Név: RV 1. ZH. Számítógépes Modellezés (Mathematica) A csoport Okt. 15. csütörtök
|
|
- Ida Mészárosné
- 6 évvel ezelőtt
- Látták:
Átírás
1 Név: RV 1. ZH. Számítógépes Modellezés (Mathematica) A csoport Okt. 15. csütörtök Oldjuk meg az alábbi problémákat. Ügyeljünk a mukafüzet struktúrájára, használjunk szöveges cellát a megjegyzésekhez, vagy a megoldások összefoglalására! Mentsük el id nként a munkát. 1. Probléma (5 pont) Használjuk a Mathematica-t a hx 1 x 3 3x 2 függvény (kritikus) limeszeinek meghatározására. hx : 1x ^ 3 3x ^ 2; Plothx, x, 5, SolveDenominatorhx 0 x 0, x 0, x 3 -, 0, 3, a vizsgálandó helyek Limithx, x Infinity 0 Limithx, x Infinity 0 Baloldali limesz 0-ban
2 Limithx, x 0, Direction 1 Jobboldali limesz 0-ban Limithx, x 0, Direction 1 Limithx, x 3, Direction 1 Limithx, x 3, Direction 1 pontok ábra 1, kritikus pontok 1, végtelenben 1, féloldali limeszek 2 2. Probléma (5 pont) Készítsünk táblázatot az fxsinx 2 függvényértékekeb l, ekvidisztánsan választva az alappontokat a [-2,2] intervallumból az x-tengelyen. Ábrázoljuk ezeket a pontokat, a különböz pontok legyenek különböz szín ek és nagyságúak az x-koordinátától függ en,, majd cseréljük ki transzformációs szabály alkalmazásával a pontokat félkörlapokra (Disks). GraphicsDisk0, 0, 1, 0, Pi t Table x, Sinx 2, x, 2, 2,.2 2., , 1.8, , 1.6, 49355, 1.4, , 1.2, , 1., , 0.8, 97195, 0.6, , 0.4, , 0.2, , , , 0.2, , 0.4, , 0.6, , 0.8, 97195, 1., , 1.2, , 1.4, , 1.6, 49355, 1.8, , 2., t2 t. x? NumericQ, y? NumericQ GraphicsHuex, PointSizex , Pointx, y;
3 Showt2 t2. Huecol, PointSizes, Pointx, y Huecol, Diskx, y, 2 s, 0, Show Pontozás táblázat 1, ábrázolás 2, szín+méret 1, félkör transzformáció 1 Megjegyzés másik lehet ség gr ListPlotPartitiont, 1, PlotStyle TablePointSizeti, , Hueti, 1, i, Lengtht, PlotRange 2.2, 2.2, 1.2,
4 gr. Pointx, y Diskx, y, x 260.1, 0, Probléma (10+5 pont) 1a. Adott az y=mx (origón áthaladó) egyenes, tukrözzünk egy P pontot az egyenesre Manipulate-tel lehessen a P koordinátáit és az m paramétert változtatni *1b. Adott L={m1,m2, mk} lista. mi az y=mi x (origón áthaladó) egyeneshez tartozó meredekség. Továbbá adott egy P pont. Ábrázoljuk P tükörképeinek sorozatát (Manipulate; k-adik pozició: elsô k tükörkép, színezés) Hint: Határozzuk meg a lineáris tr. mátrixát a standard bázisban az m pm. függvényében m=tg In[1]:= TRMm : 1m ^ m ^ 2 2m 2m m ^ 2 1 M a g y a r á z a t mtan Cos^2 11Tan^2 Cos2 2Cos^2121m 2 11m 2 1m 2, stb. Te 1 Cos2e 1 Sin2e 2 1m 2 1m 2 e 1 2m1m 2 e 2
5 In[2]:= ManipulatePlotm x, x, 2, 2, PlotRange 2, 2, 2, 2, AspectRatio 1, Epilog PointSize.02, Pointp, Red, PointTRMm.p, Linep, TRMm.p, m, 2, 2,.1, p, 1, 1, 1, 1, Slider2D 2 Out[2]= Probléma (10 pont) 2. Adott az f(x,y)=(10 x y + x^2+ 3y^2) e^(1-x^2-y^2) kétváltozós függvény. a. Adjuk meg f ' x és f ' y függvényeket b. Adjuk meg f ' x és f ' y 0-szintvonalait grafikusan. c. Határozzuk meg a kritkikus pontkainak halmazát és a lokális széls értékeket (helyeket) d. Adjuk m eg egy-egy listában a lok. min. és lok. max. köz. értékeit (Pl. LMIN={{{0,0},1.2},{{1,2},3.4},...}) e. Ábrázoljuk kül. színekkel a max. helyeket,... egy ábrán (CONTOURPLOT)
6 fx, y : 10 x y x ^ 2 3 y ^ 2 E ^1 x ^ 2 y ^ 2 Plot3Dfx, y, x, 5, 5, y, 5, 5, PlotPoints 100, PlotRange 2, 8 Plot3Dfx, y, x, 2, 2, y, 2, 2, PlotPoints 100, PlotRange 8, 8
7 ContourPlotfx, y, x, 2, 2, y, 2, 2, ContourShading False, Contours 20 ContourPlotfx, y, x, 2, 2, y, 2, 2, ContourShading True, Contours 5 NSolveDfx, y, x, Dfx, y, y 0, 0, x, y x , y , x , y , x 0., y 0., x , y , x , y
8 ContourPlotEvaluateDfx, y, x, Dfx, y, y, x, 2, 2, y, 2, 2, ContourShading False, Contours l. szé, 2 lok max, 2 lok min L1 FindMaximumfx, y, x, 1, y, 1, FindMaximumfx, y, x, 1, y, , x , y , , x , y L1b x, y. L1All, 2. x? NumericQ, y? NumericQ Pointx, y Point , , Point , L2 FindMinimumfx, y, x, 1, y, 1, FindMinimumfx, y, x, 1, y, , x , y , , x , y L2b x, y. L2All, 2. x? NumericQ, y? NumericQ Pointx, y Point , , Point ,
9 ContourPlotfx, y, x, 2, 2, y, 2, 2, ContourShading False, Contours 20, Epilog PointSize.02, Green, Point0, 0, Red, L1b, Blue, L2b 0 nem lszé TableNfi, j, i,.1,.1,.1, j,.1,.1,.1 TableForm Probléma (10 pont) 3a. Az alábbi Lissajous görbéket ábrázoljuk a pm-ek függvényében (Manipulate) és alkalmas Snapshottal mutassuk meg, hogy megfelelô pm. értékek esetén elôállnak a másodfokú és harmadfokú Chebyshev polinomok is (x[-1,1]) LCurves(t)=(x(t),y(t))=(sin(a t+ ), sin(b t)) (a,b, ) Hogyan lehetne ezt bizonyítani (Mathematica-val)? Milyen egyéb, 'ismert' görbék kaphatók meg? 3b. Egy általunk választott speciális esetben a pm. függvényében illusztráljunk pontmozgást a görbén (színezés) Hint:?ChebyshevT[n,x] Cleart;
10 LCvar, le, ri, a, b, : ParametricPlotSina var, Sinb var, var, le, ri LCt, 0, 2Pi, 1, 2, 0 p1 ChebyshevT2, x 1 2 x 2 Plotp1, x, 1, 1 ManipulateLCt, Pi, Pi, a, b,, a, 2, 2,.1, Appearance "Labeled", b, 2, 2,.1, Appearance "Labeled",, 0, Pi, Pi 24, Appearance "Labeled", SaveDefinitions True
11
12
13 p2 ChebyshevT3, x 3 x 4 x 3 Plotp2, x, 1, 1
14 ManipulateLCt, Pi, Pi, a, b,, a, 3, 3,.1, Appearance "Labeled", b, 3, 3,.1, Appearance "Labeled",, 0, Pi, Pi 24, Appearance "Labeled", SaveDefinitions True
15 Simplify2Sint Pi4 ^ 2 1 Sin2 t FullSimplify4Sint Pi 3 ^ 3 3Sint Pi 3 Sin3 t
16 Manipulate ShowLCt, 0, 2Pi, 1, 2, 0, GraphicsPointSize.02, PointSint0, Sin2t0, t0, 0, 2Pi
Számítógépes Modellezés. Egyváltozós függvénydiszkusszió
Számítógépes Modellezés Egyváltozós függvénydiszkusszió Függvédiszkusszió számítógéppel (ÉT, zéróhelyek, limeszek (lokális/globális/aszimpt viselkedés), monotonitás, szimb+num+viz) f@x_d = Hx ^ 6 - x ^
1. dolgozat Számítógéppel segített matematikai modellezés "A" változat 2009 október 20, kedd
Név:. dolgozat Számítógéppel segített matematikai modellezés "A" változat 9 október, kedd Oldd meg a következ: feladatokat. Készíts szép notebook-ot, figyelj a korrekt strukturált megoldásokra.. feladat
Limesz, Derivált, Integrál
Modellezés Limesz, Derivált, Integrál Direkt (normál) értékadás (=) p legyen a 6. Chebysev polinom. p ChebyshevT6, x 8 x 48 x 4 3 x 6 (Formális) derivált Dp, x 36 x9 x 3 9 x DSinx, x Cosx DSinx, x, Sinx
Számítógépes Modellezés 3. Limesz, Derivált, Integrál. Direkt (normál) értékadás (=) p legyen a 6. Chebysev polinom.
Számítógépes Modellezés 3 Limesz, Derivált, Integrál Direkt (normál) értékadás (=) p legyen a. Chebysev polinom. p ChebyshevT, x 8 x 48 x 4 3 x Helyettesítési érték meghatározásához a változó/határozatlan
Számítógépes Modellezés 11. Differenciálegyenletes modellek. Inga
Számítógépes Modellezés Differenciálegyenletes modellek Inga Tekintsük a következő egyparaméteres differenciálegyenletes modellt: Φ' Ω, Ω' g l sin Φ, l 0, g 9.8. Keresd meg az egyensúlyi helyzetet. Oldd
anal2_03_szelsoertek_demo.nb 1
anal szelsoertek_demo.nb parciális deriválás f x^ y^; f Sin x Cos y ; g D f, x ; h D f, y ; Show GraphicsArray PlotD f, x,,, y,,, AxesLabel StringForm "f ``", f, None, None, DisplayFunction Identity, PlotD
Galton- deszka Számítógéppel segített matematikai modellezés Prezentációs projektmunka Kertész Balázs
Galton- deszka Számítógéppel segített matematikai modellezés Prezentációs projektmunka Kertész Balázs 2 galton2.nb Történeti áttekintő Sir Francis Galton (1822-1911) Polihisztor Társadalomfilozófia, eugenetika,
anal2_04_implicit_es_integral.nb 1
anal implicit_es_integral.nb H L H Implicit függvény tétel L H L
Egyenletek, egyenlőtlenségek grafikus megoldása TK. II. kötet 25. old. 3. feladat
Egyenletek, egyenlőtlenségek grafikus megoldása TK. II. kötet. old.. feladat a. lépés: Az egyenlet bal oldalának ábrázolása függvényként.. lépés: Az egyenlet bal oldalának ábrázolása függvényként.. lépés:
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
NUMERIKUS MÓDSZEREK X. GYAKORLAT. 10a Lagrange Interpoláció
NUMERIKUS MÓDSZEREK X. GYAKORLAT 10a Lagrange Interpoláció Adjuk meg az Lagrange alapinterpolációs polinomokat, majd ezek segítségével állítsuk elõ a Lagrange interpolációs polinomot! Próbáljuk ki a következõ
6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?
6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.
Hozzárendelés, lineáris függvény
Hozzárendelés, lineáris függvény Feladat 1 A ménesben a lovak száma és a lábaik száma közötti összefüggést vizsgáljuk. Hány lába van 0; 1; 2; 3; 5; 7... lónak? Készíts értéktáblázatot, és ábrázold derékszögű
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Függvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2
Alapvető műveletek és operátorok
Mathematica bevezető Alapfogalmak è Kernel: kiértékel és tárolja a kiszámított értékeket è notebook - ok ( *.nb file): munkafzet è cellák (jobb oldalon zárójelezés): a notebook alapeleme; hierarcikus felépítés;
1. Határozza meg az alábbi határértéket! A válaszát indokolja!
Matematika (Analízis és dierenciálegyenletek), NGB_MA003_1, 2. zárthelyi 2014. 11. 20., 1A-csoport x 2 + 6x x 2 5 5x 2 f(x) = tg(2x + 1) 2 x + cos x x 16 5 x + 16 2 x 16 4. Határozza meg, hogy az f(x)
b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2
1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon
1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!
Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Abszolútértékes és gyökös kifejezések Megoldások
Abszolútértékes és gyökös kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és b) jelű egyenletnek pontosan egy megoldása van, a c) és d) jelű egyenletnek viszont nincs megoldása
x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?
. Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs
Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész
Pataki János, november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november I rész feladat Oldja meg az alábbi egyenleteket: a) log 7 log log log 7 ; b) ( )
Érettségi feladatok: Függvények 1/9
Érettségi feladatok: Függvények 1/9 2003. Próba 1. Állapítsa meg a valós számok halmazán értelmezett x x 2-2x - 8 függvény zérushelyeit! 2004. Próba 3. Határozza meg a valós számok halmazán értelmezett
Matematika 8. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hat évfolyamos Matematika 8. osztály III. rész: Függvények Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék III. rész:
Számítógépes Grafika mintafeladatok
Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 A derivált alkalmazásai H607, EIC 2019-04-03 Wettl
1. gyakorlat ( ), Bevezető analízis 1., ősz (Besenyei Ádám csoportja)
1. gyakorlat (2016. 09. 12.), Bevezető analízis 1., 2016. ősz A színek jelentése: fekete az előzetes vázlat; piros, ami ehhez képest módosult. 1. Három matematikus bemegy egy kocsmába, és rendel. A nagy
Csoportmódszer Függvények I. (rövidített változat) Kiss Károly
Ismétlés Adott szempontok szerint tárgyak, élőlények, számok vagy fizikai mennyiségek halmazokba rendezhetők. A halmazok kapcsolatát pedig hozzárendelésnek (relációnak, leképezésnek) nevezzük. A hozzárendelés
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,
2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)
(11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)
Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:
Függvények 015. július 1. 1. Feladat: Határozza meg a következ összetett függvényeket! f(x) = cos x + x g(x) = x f(g(x)) =? g(f(x)) =? Megoldás: Összetett függvény el állításához a küls függvényben a független
Matematika III előadás
Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,
2012. október 9 és 11. Dr. Vincze Szilvia
2012. október 9 és 11. Dr. Vincze Szilvia Egyváltozós valós függvények nevezetes osztályai I. Algebrai függvények Racionális egész függvények (polinomok) Racionális törtfüggvények Irracionális függvények
Abszolútértékes egyenlôtlenségek
Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,
függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(
FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja
Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások
) Egyenletek, egyenletrendszerek, egyenlőtlenségek - megoldások Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások a) Oldja meg a valós számok halmazán az alábbi egyenletet! = 6 (5 pont) b) Oldja
Matematika A1. 9. feladatsor. A derivált alkalmazásai. Függvény széls értékei
Matematika A1 9. feladatsor A derivált alkalmazásai Függvény széls értékei 1. Keressük meg a függvények abszolút maximumát és minimumát a megadott intervallumon. Ezután rajzoljuk fel a függvény grakonját.
Descartes-féle, derékszögű koordináta-rendszer
Descartes-féle, derékszögű koordináta-rendszer A derékszögű koordináta-rendszerben a sík minden pontjához egy rendezett valós számpár rendelhető. A számpár első tagja (abszcissza) a pont y tengelytől mért
Szendrői Balázs: Algebrai síkgörbék, szerkesztette: Ádám Liliána, Ódor Gergő, Lajos Mátyás
Algebrai síkgörbék Algebrai síkgörbéknek az olyan görbéket nevezzük, amelyek pontjai egy kétváltozós polinommal jellemezhetők. Ilyenek az egyenesek (ezek az elsőfokú síkgörbék). Másodfokú síkgörbék: pl.
2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x
I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx
Numerikus Matematika
Numerikus Matematika Baran Ágnes Gyakorlat Interpoláció Baran Ágnes Numerikus Matematika 6.-7. Gyakorlat 1 / 40 Lagrange-interpoláció Példa Határozzuk meg a ( 2, 5), ( 1, 3), (0, 1), (2, 15) pontokra illeszkedő
FÜGGVÉNYEK. A derékszögű koordináta-rendszer
FÜGGVÉNYEK A derékszögű koordináta-rendszer Az. jelzőszámot az x tengelyről, a 2. jelzőszámot az y tengelyről olvassuk le. Pl.: A(-3;-) B(3;2) O(0;0) II. síknegyed I. síknegyed A (0; 0) koordinátájú pontot
Hozzárendelések. A és B halmaz között hozzárendelést létesítünk, ha megadjuk, hogy az A halmaz egyes elemeihez melyik B-ben lévő elemet rendeltük.
Hozzárendelések A és B halmaz között hozzárendelést létesítünk, ha megadjuk, hogy az A halmaz egyes elemeihez melyik B-ben lévő elemet rendeltük. A B Egyértelmű a hozzárendelés, ha az A halmaz mindegyik
A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a
a Matematika mérnököknek I. című tárgyhoz Függvények. Függvények A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a szabadon eső test sebessége az idő függvénye. Konstans hőmérsékleten
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)
I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =
6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének
6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük
a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
Számítógépes Grafika mintafeladatok
Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk
FELVÉTELI VIZSGA, szeptember 12.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 08. szeptember. Írásbeli vizsga MATEMATIKÁBÓL FONTOS TUDNIVALÓK: A feleletválasztós feladatok,,a rész esetén egy
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR
1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött
MÁTRIXFÜGGVÉNYEK, SAJÁT FÜGGVÉNYEK, GRAFIKA
1 4. GYAKORLAT MÁTRIXFÜGGVÉNYEK, SAJÁT FÜGGVÉNYEK, GRAFIKA SÁVMÁTRIXOK, ALSÓ- ÉS FELSŐHÁROMSZÖG MÁTRIXOK A diag parancs felhasználásával kiemelhetjük egy mátrix főátlóját vagy valamelyik mellékátlóját,
BME MOGI Gépészeti informatika 15.
BME MOGI Gépészeti informatika 15. 1. feladat Készítsen alkalmazást a y=2*sin(3*x-π/4)-1 függvény ábrázolására a [-2π; 2π] intervallumban 0,1-es lépésközzel! Ezen az intervallumon a függvény értékkészlete
Gazdasági Matematika I. Megoldások
. (4.feladatlap/2) Gazdasági Matematika I. Di erenciálszámítás alkalmazásai Megoldások a) Határozza meg az f(x) x 6x 2 + függvény x 2 helyen vett érint½ojének az egyenletét. El½oször meghatározzuk a pont
A függvényekről tanultak összefoglalása /9. évfolyam/
A függvényekről tanultak összefoglalása /9. évfolyam/ Készítette: Almási István almasi84@gmail.com Lineáris függvény A függvény általános alakja: f (x):= m 1 m 2 x+b m a meredekség b a tengelymetszet 2/42
1.1. Alapfeladatok. hogy F 1 = 1, F 2 = 1 és általában F n+2 = F n+1 + F n (mert a jobboldali ág egy szinttel lennebb van, mint a baloldali).
1.1. Alapfeladatok 1.1.1. Megoldás. Jelöljük F n -el az n-ed rendű nagyapák számát. Az ábra alapján látható, hogy F 1 = 1, F = 1 és általában F n+ = F n+1 + F n mert a jobboldali ág egy szinttel lennebb
GPK M1 (BME) Interpoláció / 16
Interpoláció Matematika M1 gépészmérnököknek 2017. március 13. GPK M1 (BME) Interpoláció 2017 1 / 16 Az interpoláció alapfeladata - Példa Tegyük fel, hogy egy ipari termék - pl. autó - előzetes konstrukciójának
Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1
Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése). Feladat. Határozzuk meg az f(x) x 2 függvény x 0 pontbeli differenciahányados
Koordináta-geometria feladatok (középszint)
Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
Analízis III. gyakorlat október
Vektoranalízis Analízis III. gyakorlat 216. október Gyakorló feladatok és korábbi zh feladatok V1. Igazolja az alábbi "szorzat deriválási" szabályt: div(ff) = F, f + f div(f). V2. Legyen f : IR 3 IR kétszer
Nagy Krisztián Analízis 2
Nagy Krisztián Analízis 2 Segédanyag a második zárthelyi dolgozathoz Tartalomjegyzék Deriválási alapok... 3 Elemi függvények deriváltjai... 3 Deriválási szabályok műveletekre... 4 Első feladat típus...
Szá molá si feládáttí pusok á Ko zgázdásá gtán I. (BMEGT30A003) tá rgy zá rthelyi dolgozátá hoz
Szá molá si feládáttí pusok á Ko zgázdásá gtán I. (BMEGT30A003) tá rgy zá rthelyi dolgozátá hoz 1. feladattípus a megadott adatok alapján lineáris keresleti, vagy kínálati függvény meghatározása 1.1. feladat
Gyakorló feladatok a 2. zh-ra MM hallgatók számára
Gyakorló feladatok a. zh-ra MM hallgatók számára 1. Egy vállalat termelésének technológiai feltételeit a Q L K függvény írja le. Rövid távon a vállalat 8 egységnyi tőkét használ fel. A tőke ára 000, a
Lin.Alg.Zh.1 feladatok
LinAlgZh1 feladatok 01 3d vektorok Adott három vektor ā = (0 2 4) b = (1 1 4) c = (0 2 4) az R 3 Euklideszi vektortérben egy ortonormált bázisban 1 Mennyi az ā b skalárszorzat? 2 Mennyi az n = ā b vektoriális
A Newton-Raphson iteráció kezdeti értéktől való érzékenysége
Szénási Eszter SZTE TTIK Matematika BSc, Numerikus matematika projekt 2015. november 30. A Newton-Raphson iteráció kezdeti értéktől való érzékenysége Medencék (attraktorok) színezése 2 Newton_project-szenasi.nb
1. Oldja meg a z 3 (5 + 3j) (8 + 2j) 2. Adottak az A(1,4,3), B(3,1, 1), C( 5,2,4) pontok a térben.
Szak: Műszaki menedzser I. Dátum: 006. június. MEGOLDÓKULCS Tárgy: Matematika szigorlat Idő: 0 perc Neptun kód: Előadó: Berta Gábor szig 06 06 0 Pontszám: /00p. Oldja meg a z (5 + j (8 + j + = (+5j (7
I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i
I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex
Nem ekvidisztáns alappontrendszer, n pont esetén [-1,1]-en minden(!) (2n-1)-ed fokú polinomra pontos.
Num. Math. Gauss kvadratúra Általánosított kvadratúra probléma: a b f x Ω x x Most csak azzal foglakozunk, amikor Ω=, [a,b]=[-,]. Nem ekvidisztáns alappontrendszer, n pont esetén [-,]-en minden(!) (n-)-ed
Nagy András. Feladatok a logaritmus témaköréhez 11. osztály 2010.
Nagy András Feladatok a logaritmus témaköréhez. osztály 00. Feladatok a logaritmus témaköréhez. osztály ) Írd fel a következő egyenlőségeket hatványalakban! a) log 9 = b) log 4 = - c) log 7 = d) lg 0 =
Operációkutatás. Vaik Zsuzsanna. ajánlott jegyzet: Szilágyi Péter: Operációkutatás
Operációkutatás Vaik Zsuzsanna Vaik.Zsuzsanna@ymmfk.szie.hu ajánlott jegyzet: Szilágyi Péter: Operációkutatás Operációkutatás Követelmények: Aláírás feltétele: foglalkozásokon való részvétel + a félév
5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás
5. házi feladat 1.feladat A csúcsok: A = (0, 1, 1) T, B = (0, 1, 1) T, C = (1, 0, 0) T, D = ( 1, 0, 0) T AB, CD kitér élpárra történ tükrözések: 1 0 0 T AB = 0 1 0, elotlási rész:(i T AB )A = (0, 0, )
PRÓBAÉRETTSÉGI MATEMATIKA május-június EMELT SZINT. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA EMELT SZINT Vizsgafejlesztő Központ Kedves Tanuló! Kérjük, hogy a feladatsort legjobb tudása szerint oldja meg! A feladatsorban található szürke téglalapokat
Matematikai geodéziai számítások 10.
Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László
Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27
Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek
Koordináta-geometria feladatok (emelt szint)
Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik
MATLAB. 5. gyakorlat. Polinomok, deriválás, integrálás
MATLAB 5. gyakorlat Polinomok, deriválás, integrálás Menetrend Kis ZH Polinomok Numerikus deriválás Numerikus integrálás (+ anonim függvények) pdf Kis ZH Polinomok Sok függvény és valós folyamat leírható
Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében
Infobionika ROBOTIKA X. Előadás Robot manipulátorok II. Direkt és inverz kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Direkt kinematikai probléma Denavit-Hartenberg konvenció
Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )
Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor
FÜGGVÉNYEK x C: 2
FÜGGVÉNYEK 2005-2014 1. 2005/0511/2 Az ábrán egy [ 2; 2] intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! A: x x 2 2 B: x 2 2 x x
Függvényhatárérték és folytonosság
8. fejezet Függvényhatárérték és folytonosság Valós függvények és szemléltetésük D 8. n-változós valós függvényen (n N + ) olyan f függvényt értünk amelynek értelmezési tartománya (Dom f ) az R n halmaznak
Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7
A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
Lin.Alg.Zh.1 feladatok
Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?
Kétváltozós függvények differenciálszámítása
Kétváltozós függvények differenciálszámítása 13. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kétváltozós függvények p. 1/1 Definíció, szemléltetés Definíció. Az f : R R R függvényt
8. előadás. Kúpszeletek
8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Többváltozós analízis gyakorlat, megoldások
Többváltozós analízis gakorlat, megoldások Általános iskolai matematikatanár szak 7/8. őszi félév. Differenciál- és integrálszámítás alkalmazásai. Határozzuk meg az alábbi differenciálegenletek összes,
Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1
Differenciálszámítás 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Differenciálszámítás p. 1/1 Egyenes meredeksége Egyenes meredekségén az egyenes és az X-tengely pozitív iránya
Baran Ágnes. Gyakorlat Halmazok, függvények, Matlab alapok. Baran Ágnes Matematika Mérnököknek Gyakorlat 1 / 34
Matematika Mérnököknek 1. Baran Ágnes Gyakorlat Halmazok, függvények, Matlab alapok Baran Ágnes Matematika Mérnököknek 1. 1.-2. Gyakorlat 1 / 34 Matematika Mérnököknek 1. A gyakorlatok fóliái: https://arato.inf.unideb.hu/baran.agnes/oktatas.html
Baran Ágnes. Gyakorlat Függvények, Matlab alapok
Matematika Mérnököknek 1. Baran Ágnes Gyakorlat Függvények, Matlab alapok Matematika Mérnököknek 1. A gyakorlatok fóliái: https://arato.inf.unideb.hu/baran.agnes/oktatas.html Feladatsorok: https://arato.inf.unideb.hu/baran.agnes/oktatas.html
egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0.
Magyar Ifjúság. X. TRIGONOMETRIKUS FÜGGVÉNYEK A trigonometrikus egyenletrendszerek megoldása során kísérletezhetünk új változók bevezetésével, azonosságok alkalmazásával, helyettesítő módszerrel vagy más,
1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
Adatsor feldolgozása Scilab-bal
Széchenyi István Egyetem Alkalmazott Mechanika Tanszék GÉPEK DINAMIKÁJA Adatsor feldolgozása Scilab-bal (kidolgozta: Fehér Lajos egyetemi tanársegéd) Feladat: az alább található mérési adatsor feldolgozása.