anal2_03_szelsoertek_demo.nb 1
|
|
- Piroska Vargané
- 8 évvel ezelőtt
- Látták:
Átírás
1 anal szelsoertek_demo.nb parciális deriválás f x^ y^; f Sin x Cos y ; g D f, x ; h D f, y ; Show GraphicsArray PlotD f, x,,, y,,, AxesLabel StringForm "f ``", f, None, None, DisplayFunction Identity, PlotD g, x,,, y,,, AxesLabel StringForm " f x ``", g, None, None, DisplayFunction Identity, PlotD h, x,,, y,,, AxesLabel StringForm " f y ``", h, None, None, DisplayFunction Identity, DisplayFunction $DisplayFunction f Cos y Sin x f x Cos x Cos y f - y GraphicsArray In[]:= Érintősík ClearAll f ; ClearAll x ; ClearAll y ; ClearAll x ; ClearAll y ; ClearAll Dx ; ClearAll Dy ; ClearAll D ; ClearAll nv ; ClearAll dx ; Out[6]= f x_, y_ x^ x y y^ 6 x y ; x ; y ; Dx D f x, y, x. x x, y y Dy D f x, y, y. x x, y y nv Dx, Dy, Out[7]= Out[8]= 8, 6,
2 anal szelsoertek_demo.nb In[9]:= ErintoSik x_, y_ z f x, y Dx x x Dy y y ; az x,y pontbeli érintősík egyenlete dx 5; PlotD f x, y, x, x dx, x dx, y, y dx, y dx Out[]= In[]:= SurfaceGraphics PlotD ErintoSik x, y,, x, x dx, x dx, y, y dx, y dx, Mesh False Adott x és y mellett ezt rakjuk majd a PlotD be, és akkor ábrázolja az érintősíkot Out[]= SurfaceGraphics
3 anal szelsoertek_demo.nb Parc. deriv, érintősík felület implicit képlettel G 6 x 9y 6 z ; x ; y ; f x_, y_ z. Solve G, z Dx x f x, y Dy y f x, y Dx x f x, y. x x, y y ; Dy y f x, y. x x, y y ; nv Dx, Dy, normálvektor ErintoSik x_, y_ f x, y Dx x x Dy y y érintősík egyenlete dx ; rajzolási tartományhoz dd ; normálvektor hossza Show PlotD f x, y, x, x dx, x dx, y, y dx, y dx, DisplayFunction Identity, PlotPoints 5, PlotD ErintoSik x, y, x, x dx, x dx, y, y dx, y dx, DisplayFunction Identity, Mesh False, GraphicsD Thickness., Hue, Line x, y, f x, y, x dd nv, y dd nv, f x, y dd nv, DisplayFunction $DisplayFunction 6 6 x 9y 8x 6 x 9y y 6 x 9y,, x y GraphicsD::nlist :.959,., is not a list of three numbers. GraphicsD::nlist :.959,.598,..787 is not a list of three numbers. GraphicsD::nlist :.67,.598, is not a list of three numbers. General::stop : Further output of GraphicsD::nlist will be suppressed during this calculation.
4 anal szelsoertek_demo.nb GraphicsD
5 anal szelsoertek_demo.nb 5 Iránymenti derivált ClearAll f ; ClearAll x ; ClearAll y ; ClearAll x ; ClearAll y ; ClearAll Dx ; ClearAll Dy ; ClearAll D ; ClearAll dx ; f x_, y_ x y ; x ; y ; Dx x f x, y Dy y f x, y D Dx Cos Dy Sin dx ; FuggolegesSik GraphicsD Polygon #, #. x #, #, #, #. x #, #, #, #. x #, #, #, #. x #, # &; ez rajzol egy téglalapot egy megadott egyenes fölé. Használat: FuggolegesSik x,x, x 6, z,z Plot D. x x, y y,,, p PlotD f x, y, x, x dx, x dx, y, y dx, y dx, PlotPoints 6 b PlotD, x, x dx, x dx, y, y dx, y dx, PlotPoints 6, Boxed False, Axes False Show p, b, GraphicsD PointSize., Hue, Point x, y, f x, y ; ps FuggolegesSik x dx, x dx, y. Solve y y Dy Dx. x x, y y x x, y,, 5 ; Dx,Dy irányvektorú egyenes fölé rajzolt sík. Mint tudjuk, a gradiens irányában a legnagyobb az iránymenti derivált. Show p, ps, b, GraphicsD PointSize., Hue, Point x, y, f x, y ; ps FuggolegesSik x dx, x dx, y. Solve y y Dx Dy. x x, y y x x, y,, ;, Dx Dy irányvektorú egyenes fölé rajzolt sík. Lásd: implicit függvény tétel. Show p, ps, b, GraphicsD PointSize., Hue, Point x, y, f x, y ; Házi feladat: Legyen f x,y x^ x y y^ 6 x y, a ZH ban szereplő függvény. Írd fel az x,y, pontban a legnagyobb iránymenti deriváltat Rajzoltasd ki az ebbe az irányba álló,,,f, pontra illeszkedő függőleges síkot a függvény által meghatározott felülettel együtt egy közös ábrában. x y x y x y Cos x y Sin
6 anal szelsoertek_demo.nb Graphics - - SurfaceGraphics SurfaceGraphics
7 anal szelsoertek_demo.nb 7
8 anal szelsoertek_demo.nb 8 Feltételes és lokális szélsőérték f x_, y_ Cos x Cos y ; függvény g x_ x ; feltétel pr.5; plotrange loksze Solve x f x, y, y f x, y, x, y ; stacionárius pontok loksze Transpose x. loksze, y. loksze, f x. loksze, y. loksze és hozzá a z koordináták ClearAll FuggolegesSik ; FuggolegesSik GraphicsD Polygon #, #. x #, #, #, #. x #, #, #, #. x #, #, #, #. x #, # &; p PlotD f x, y, x, pr, pr, y, g pr, g pr, PlotPoints 5 p PlotD f x, y, x, pr, pr, y, g pr, g pr, DisplayFunction Identity, PlotPoints 5 ; p FuggolegesSik pr, pr, g x,, ; p GraphicsD PointSize., Hue, Point loksze ; Show p, p, p, DisplayFunction $DisplayFunction, PlotRange Automatic, Automatic, Automatic p ContourPlot f x, y, x, pr, pr, y, g pr, g pr, ContourShading True, Contours, DisplayFunction Identity ; p Plot g x, x, pr, pr, PlotStyle Hue, DisplayFunction Identity Show p, p, DisplayFunction $DisplayFunction ; Solve::ifun : Inverse functions are being used by Solve, so some solutions may not be found.,,,,,,,,,,,,,,,,,,,, SurfaceGraphics
9 anal szelsoertek_demo.nb GraphicsD Graphics
10 anal szelsoertek_demo.nb ClearAll f ; ClearAll F ; ClearAll g ; ClearAll G ; ClearAll x ; ClearAll y ; ClearAll x ; ClearAll y ; ClearAll Dx ; ClearAll Dy ; ClearAll D ; ClearAll nv ; ClearAll dx ; ClearAll pr ; f x_, y_ x^ ^ x^ y x ^; p PlotD f x, y, x,,, y,, loksze Solve D f x, y, x, D f x, y, y, x, y ; loksze Transpose x. loksze, y. loksze, f x. loksze, y. loksze p GraphicsD PointSize., Hue, Point loksze ; Show p, p, DisplayFunction $DisplayFunction, AspectRatio Automatic, PlotRange Automatic, Automatic, Automatic ; Table Show p,p,viewpoint.,k,, k,,, ; SurfaceGraphics,,,,,
11 anal szelsoertek_demo.nb ClearAll f ; ClearAll F ; ClearAll g ; ClearAll G ; ClearAll x ; ClearAll y ; ClearAll x ; ClearAll y ; ClearAll Dx ; ClearAll Dy ; ClearAll D ; ClearAll nv ; ClearAll dx ; ClearAll pr ; f x_, y_ x Exp y x^ Exp y ; loksze Solve D f x, y, x, D f x, y, y, x, y ; loksze loksze ; loksze x. loksze, y. loksze, f x. loksze, y. loksze ; p PlotD f x, y, x,,, y,,, DisplayFunction Identity ; p GraphicsD PointSize., Hue, Point loksze ; Show p, p, DisplayFunction $DisplayFunction, ViewPoint,,, PlotRange Automatic, Automatic, Automatic ; Solve::ifun : Inverse functions are being used by Solve, so some solutions may not be found
12 anal szelsoertek_demo.nb ClearAll f ; ClearAll F ; ClearAll g ; ClearAll G ; ClearAll x ; ClearAll y ; ClearAll x ; ClearAll y ; ClearAll Dx ; ClearAll Dy ; ClearAll D ; ClearAll nv ; ClearAll dx ; ClearAll pr ; Graphics`ImplicitPlot` pr.5; F x_, y_ x^ y; Ennek a szélsőértékeit keressük G x_, y_ x y ; a G feltétel mellett, azaz az egységkörön. DF x_, y_ D F x, y, x, D F x, y, y DG x_, y_ D G x, y, x, D G x, y, y p PlotD F x, y, x, pr, pr, y, pr, pr, DisplayFunction Identity ; p PlotD G x, y, x, pr, pr, y, pr, pr, DisplayFunction Identity ; p PlotD, x, pr, pr, y, pr, pr, Mesh False, DisplayFunction Identity ; Show p, p, DisplayFunction $DisplayFunction Show p, p, DisplayFunction $DisplayFunction Show p, p, p, DisplayFunction $DisplayFunction g x_ y. Solve G x, y, y f t_ Cos t, Sin t ; Kihasználom, hogy az egységkör a feltétel, és paraméterezem. A lehetséges szélsőértékhelyek: feltloksze Solve D F x, y mg x, y, x, D F x, y mg x, y, y, D F x, y mg x, y, m, x, y, m x, x,y - - GraphicsD
13 anal szelsoertek_demo.nb GraphicsD - - GraphicsD x m,x, y, m,x, y, m, x,y, m, x,y
14 anal szelsoertek_demo.nb Ábrázolom a kört és néhány F konstans görbét. p ImplicitPlot G x, y, x, pr, pr, y, pr, pr, AxesOrigin,, DisplayFunction Identity ; p ImplicitPlot F x, y.5, x, pr, pr, y, pr, pr, AxesOrigin,, DisplayFunction Identity ; p5 ImplicitPlot F x, y, x, pr, pr, y, pr, pr, AxesOrigin,, DisplayFunction Identity ; p6 ImplicitPlot F x, y.5, x, pr, pr, y, pr, pr, AxesOrigin,, DisplayFunction Identity ; p7 ImplicitPlot F x, y.5, x, pr, pr, y, pr, pr, AxesOrigin,, DisplayFunction Identity ; p8 ImplicitPlot F x, y, x, pr, pr, y, pr, pr, AxesOrigin,, DisplayFunction Identity ; Show p, p, p5, p6, p7, p8, DisplayFunction $DisplayFunction ; Ebből leolvasható, hogy F feltételes minimuma, míg a feltételes maximum nagyobb egynél, de kisebb másfélnél A kör paraméterezését használva felírhatom Pi 6 onként F és G gradiensét. dfelt Table f t, DG f t, f t, t,, Pi, Pi 6 ; dfv Table f t, DF f t, f t, t,, Pi, Pi 6 ; Graphics`PlotField` pdfelt ListPlotVectorField dfelt, VectorHeads True ; pdfv ListPlotVectorField dfv, VectorHeads True ; A lehetséges szélsőértékhelyeken a gradiensek párhuzamosak. Ha f gradiense nem merőleges a kör érintőjére, akkor az egyik irányba kicsit elmozdulva nagyobb, a másik irányba kicsit elmozdulva kisebb értékeket vesz föl f, tehát nem lehet szélsőérték. Show p, pdfelt, pdfv, DisplayFunction $DisplayFunction, Axes None ; Látható az előbb kiszámolt négy szélsőértékhely. Az alsó és a felső lokális minimum, a két oldalsó maximum. General::spell : Possible spelling error: new symbol name "pdfelt" is similar to existing symbol "dfelt".
15 anal szelsoertek_demo.nb 5 General::spell : Possible spelling error: new symbol name "pdfv" is similar to existing symbol "dfv".
anal2_04_implicit_es_integral.nb 1
anal implicit_es_integral.nb H L H Implicit függvény tétel L H L
1. dolgozat Számítógéppel segített matematikai modellezés "A" változat 2009 október 20, kedd
Név:. dolgozat Számítógéppel segített matematikai modellezés "A" változat 9 október, kedd Oldd meg a következ: feladatokat. Készíts szép notebook-ot, figyelj a korrekt strukturált megoldásokra.. feladat
Számítógépes Modellezés. Egyváltozós függvénydiszkusszió
Számítógépes Modellezés Egyváltozós függvénydiszkusszió Függvédiszkusszió számítógéppel (ÉT, zéróhelyek, limeszek (lokális/globális/aszimpt viselkedés), monotonitás, szimb+num+viz) f@x_d = Hx ^ 6 - x ^
Számítógépes Modellezés 3. Limesz, Derivált, Integrál. Direkt (normál) értékadás (=) p legyen a 6. Chebysev polinom.
Számítógépes Modellezés 3 Limesz, Derivált, Integrál Direkt (normál) értékadás (=) p legyen a. Chebysev polinom. p ChebyshevT, x 8 x 48 x 4 3 x Helyettesítési érték meghatározásához a változó/határozatlan
Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata
Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata Referencia egyenlet x D Α x Α x x 0 Α sin Ω t req t,t x t D Α t x t Α x t x 0 Α Sin Ω t Α x t D Α x t x t Α Sin t Ω x 0 Homogén rész megoldása
Limesz, Derivált, Integrál
Modellezés Limesz, Derivált, Integrál Direkt (normál) értékadás (=) p legyen a 6. Chebysev polinom. p ChebyshevT6, x 8 x 48 x 4 3 x 6 (Formális) derivált Dp, x 36 x9 x 3 9 x DSinx, x Cosx DSinx, x, Sinx
Név: RV 1. ZH. Számítógépes Modellezés (Mathematica) A csoport Okt. 15. csütörtök
Név: RV 1. ZH. Számítógépes Modellezés (Mathematica) A csoport Okt. 15. csütörtök Oldjuk meg az alábbi problémákat. Ügyeljünk a mukafüzet struktúrájára, használjunk szöveges cellát a megjegyzésekhez, vagy
Galton- deszka Számítógéppel segített matematikai modellezés Prezentációs projektmunka Kertész Balázs
Galton- deszka Számítógéppel segített matematikai modellezés Prezentációs projektmunka Kertész Balázs 2 galton2.nb Történeti áttekintő Sir Francis Galton (1822-1911) Polihisztor Társadalomfilozófia, eugenetika,
Kétváltozós függvények differenciálszámítása
Kétváltozós függvények differenciálszámítása 13. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kétváltozós függvények p. 1/1 Definíció, szemléltetés Definíció. Az f : R R R függvényt
2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x
I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx
First Prev Next Last Go Back Full Screen Close Quit
Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy
EGYVÁLTOZÓS FÜGGVÉNYEK DERIVÁLÁSÁNAK ALKALMAZÁSAI
EGYVÁLTOZÓS FÜGGVÉNYEK DERIVÁLÁSÁNAK ALKALMAZÁSAI I.Feladat: Egyváltozós függvény grafikonjához húzható érintőkkel kapcsolatos feladatok. 1.feladat: Határozza meg az függvény x = 1 abszcisszájú pontjába
MATEMATIKA 2. dolgozat megoldása (A csoport)
MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f
1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n.
1. Többváltozós függvények 1. Bevezetés Ennek a fejezetnek a célja a kétváltozós függvények vizsgálata, ami során a 3-dimenziós felületeket szeretnénénk megérteni. 1. definíció. Legyen D R n. Ekkor az
I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)
I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =
Többváltozós függvények Feladatok
Többváltozós függvények Feladatok 2. szeptember 3. Határozzuk meg az alábbi sorozatok határértékét illetve torlódási pontjait!. ( n n2 + n n 3 2. ( n + n n5 n2 +2n+ 5 n n+ 3. ( sin(nπ/2 n n! Határozzuk
5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11
Bodó Beáta ISMÉTLÉS. ch(6 d.. 4.. 6. 7. 8. 9..... 4.. e (8 d ch (9 + 7 d ( + 4 6 d 7 8 + d sin (4 + d cos sin d 7 ( 6 + 9 4 d INTEGRÁLSZÁMÍTÁS 7 6 sh(6 + c 8 e(8 + c 9 th(9 + 7 + c 6 ( + 4 7 + c = 7 4
Analízis III. gyakorlat október
Vektoranalízis Analízis III. gyakorlat 216. október Gyakorló feladatok és korábbi zh feladatok V1. Igazolja az alábbi "szorzat deriválási" szabályt: div(ff) = F, f + f div(f). V2. Legyen f : IR 3 IR kétszer
Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
9. feladatsor: Többváltozós függvények deriválása (megoldás)
Matematika Ac gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 017/18 ősz feladatsor: Többváltozós függvények deriválása (megoldás) 1 Számoljuk ki a következő függvények parciális deriváltjait
Matematika III előadás
Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,
sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!
Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén
Nemlineáris programozás 2.
Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,
Számítógépes Modellezés 11. Differenciálegyenletes modellek. Inga
Számítógépes Modellezés Differenciálegyenletes modellek Inga Tekintsük a következő egyparaméteres differenciálegyenletes modellt: Φ' Ω, Ω' g l sin Φ, l 0, g 9.8. Keresd meg az egyensúlyi helyzetet. Oldd
Num. Math. 2. Mathematica. Lineáris Algebra. Lineáris Egyenletrendszerek. nummethods2x.nb 1. Numerikus egyenlet(rendszer) megoldó rutin
nummethods2x.nb Num. Math.2 Mathematica Lineáris Algebra Lineáris Egyenletrendszerek In[]:= Out[]= In[2]:= Solvex^250 x 5,x 5 Solvexy2, xy0,x, y Out[2]= x 3 0, y 5 Numerikus egyenlet(rendszer) megoldó
Kétváltozós függvény szélsőértéke
Kétváltozós függvény szélsőértéke Sütő Andrea Kétváltozós függvény szélsőértéke Legyen adott f ( xy, ) kétváltozós függvény és ez legyen folytonosan totálisan differenciálható, azaz létezzenek az elsőrendű
Kalkulus 2., Matematika BSc 1. Házi feladat
. Házi feladat Beadási határidő: 07.0.. Jelölések x = (x,..., x n, y = (y,..., y n, z = (z,..., z n R n esetén. x, y = n i= x iy i, skalárszorzat R n -ben. d(x, y = x y = n i= (x i y i, metrika R n -ben
11. gyakorlat megoldásai
11. gyakorlat megoldásai Lokális szélsőértékek F1. Határozzuk meg az alábbi kétváltozós függvények lokális szélsőértékeit! (a) f(x, y) = 4x 2 + 2xy + 5y 2 + 2, (b) f(x, y) = y 4 y + x 2 y + 2xy, (c) f(x,
Matematika III előadás
Matematika III. - 3. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 19 Skalármezők
Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban
9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x
11. gyakorlat megoldásai
11. gyakorlat megoldásai Lokális szélsőértékek F1. Határozza meg az alábbi kétváltozós függvények lokális szélsőértékeit! (a) f(x, y) = 4x 2 + 2xy + 5y 2 + 2, (b) f(x, y) = y 4 3y + x 2 y + 2xy, (c) f(x,
Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.
Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:
HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai
HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;
Szélsőérték-számítás
Szélsőérték-számítás Jelölések A következő jelölések mind az f függvény x szerinti parciális deriváltját jelentik: Ugyanígy az f függvény y szerinti parciális deriváltja: f x = xf = f x f y = yf = f y
Matematika A1. 8. feladatsor. Dierenciálás 2. Trigonometrikus függvények deriváltja. A láncszabály. 1. Határozzuk meg a dy/dx függvényt.
Matematika A 8. feladatsor Dierenciálás Trigonometrikus függvények deriváltja. Határozzuk meg a dy/d függvényt. a) y = 0 + 3 cos 0 3 sin b) y = sin 4 + 7 cos sin c) y = ctg +ctg sin )+ctg ) d) y = tg cos
4. fejezet. Egyváltozós valós függvények deriválása Differenciálás a definícióval
4. fejezet Egyváltozós valós függvények deriválása Elm 4.. Differenciálás a definícióval A derivált definíciójával atározza meg az alábbi deriváltakat!. Feladat: f) = 6 + f 4) =? f 4) f4 + ) f4) 5 + 6
Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1
Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése). Feladat. Határozzuk meg az f(x) x 2 függvény x 0 pontbeli differenciahányados
6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények
6. Folytonosság pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények Egy függvény egy intervallumon folytonos, ha annak miden pontjában folytonos. folytonos függvények tulajdonságai
Losonczi László. Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar
Szélsőértékszámítás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Losonczi László (DE) Szélsőértékszámítás 1 / 21 2. SZÉLSOÉRTÉKSZÁMÍTÁS 2.1 A szélsőérték fogalma, létezése Azt
Maple: Deriváltak és a függvény nevezetes pontjai
Maple: Deriváltak és a függvény nevezetes pontjai Bevezető Tudjuk, hogy a Maple könnyűszerrel képes végrehajtani a szimbólikus matematikai számításokat, ezért a Maple egy ideális program differenciál-
A legjobb közeĺıtés itt most azt jelentette, hogy a lineáris
Többváltozós függvények differenciálhatósága f(x) f(x Az egyváltozós függvények differenciálhatóságát a lim 0 ) x x0 x x 0 függvényhatárértékkel definiáltuk, s szemléletes jelentése abban mutatkozott meg,
Többváltozós, valós értékű függvények
TÖ Többváltozós, valós értékű függvények TÖ Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza, n változós függvényeknek nevezzük. TÖ Példák:.
2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév)
. Házi feladat és megoldása (DE, KTK, 4/5 tanév első félév) () Határozza meg a következő függvények (első) deriváltját: 3 + f() ctg, g() (3 )3 tg, h() cos( 3 + e ), i() lg(ln(e + 4 ln )), j() (3) ln, k()
Grafika. Egyváltozós függvény grafikonja
Grafika Egyváltozós függvény grafikonja Egyváltozós függvény grafikonját a plot paranccsal tudjuk kirajzolni. Elsı paraméter egy függvény képlete, a második paraméter változónév=intervallum alakú: plot(x^3-16*x+2,x=-6..6);
Komputeralgebra rendszerek
XVII. A Maple grafikus képeségei Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar 2010-2011 ősz Index I 1 Az alapok A plot és plot3d Implicit függvény ábrázolása Késleltetett
Alapvető műveletek és operátorok
Mathematica bevezető Alapfogalmak è Kernel: kiértékel és tárolja a kiszámított értékeket è notebook - ok ( *.nb file): munkafzet è cellák (jobb oldalon zárójelezés): a notebook alapeleme; hierarcikus felépítés;
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA, MATEmATIkA II 7 VII VEkTORANALÍZIS 1 ELmÉLETI ALAPOk Az u függvényt skalár-vektor függvénynek nevezzük, ha értelmezési tartománya a háromdimenziós tér vektorainak halmaza, a függvényértékek
Matematika A1. 9. feladatsor. A derivált alkalmazásai. Függvény széls értékei
Matematika A1 9. feladatsor A derivált alkalmazásai Függvény széls értékei 1. Keressük meg a függvények abszolút maximumát és minimumát a megadott intervallumon. Ezután rajzoljuk fel a függvény grakonját.
Él: a képfüggvény hirtelen változása. Típusai. Felvételeken zajos formában jelennek meg. Lépcsős
Él: a képfüggvény hirtelen változása Típusai Lépcsős Rámpaszerű Tetőszerű Vonalszerű él Felvételeken zajos formában jelennek meg Adott pontbeli x ill. y irányú változás jellemezhető egy f folytonos képfüggvény
2014/2015. tavaszi félév
Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés
1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor
. Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 A derivált alkalmazásai H607, EIC 2019-04-03 Wettl
Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1.
Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás). Feladat. Írjuk fel az f() = függvény 0 = pontbeli érintőjének egyenletét! Az érintő egyenlete y
Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.
215.12.8. Matematika I. NÉV:... 1. Lineáris transzformációk segítségével ábrázoljuk az f(x) = ln(2 3x) függvényt. 7pt 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
Egyenes és sík. Wettl Ferenc szeptember 29. Wettl Ferenc () Egyenes és sík szeptember / 15
Egyenes és sík Wettl Ferenc 2006. szeptember 29. Wettl Ferenc () Egyenes és sík 2006. szeptember 29. 1 / 15 Tartalom 1 Egyenes és szakasz Egyenes Szakasz Egyenesvonalú egyenletes mozgás Egyenes és pont
Számítógépes programok alkalmazása az analízisben
Eötvös Loránd Tudományegyetem Természettudományi Kar Számítógépes programok alkalmazása az analízisben Szakdolgozat Csillagvári Dániel Matematika BSc, elemző szakirány Témavezető: Gémes Margit Analízis
Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák)
Feladatok megoldásokkal az ötödik gyakorlathoz Taylor polinom, szöveges szélsőérték problémák) 1. Feladat. Írjuk fel az fx) = e x függvény a = 0 pont körüli negyedfokú Taylor polinomját! Ennek segítségével
Dierenciálhányados, derivált
9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez
Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált
Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518
Egyenes és sík. Wettl Ferenc Wettl Ferenc () Egyenes és sík / 16
Egyenes és sík Wettl Ferenc 2012-09-20 Wettl Ferenc () Egyenes és sík 2012-09-20 1 / 16 Tartalom 1 Egyenes és szakasz Egyenes Szakasz Egyenesvonalú egyenletes mozgás Egyenes és pont távolsága 2 Sík Sík
Óravázlatok: Matematika 2.
Óravázlatok: Matematika 2. Bartha Ferenc készültség: March 4, 2003 1. VEKTOR-SKALÁR FÜGGVÉNYEK DIFFERENCIÁLÁSA Legyen a továbbiakban M R n nyílt halmaz és f : M R valós függvény, x (x 1,.., x n ) M Ha
Ipari matematika 2. gyakorlófeladatok
Ipari matematika. gyakorlófeladatok. december 5. A feladatok megoldása általában többféle úton is kiszámítató. Interpoláció a. Polinom-interpoláció segítségével adjunk közelítést sin π értékére a sin =,
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. alapfüggvény (ábrán: fekete)
Megoldások 1. Ábrázold és jellemezd a következő függvényeket! a) f (x) = sin (x π ) + 1 b) f (x) = 3 cos (x) c) f (x) = ctg ( 1 x) 1 a) A kérdéses függvényhez a következő lépésekben juthatunk el: g (x)
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 16 XVI A DIFFERENCIÁLSZÁmÍTÁS ALkALmAZÁSAI 1 Érintő ÉS NORmÁLIS EGYENES, L HOSPITAL-SZAbÁLY Az görbe abszcisszájú pontjához tartozó érintőjének egyenlete (1), normálisának egyenlete
Gazdasági Matematika I. Megoldások
. (4.feladatlap/2) Gazdasági Matematika I. Di erenciálszámítás alkalmazásai Megoldások a) Határozza meg az f(x) x 6x 2 + függvény x 2 helyen vett érint½ojének az egyenletét. El½oször meghatározzuk a pont
= x + 1. (x 3)(x + 3) D f = R, lim. x 2. = lim. x 4
Bodó Beáta Differenciálszámítás. B Írja fel az f() = függvény az a = és az helyekhez tartozó különbségi hányadosát. f() f(a) a = = (+)( ) = +. B Számolja ki az f() = függvény a = 3 helyhez tartozó differenciálhányadosát!
Függvények szélsőérték vizsgálata
Eötvös Loránd Tudományegyetem Természettudományi Kar Függvények szélsőérték vizsgálata BSc Szakdolgozat Készítette: Sághy Enikő Kata Matematika BSc, Matematikai elemző szakirány Témavezető: Gémes Margit
Q 1 D Q 2 (D x) 2 (1.1)
. Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Differenciálhatóság H607, EIC 2019-03-14 Wettl
Többváltozós, valós értékű függvények
Többváltozós függvények Többváltozós, valós értékű függvények Többváltozós függvények Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza,
Matematikai analízis II.
Matematikai analízis II. Feladatgyűjtemény GEMAN6-B Gazdaságinformatikus, Programtervező informatikus és Mérnökinformatikus hallgatók részére Lengyelné Dr. Szilágyi Szilvia 6 . feladatlap Implicit függvények
Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait.
Közönséges differenciálegyenletek Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Célunk a függvény meghatározása Egyetlen független
Többváltozós analízis gyakorlat, megoldások
Többváltozós analízis gakorlat, megoldások Általános iskolai matematikatanár szak 7/8. őszi félév. Differenciál- és integrálszámítás alkalmazásai. Határozzuk meg az alábbi differenciálegenletek összes,
Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához
Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához Dr. Nagy Gábor, Geometria Tanszék 2010. szeptember 16. Görbék paraméterezése 1. feladat. (A) Bizonyítsuk be a vektoriális szorzatra vonatkozó
2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)
(11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)
Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010.
Nagy András Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 010. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 1) Döntsd el, hogy a P pont illeszkedik-e az e egyenesre
2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.
. Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján
b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2
1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon
Gazdasági matematika II. vizsgadolgozat, megoldással,
Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak
A Newton-Raphson iteráció kezdeti értéktől való érzékenysége
Szénási Eszter SZTE TTIK Matematika BSc, Numerikus matematika projekt 2015. november 30. A Newton-Raphson iteráció kezdeti értéktől való érzékenysége Medencék (attraktorok) színezése 2 Newton_project-szenasi.nb
10. Differenciálszámítás
0. Differenciálszámítás 0. Vázolja a következő függvények, és határozza meg az értelmezési tartomány azon pontjait, ahol nem differenciálhatóak: a, f() = - b, f()= sin c, f() = sin d, f () = + e, f() =
1. Parciális függvény, parciális derivált (ismétlés)
Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt
Figyelem, próbálja önállóan megoldani, csak ellenőrzésre használja a következő oldalak megoldásait!
Elméleti kérdések: Második zárthelyi dolgozat biomatematikából * (Minta, megoldásokkal) E. Mit értünk hatványfüggvényen? Adjon példát nem invertálható hatványfüggvényre. Adjon példát mindenütt konkáv hatványfüggvényre.
A fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
Gazdasági matematika II. vizsgadolgozat megoldása, június 10
Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett
Kétváltozós függvények ábrázolása síkmetszetek képzése által
Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az
Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,
Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2
2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése
2 SZÉLSŽÉRTÉKSZÁMÍTÁS DEFINÍCIÓ 21 A széls érték fogalma, létezése Azt mondjuk, hogy az f : D R k R függvénynek lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ε > 0 hogy f(x 0 )
Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint
TÁMOP-.1.4-08/2-2009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint Vasvár,
Érettségi feladatok: Koordináta-geometria 1/5
Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból
Függvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
1. Oldja meg a z 3 (5 + 3j) (8 + 2j) 2. Adottak az A(1,4,3), B(3,1, 1), C( 5,2,4) pontok a térben.
Szak: Műszaki menedzser I. Dátum: 006. június. MEGOLDÓKULCS Tárgy: Matematika szigorlat Idő: 0 perc Neptun kód: Előadó: Berta Gábor szig 06 06 0 Pontszám: /00p. Oldja meg a z (5 + j (8 + j + = (+5j (7
Tartalomjegyzék Feltétel nélküli szélsőérték számítás
Dr. Vincze Szilvia Példa Egy adott talajtípuson az átlagosnak megelelő időjárási viszonyok között a búza hozamát hektáronként a elhasznált nitrogén és oszor hatóanyag erősen beolyásolja. A hektáronként
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
ANALÍZIS II. Példatár
ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3
Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt
27.2.2. Kalkulus I. NÉV:... A csoport KÓD:.... Adjuk meg a b n = 3n 7 9 2n sorozat infimumát, szuprémumát. 8pt 2. Határozzuk meg a következő határértékeket: 8pt (a) ( lim n 2 3n n 2 n 3) n ( ) 3n 5 3 2n,
Matematika II. Feladatgyűjtemény GEMAN012B. Anyagmérnök BSc szakos hallgatók részére
Matematika II. Feladatgyűjtemény GEMANB Anyagmérnök BSc szakos hallgatók részére Lengyelné Dr. Szilágyi Szilvia 6 . gyakorlat Matematika II.. Az alábbi f függvényeknél adja meg f -t! f() = + 5; (b) f()