mérés dátuma: 2010. március 25. Leadás dátuma: 2010. április 7. Mérés célja A labormérés célja a mag-mágneses
Elektrotechnika Feladattár
Impresszum Szerző: Rauscher István Szakmai lektor: Érdi Péter Módszertani szerkesztő: Gáspár Katalin Technikai szerkesztő: Bánszki András Készült a TÁMOP-2.2.3-07/1-2F-2008-0004 azonosítószámú projekt
Homogén anyageloszlású testek sűrűségét m tömegük és V térfogatuk hányadosa adja. ρ = m V.
mérés Faminták sűrűségének meghatározása meg: Homogén anyageloszlású testek sűrűségét m tömegük és V térfogatuk hányadosa adja ρ = m V Az inhomogén szerkezetű faanyagok esetén ez az összefüggés az átlagsűrűséget
2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika
2. OPTIKA 2.1. Elmélet Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert fényt bocsátanak ki, vagy a rájuk eső fényt visszaverik, és ezt a fényt a szemünk érzékeli. A
Fizika 11. osztály. 1. Mágneses mező szemléltetése és mérése, mágneses pörgettyű (levitron)... 2. 2. Lenz törvénye: Waltenhofen-inga, Lenz-ágyú...
Fizika 11. osztály 1 Fizika 11. osztály Tartalom 1. Mágneses mező szemléltetése és mérése, mágneses pörgettyű (levitron)............. 2 2. Lenz törvénye: Waltenhofen-inga, Lenz-ágyú......................................
A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I.
Oktatási Hivatal A 11/1. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.
19. Az elektron fajlagos töltése
19. Az elektron fajlagos töltése Hegyi Ádám 2015. február Tartalomjegyzék 1. Bevezetés 2 2. Mérési összeállítás 4 2.1. Helmholtz-tekercsek.............................. 5 2.2. Hall-szonda..................................
Szakdolgozat. Elektron spin rezonancia spektrométer fejlesztése. Témavezető: Simon Ferenc egyetemi docens BME Fizikai Intézet Fizika Tanszék
Szakdolgozat Elektron spin rezonancia spektrométer fejlesztése Gyüre Balázs Témavezető: Simon Ferenc egyetemi docens BME Fizikai Intézet Fizika Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2011
A szabadesés egy lehetséges kísérleti tanítása a nagyváradi ADY Endre Líceumban
A szabadesés egy lehetséges kísérleti tanítása a nagyváradi ADY Endre Líceumban Mottó: A kísérletek nélküli fizika nem több, egy érthetetlen képletgyűjteménynél. Több évtizedes fizikatanári pályafutásom
EMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2015. május 18. FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. május 18. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fizika
Tanulói munkafüzet. FIZIKA 9. évfolyam 2015. egyetemi docens
Tanulói munkafüzet FIZIKA 9. évfolyam 2015. Összeállította: Scitovszky Szilvia Lektorálta: Dr. Kornis János egyetemi docens Tartalomjegyzék 1. Az egyenletes mozgás vizsgálata... 3 2. Az egyenes vonalú
Vetülettani és térképészeti alapismeretek
Vetülettani és térképészeti alapismeretek A geodéziában - mint ismeretes - a földalak első megközelítője a geoid. Geoidnak nevezzük a nehézségi erőtér potenciáljának azt a szintfelületét, amelynek potenciálértéke
Tanulói munkafüzet. FIZIKA 11. évfolyam emelt szintű tananyag 2015. egyetemi docens
Tanulói munkafüzet FIZIKA 11. évfolyam emelt szintű tananyag 2015. Összeállította: Scitovszky Szilvia Lektorálta: Dr. Kornis János egyetemi docens Tartalomjegyzék 1. Egyenes vonalú mozgások..... 3 2. Periodikus
IV. RÉSZ MECHANIKUS KAPCSOLÓK A TRAKTOR ÉS A VONTATMÁNY KÖZÖTT, VALAMINT A KAPCSOLÁSI PONTRA HATÓ FÜGGŐLEGES TERHELÉS 1. MEGHATÁROZÁSOK 1.1.
IV. RÉSZ MECHANIKUS KAPCSOLÓK A TRAKTOR ÉS A VONTATMÁNY KÖZÖTT, VALAMINT A KAPCSOLÁSI PONTRA HATÓ FÜGGŐLEGES TERHELÉS 1. MEGHATÁROZÁSOK 1.1. Mechanikus kapcsoló a traktor és a vontatmány között : olyan
EMELT SZINTŰ ÍRÁSBELI VIZSGA
É RETTSÉGI VIZSGA 2015. október 22. FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. október 22. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
Nyugat-magyarországi Egyetem Geoinformatikai Kara. Csordásné Marton Melinda. Fizikai példatár 4. FIZ4 modul. Elektromosságtan
Nyugat-magyarországi Egyetem Geoinformatikai Kara Csordásné Marton Melinda Fizikai példatár 4 FIZ4 modul Elektromosságtan SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999 évi LXXVI
2. ábra Soros RL- és soros RC-kör fázorábrája
SOOS C-KÖ Ellenállás, kondenzátor és tekercs soros kapcsolása Az átmeneti jelenségek vizsgálatakor soros - és soros C-körben egyértelművé vált, hogy a tekercsen késik az áram a feszültséghez képest, a
1. Válaszd ki a helyes egyenlőségeket! a. 1C=1A*1ms b. 1 μc= 1mA*1ms. 2. Hány elektron halad át egy fogyasztón 1 perc alatt, ha az I= 20 ma?
1. Válaszd ki a helyes egyenlőségeket! a. 1C=1A*1ms b. 1 μc= 1mA*1ms c. 1mC 1 A = d. 1 ms A 1mC 1 m = 1 ns 2. Hány elektron halad át egy fogyasztón 1 perc alatt, ha az I= 20 ma? ( q = 1,6 *10-16 C) - e
Gépjármű Diagnosztika. Szabó József Zoltán Főiskolai adjunktus BMF Mechatronika és Autótechnika Intézet
Gépjármű Diagnosztika Szabó József Zoltán Főiskolai adjunktus BMF Mechatronika és Autótechnika Intézet 14. Előadás Gépjármű kerekek kiegyensúlyozása Kiegyensúlyozatlannak nevezzük azt a járműkereket, illetve
A DÖNTÉS SORÁN FENNAKADT FÁK MOZGATÁSA
A DÖNTÉS SORÁN FENNAKADT FÁK MOZGATÁSA A FENNAKADÁS KÉT TÍPUSA Galgóczi Gyula Hajdu Endre Az alábbiakban a kézi eszközökkel végzett fakitermelés egyik balesetveszélyes mozzanatáról lesz szó. Arról a folyamatról,
Mikrohullámok vizsgálata. x o
Mikrohullámok vizsgálata Elméleti alapok: Hullámjelenségen valamilyen rezgésállapot (zavar) térbeli tovaterjedését értjük. A hullám c terjedési sebességét a hullámhossz és a T rezgésido, illetve az f frekvencia
GENERÁTOR. Összeállította: Szalai Zoltán
GENERÁTOR Összeállította: Szalai Zoltán 2008 GÉPJÁRMŰ GENERÁTOROK CSOPORTOSÍTÁSA Működés elve szerint: - mozgási indukció: - mágnes áll, tekercs forog (dinamó) - tekercs áll, mágnes forog (generátor) Pólus
DIGITÁLIS MULTIMÉTER AX-101B HASZNÁLATI ÚTMUTATÓ
DIGITÁLIS MULTIMÉTER AX-101B HASZNÁLATI ÚTMUTATÓ I. BEVEZETÉS A stabil és megbízható multiméter 3 ½ számjegyes, könnyen olvasható LCD kijelzővel rendelkezik. A mérőműszerrel elvégezhető mérések: AC és
= szinkronozó nyomatékkal egyenlő.
A 4.45. ábra jelöléseit használva, tételezzük fel, hogy gépünk túllendült és éppen a B pontban üzemel. Mivel a motor által szolgáltatott M 2 nyomaték nagyobb mint az M 1 terhelőnyomaték, a gép forgórészére
MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PRÓBAÉRETTSÉGI FELADATSORHOZ 11. ÉVFOLYAM
AZ OSZÁG VEZETŐ EGYETEMI-FŐISKOLAI ELŐKÉSZÍTŐ SZEVEZETE MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PÓBAÉETTSÉGI FELADATSOHOZ. ÉVFOLYAM I. ÉSZ (ÖSSZESEN 3 PONT) 3 4 5 6 7 8 9 3 4 5 D D C D C D D D B
Anyagszerkezettan és anyagvizsgálat (BMEGEMTAGK1)
Segédlet az Anyagszerkezettan és anyagvizsgálat (BMEGEMTAGK1) tárgy hallgatói számára Készítette a BME Anyagtudomány és Technológia Tanszék Munkaközössége Összeállította: dr. Orbulov Imre Norbert 1 Laborgyakorlatok
GÉPÉSZETI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2012. május 25. GÉPÉSZETI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. május 25. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
Modern Fizika Laboratórium Fizika BSc 22. Kvantumradír
Modern Fizika Laboratórium Fizika BSc 22. Kvantumradír Mérést végezték: Márkus Bence Gábor Kálmán Dávid Kedd délelőtti csoport Mérés ideje: 05/15/2012 Beadás ideje: 05/26/2012 Érdemjegy: 1 1. A mérés rövid
Tevékenység: Olvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDEO (A ragasztás ereje)
lvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDE (A ragasztás ereje) A ragasztás egyre gyakrabban alkalmazott kötéstechnológia az ipari gyakorlatban. Ennek oka,
11. ÉVFOLYAM FIZIKA. TÁMOP 3.1.3 Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban
TÁMOP 3.1.3 Természettudományos 11. ÉVFOLYAM FIZIKA Szerző: Pálffy Tamás Lektorálta: Szabó Sarolta Tartalomjegyzék Bevezető... 3 Laborhasználati szabályok, balesetvédelem, figyelmeztetések... 4 A mágneses
Elektrodinamika. Nagy, Károly
Elektrodinamika Nagy, Károly Elektrodinamika Nagy, Károly Publication date 2002 Szerzői jog 2002 Nagy Károly, Nemzeti Tankönyvkiadó Rt. Szerző: Nagy Károly Bírálók: DR. GÁSPÁR REZSŐ - egyetemi tanár, a
1. A kutatások elméleti alapjai
1. A kutatások elméleti alapjai A kedvezőbb kapcsolódás érdekében a hipoid fogaskerekek és az ívelt fogú kúpkerekek korrigált fogfelülettel készülnek, aminek eredményeként az elméletileg konjugált fogfelületek
Gépelemek szerelésekor, gyártásakor használt mérőezközök fajtái, használhatóságuk a gyakorlatban
Molnár István Gépelemek szerelésekor, gyártásakor használt mérőezközök fajtái, használhatóságuk a gyakorlatban A követelménymodul megnevezése: Gépelemek szerelése A követelménymodul száma: 0221-06 A tartalomelem
Fizika 1i gyakorlat példáinak kidolgozása 2012. tavaszi félév
Fizika 1i gyakorlat példáinak kidolgozása 2012. tavaszi félév Köszönetnyilvánítás: Az órai példák kidolgozásáért, és az otthoni példákkal kapcsolatos kérdések készséges megválaszolásáért köszönet illeti
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. május 15. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. május 15. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM
Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 9. mérés: Röntgen-fluoreszcencia analízis. 2008. április 22.
Modern Fizika Labor Fizika BSc A mérés dátuma: 28. április 22. A mérés száma és címe: 9. mérés: Röntgen-fluoreszcencia analízis Értékelés: A beadás dátuma: 28. május 5. A mérést végezte: Puszta Adrián,
L Ph 1. Az Egyenlítő fölötti közelítőleg homogén földi mágneses térben a proton (a mágneses indukció
A 2008-as bajor fizika érettségi feladatok (Leistungskurs) Munkaidő: 240 perc (A vizsgázónak két, a szakbizottság által kiválasztott feladatsort kell kidolgoznia) L Ph 1 1. Kozmikus részecskék mozgása
Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Mikroelektronikai és Technológia Intézet. Mikro- és nanotechnika (KMENT14TNC)
Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Mikroelektronikai és Technológia Intézet Mikro- és nanotechnika (KMENT14TNC) Laboratóriumi gyakorlatok Mérési útmutató 3. Hall-szondák alkalmazásai a. Félvezető
Az optikai jelátvitel alapjai. A fény két természete, terjedése
Az optikai jelátvitel alapjai A fény két természete, terjedése A fény kettős természete 1. A fény: - Elektromágneses hullám (EMH) - Optikai jelenség Egyes dolgokat a hullám természettel könnyű magyarázni,
3. számú mérés Szélessávú transzformátor vizsgálata
3. számú mérés Szélessávú transzformátor vizsgálata A mérésben a hallgatók megismerkedhetnek a szélessávú transzformátorok főbb jellemzőivel. A mérési utasítás első része a méréshez szükséges elméleti
KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II.
KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. 4 ELeKTROMOSSÁG, MÁGNeSeSSÉG IV. MÁGNeSeSSÉG AZ ANYAGbAN 1. AZ alapvető mágneses mennyiségek A mágneses polarizáció, a mágnesezettség vektora A nukleonok (proton,
JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Fizika középszint 0513 ÉRETTSÉGI VIZSGA 005. május 17. FIZIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 10 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM írásbeli vizsga 0513
MATEMATIKA ÉRETTSÉGI 2007. október 25. EMELT SZINT I.
1) x x MATEMATIKA ÉRETTSÉGI 007. október 5. EMELT SZINT I. a) Oldja meg a valós számok halmazán az alábbi egyenletet! (5 pont) b) Oldja meg a valós számpárok halmazán az alábbi egyenletrendszert! lg x
FÉNYT KIBOCSÁTÓ DIÓDÁK ALKALMAZÁSA A KÖZÉPISKOLAI FIZIKAOKTATÁSBAN
Kísérlet a Lenz-ágyúval. A verseny elôkészületei során többször jártam a Csodák Palotájában és azt tapasztaltam, hogy sokan egy óriási játszótérnek tekintik a kiállítást. Nyílván ez célja is a szervezôknek,
Tartalom ELEKTROSZTATIKA AZ ELEKTROMOS ÁRAM, VEZETÉSI JELENSÉGEK A MÁGNESES MEZÕ
Tartalom ELEKTROSZTATIKA 1. Elektrosztatikai alapismeretek... 10 1.1. Emlékeztetõ... 10 2. Coulomb törvénye. A töltésmegmaradás törvénye... 14 3. Az elektromos mezõ jellemzése... 18 3.1. Az elektromos
Fizika 12. osztály. 1. Az egyenletesen változó körmozgás kinematikai vizsgálata... 2. 2. Helmholtz-féle tekercspár... 4. 3. Franck-Hertz-kísérlet...
Fizika 12. osztály 1 Fizika 12. osztály Tartalom 1. Az egyenletesen változó körmozgás kinematikai vizsgálata.......................... 2 2. Helmholtz-féle tekercspár.....................................................
A projekt eredetileg kért időtartama: 2002 február 1. 2004. december 31. Az időtartam meghosszabbításra került 2005. december 31-ig.
Szakmai zárójelentés az Ultrarövid infravörös és távoli infravörös (THz-es) fényimpulzusok előállítása és alkalmazása című, T 38372 számú OTKA projekthez A projekt eredetileg kért időtartama: 22 február
Elektromágneses terek 2011/12/1 félév. Készítette: Mucsi Dénes (HTUCA0)
Elektromágneses terek 2011/12/1 félév Készítette: Mucsi Dénes (HTUCA0) 1 1 Bevezetés... 11 2 Vázlat... 11 3 Matematikai eszköztár... 11 3.1 Vektoranalízis... 11 3.2 Jelenségek színtere... 11 3.3 Mezők...
2.3.2.2.1.2.1 Visszatérítő nyomaték és visszatérítő kar
2.3.2.2.1.2 Keresztirányú stabilitás nagy dőlésszögeknél A keresztirányú stabilitás számszerűsítésénél, amint korábban láttuk, korlátozott a metacentrikus magasságra való támaszkodás lehetősége. Csak olyankor
b) Adjunk meg 1-1 olyan ellenálláspárt, amely párhuzamos ill. soros kapcsolásnál minden szempontból helyettesíti az eredeti kapcsolást!
2006/I/I.1. * Ideális gázzal 31,4 J hőt közlünk. A gáz állandó, 1,4 10 4 Pa nyomáson tágul 0,3 liter térfogatról 0,8 liter térfogatúra. a) Mennyi munkát végzett a gáz? b) Mekkora a gáz belső energiájának
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2011. május 13. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 13. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
JÁTSZÓTÉRI FIZIKA GIMNAZISTÁKNAK
JÁTSZÓTÉRI FIZIKA GIMNAZISTÁKNAK Gallai Ditta BME Két Tanítási Nyelvű Gimnázium, Budapest, gallai.ditta@gmail.com, az ELTE Fizika Tanítása doktori program hallgatója ÖSSZEFOGLALÁS Az oktatás sikerességében
EÖTVÖS LABOR EÖTVÖS JÓZSEF GIMNÁZIUM TATA FELADATLAPOK FIZIKA. 11. évfolyam. Gálik András. A Tatai Eötvös József Gimnázium Öveges Programja
FELADATLAPOK FIZIKA 11. évfolyam Gálik András ajánlott korosztály: 11. évfolyam 1. REZGÉSIDŐ MÉRÉSE fizika-11-01 1/3! BALESETVÉDELEM, BETARTANDÓ SZABÁLYOK, AJÁNLÁSOK A mérés során használt eszközökkel
Minimális fluidizációs gázsebesség mérése
Minimális fluidizációs gázsebesség mérése Készítette: Szücs Botond Észrevételeket szívesen fogadok: szucs.botond.m@gmail.com Utolsó módosítás:2016.03.03. Tartalom I. Mérési feladat... 3 II. Mérő berendezés
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2014. május 19. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 19. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fizika
KÉRDÉSEK_GÉPELEMEKBŐL_TKK_2016.
KÉRDÉSEK_GÉPELEMEKBŐL_TKK_2016. 1.Tűréseknek nevezzük: 2 a) az anyagkiválasztás és a megmunkálási eljárások előírásait b) a gépelemek nagyságának és alakjának előírásai c) a megengedett eltéréseket az
Alak- és helyzettűrések
1. Rajzi jelek Alak- és helyzettűrések Az alak- és helyzettűrésekkel kapcsolatos előírásokat az MSZ EN ISO 1101:2006 Termékek geometriai követelményei (GPS). Geometriai tűrések. Alak-, irány-, helyzet-
Tanulmányozza az 5. pontnál ismertetett MATLAB-modell felépítést és működését a leírás alapján.
Tevékenység: Rajzolja le a koordinaátarendszerek közti transzformációk blokkvázlatait, az önvezérelt szinkronmotor sebességszabályozási körének néhány megjelölt részletét, a rezolver felépítését és kimenőjeleit,
1. gy. SÓ OLDÁSHŐJÉNEK MEGHATÁROZÁSA. Kalorimetriás mérések
1. gy. SÓ OLDÁSHŐJÉNEK MEGHATÁROZÁSA Kalorimetriás mérések A fizikai és kémiai folyamatokat energiaváltozások kísérik, melynek egyik megnyilvánulása a hőeffektus. A rendszerben ilyen esetekben észlelhető
Geodézia 4. Vízszintes helymeghatározás Gyenes, Róbert
Geodézia 4. Vízszintes helymeghatározás Gyenes, Róbert Geodézia 4.: Vízszintes helymeghatározás Gyenes, Róbert Lektor: Homolya, András Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel
Medical Imaging 10 2009.04.07. 1. Mágneses rezonancia (MR, MRI, NMR) x B. Makroszkopikus tárgyalás
Mágneses rezonancia (MR, MRI, NMR) Bloch, Purcell 1946, Nobel díj 1952. Mágneses momentum + - Mágneses térben a mágneses momentum az erővonalakkal csak meghatározott szöget zárhat be. Különböző irányokhoz
MUNKAANYAG. Földi László. Szögmérések, külső- és belső kúpos felületek mérése. A követelménymodul megnevezése:
Földi László Szögmérések, külső- és belső kúpos felületek mérése A követelménymodul megnevezése: Általános anyagvizsgálatok és geometriai mérések A követelménymodul száma: 0225-06 A tartalomelem azonosító
Az oszcillátor olyan áramkör, amely periodikus (az analóg elektronikában általában szinuszos) jelet állít elő.
3.8. Szinuszos jelek előállítása 3.8.1. Oszcillátorok Az oszcillátor olyan áramkör, amely periodikus (az analóg elektronikában általában szinuszos) jelet állít elő. Az oszcillátor elvi elépítését (tömbvázlatát)
MATEMATIKA ÉRETTSÉGI 2011. október 18. EMELT SZINT I.
MATEMATIKA ÉRETTSÉGI 0. október 8. EMELT SZINT I. ) Kinga 0. születésnapja óta kap havi zsebpénzt a szüleitől. Az első összeget a 0. születésnapján adták a szülők, és minden hónapban 50 Fttal többet adnak,
O 1.1 A fény egyenes irányú terjedése
O 1.1 A fény egyenes irányú terjedése 1 blende 1 és 2 rés 2 összekötő vezeték Előkészület: A kísérleti lámpát teljes egészében egy ív papírlapra helyezzük. A négyzetes fénynyílást széttartó fényként használjuk
8. Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése jegyzőkönyv
8. Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 11. 05. Leadás dátuma: 2008. 11. 19. 1 1. Mikroszkóp
Tevékenység: Gyűjtse ki és tanulja meg a kötőcsavarok szilárdsági tulajdonságainak jelölési módját!
Csavarkötés egy külső ( orsó ) és egy belső ( anya ) csavarmenet kapcsolódását jelenti. A következő képek a motor forgattyúsházában a főcsapágycsavarokat és a hajtókarcsavarokat mutatják. 1. Kötőcsavarok
FIATAL MŰSZAKIAK TUDOMÁNYOS ÜLÉSSZAKA
FIATAL MŰSZAKIAK TUDOMÁNYOS ÜLÉSSZAKA Kolozsvár, 2002. március 22-23. SZUPRAVEZETŐS KÍSÉRLETEK IPARI ALKALMAZÁSI LEHETŐSÉGGEL Experiments with superconductors and possible industrial applications Kósa
KULCS_GÉPELEMEKBŐL_III._FOKOZAT_2016.
KULCS_GÉPELEMEKBŐL_III._FOKOZAT_2016. 1.Tűréseknek nevezzük: 2 a) az anyagkiválasztás és a megmunkálási eljárások előírásait b) a gépelemek nagyságának és alakjának előírásai c) a megengedett eltéréseket
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2016. május 17. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 17. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fizika
FIZIKA Tananyag a tehetséges gyerekek oktatásához
HURO/1001/138/.3.1 THNB FIZIKA Tananyag a tehetséges gyerekek oktatásához Készült A tehetség nem ismer határokat HURO/1001/138/.3.1 című projekt keretén belül, melynek finanszírozása a Magyarország-Románia
(11) Lajstromszám: E 004 661 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA
!HU000004661T2! (19) HU (11) Lajstromszám: E 004 661 (13) T2 MAGYAR KÖZTÁRSASÁG Magyar Szabadalmi Hivatal EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA (21) Magyar ügyszám: E 05 778425 (22) A bejelentés napja:
JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Fizika emelt szint 06 ÉETTSÉGI VIZSGA 006. május 5. FIZIKA EMELT SZINTŰ ÍÁSBELI ÉETTSÉGI VIZSGA JAVÍTÁSI-ÉTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉIUM A dolgozatokat az útmutató utasításai szerint, jól köethetően
Mérési jegyzőkönyv. Rezonancia. 4. mérés: Semmelweis Egyetem, Elméleti Orvostudományi Központ Biofizika laboratórium. A mérés időpontja: 2013.03.06.
Mérési jegyzőkönyv 4. mérés: Rezonancia A mérés helyszíne: Semmelweis Egyetem, Elméleti Orvostudományi Központ Biofizika laboratórium A mérés időpontja: 2013.03.06. A mérést végezte: Jánosa Dávid Péter
JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Fizika emelt szint 0513 ÉRETTSÉGI VIZSGA 2005. május 17. FIZIKA EMELT SZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 240 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM A dolgozatokat az
ÁLLATTARTÁS MŰSZAKI ISMERETEI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010
ÁLLATTARTÁS MŰSZAKI ISMERETEI Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 Takarmányok erjesztéses tartósításának műszaki kérdései 1. Szálastakarmányok aprításának gépei és
MFI mérés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA
B1 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK MFI mérés HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA A JEGYZET ÉRVÉNYESSÉGÉT A TANSZÉKI WEB OLDALON
4b 9a + + = + 9. a a. + 6a = 2. k l = 12 évfolyam javítóvizsgára. 1) Alakítsd szorzattá a következő kifejezéseket!
) Alakítsd szorzattá a következő kifejezéseket! 4 c) d) e) f) 9k + 6k l + l = ay + 7ay + 54a = 4 k l = b 6bc + 9c 4 + 4y + y 4 4b 9a évfolyam javítóvizsgára ) Végezd el az alábbi műveleteket és hozd a
Dr. Kuczmann Miklós SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR. Győr, 2009
SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR TÁVKÖZLÉSI TANSZÉK Mérési jegyzőkönyv segédlet Dr. Kuczmann Miklós Válogatott mérések Villamosságtanból Győr, 2009 A mérési segédlet L A TEX szerkesztővel
2010. május- június A fizika szóbeli érettségi mérései, elemzései
2010. május- június A fizika szóbeli érettségi mérései, elemzései 1. A rendelkezésre álló eszközökkel szemléltesse a hőtágulás jelenségét! Eszközök: Gravesande karika, üveg egy forintossal (és némi víz),
lásd: enantiotóp, diasztereotóp
anizokrón anisochronous árnyékolási állandó shielding constant árnyékolási járulékok és empirikus értelmezésük shielding contributions diamágneses és paramágneses árnyékolás diamagnetic and paramagnetic
BEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA
Pék Johanna BEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA (Matematika tanárszakos hallgatók számára) Tartalomjegyzék Előszó ii 0. Alapismeretek 1 0.1. Térgeometriai alapok............................. 1 0.2. Az ábrázoló
HASZNÁLATI ÚTMUTATÓ TERMÉKISMERTETŐ
HASZNÁLATI ÚTMUTATÓ TERMÉKISMERTETŐ Használatbavétel előtt kérjük, figyelmesen olvassa el az alábbi utasításokat. A STEFINOX Kft. nem tehető felelőssé olyan személyi vagy tárgyi sérülésekért, károkért,
6. modul Egyenesen előre!
MATEMATIKA C 11 évfolyam 6 modul Egyenesen előre! Készítette: Kovács Károlyné Matematika C 11 évfolyam 6 modul: Egyenesen előre! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013
Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István tankönyv 0 Mozaik Kiadó Szeged, 03 TARTALOMJEGYZÉK Gondolkodási módszerek. Mi következik ebbõl?... 0. A skatulyaelv... 3. Sorba rendezési
GÉPÉSZETI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2016. május 18. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 18. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
Munkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit
Kalandtúra 7. unkafüzet megoldások 7. osztályos tanulók számára akara Ágnes Bankáné ező Katalin Argayné agyar Bernadette Vépy-Benyhe Judit BEELEGÍTŐ GONDOLKODÁS. SZÓRAKOZTATÓ FELADVÁNYOK. oldal. 6... 6.
Modern Fizika Laboratórium Fizika BSc 18. Granuláris anyagok
Modern Fizika Laboratórium Fizika BSc 18. Granuláris anyagok Mérést végezték: Márkus Bence Gábor Kálmán Dávid Kedd délelőtti csoport Mérés ideje: 05/08/2012 Beadás ideje: 05/11/2012 Érdemjegy: 1 1. A mérés
Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint
TÁMOP-.1.4-08/2-2009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint Vasvár,
Optika feladatok (szemelvények a 333 Furfangos Feladat Fizikából könyvből)
Fénytan 1 Optika feladatok (szemelvények a 333 Furfangos Feladat Fizikából könyvből) Feladatok F. 1. Vízszintes asztallapra fektetünk egy negyedhenger alakú üvegtömböt, amelynek függőlegesen álló síklapját
Ph 11 1. 2. Mozgás mágneses térben
Bajor fizika érettségi feladatok (Tervezet G8 2011-től) Munkaidő: 180 perc (A vizsgázónak két, a szakbizottság által kiválasztott feladatsort kell kidolgoznia. A két feladatsor nem származhat azonos témakörből.)
AGV rendszer fejlesztése
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Irányítástechnika és Informatika Tanszék Szabó Lőrinc E8I9IC Szabó Oszkár Albert - UBHPZC AGV rendszer fejlesztése Önálló
Nyugat-magyarországi Egyetem Geoinformatikai Kara. Gyenes Róbert. Geodézia 4. GED4 modul. Vízszintes helymeghatározás
Nyugat-magyarországi Egyetem Geoinformatikai Kara Gyenes Róbert Geodézia 4. GED4 modul Vízszintes helymeghatározás SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999. évi LXXVI. törvény
Termoelektromos hűtőelemek vizsgálata
Termoelektromos hűtőelemek vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2006. február 19. (hétfő délelőtti csoport) 1 1. A mérés elméleti háttere Először áttekintjük a mérés elvégzéséhez szükséges elméleti