Num. Math. 2. Mathematica. Lineáris Algebra. Lineáris Egyenletrendszerek. nummethods2x.nb 1. Numerikus egyenlet(rendszer) megoldó rutin
|
|
- Erika Takácsné
- 6 évvel ezelőtt
- Látták:
Átírás
1 nummethods2x.nb Num. Math.2 Mathematica Lineáris Algebra Lineáris Egyenletrendszerek In[]:= Out[]= In[2]:= Solvex^250 x 5,x 5 Solvexy2, xy0,x, y Out[2]= x 3 0, y 5 Numerikus egyenlet(rendszer) megoldó rutin In[4]:= Out[4]= NSolvexy.5, xy.,x, y x 0.3, y 0.2 Kompakt írásmód, automatikus knoverzió megoldott (m rendszermátrix, v jobboldali oszlopvektor) In[9]:= In[]:= Out[]= In[8]:= v.5,.; m,,,; LinearSolvem, v 0.3, 0.2? LinearSolve LinearSolvem, b finds an x which solves the matrix equation m.x b. LinearSolvem generates a LinearSolveFunction... which can be applied repeatedly to different b. More Intermezzo: Mátrixok bevitele m
2 nummethods2x.nb 2 Cramer In[2]:= Out[2]= Detm 2 Nemszinguláris m, x i D i D In[3]:=? ReplacePart ReplacePartexpr, new, n yields an expression in which the nth part of expr is replaced by new. ReplacePartexpr, new, i, j,... replaces the part at position i, j,.... ReplacePartexpr, new, i, j,..., i2, j2,...,... replaces parts at several positions by new. ReplacePartexpr, new, pos, npos replaces parts at positions pos in expr by parts at positions npos in new. More In[4]:= MatrixFormTransposeReplacePartTransposem, v, Out[4]//MatrixForm= In[5]:= DetTransposeReplacePartTransposem, v, Detm Out[5]= 0.3 In[6]:= DetTransposeReplacePartTransposem, v, 2Detm Out[6]= 0.2 Demonstráció: Numerikus szempontok Vandermonde mátrix, paraméterek 2,3,4,5,...és bi i n i) Egy lineáris egyenletrendszer sorozatot vizsgálunk. Az n paraméter függvényében nő a rendszer mérete b oszlopvektor V(Vanderomnde) együtthatómátrix In[7]:= In[8]:= Out[8]= In[9]:= bn_ : Tablei^ni,i, n b4 5, 40, 85, 56 Vn_ : Tablei^j,i, 2, n,j, 0, n Változónevek automatikus generálása In[20]:= varlistn_ : TableToExpressionStringJoin"x", ToStringi,i, n
3 nummethods2x.nb 3 In[2]:= V4 MatrixForm Out[2]//MatrixForm= In[22]:= TimingLinearSolveV00, b00 Out[22]= Second,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Észretvételek: ha egzakt aritmetikát alkalmazunk, akkor a megoldásvektor meinden komponense. Most numerikus módszerekkel dolgozunk. In[23]:= Out[23]= In[24]:= TimingLinearSolveV5, Nb Second,.,.,.,.,. TimingLinearSolveV4, Nb4 LinearSolve::luc : Result for LinearSolve of badly conditioned matrix., 2., 4., 8., 6., 32., 64., 28., 256., 52., 4,., 3., 9., 27., 8., 243., 729., 287., 656., 9683., 4, 8, 4 may contain significant numerical errors. More Out[24]= Second, , , , ,.29352,.28758, ,.209, ,.0034, ,.0000,.,. In[25]:= NLinearAlgebra MatrixConditionNumberV4 Out[25]= Megj. Figyeljük meg a megoldásvektor komponenseit! A mátrix kondiciószáma nagy (a mátrix gyengén meghatározott)! NLinearAlgebra MatrixConditionNumber, 0,0, 0 Ugyanez Nsolve val, csak különbözõ pontossággal. In[26]:= ThreadV4.varlist4 b4 Out[26]= x 2 x2 4 x3 8 x4 5, x 3 x2 9 x3 27 x4 40, x 4 x2 6 x3 64 x4 85, x 5 x2 25 x3 25 x4 56 In[27]:= TimingNSolveThreadV4.varlist4 b4, varlist4 Out[27]= Second,x , x , x , x , x , x , x , x , x , x0.0068, x , x2.0000, x3., x4.
4 nummethods2x.nb 4 In[28]:= TimingNSolveThreadV4.varlist4 b4, varlist4, WorkingPrecision 6 Out[28]= Second, x , x , x , x , x , x , x , x , x , x , x , x , x , x Ez már elegendõen pontos. * Inverz A ; DetA 2 B InverseA; MatrixFormB MatrixFormA.B 0 0 Ált. (Moore Penrose) inverz A Transpose, 2, 3, 5,,,, ; A MatrixForm MatrixRankA 2 r=o A oszlopreguláris Ha A oszlopreg, akkor A T A reg. A A T A A T
5 nummethods2x.nb 5 InverseTransposeA.A.TransposeA 5, 3 35, 35, 9 35, 4 5, 7 35, 6 6, PseudoInverseA 5, 3 35, 35, 9 35, 4 5, 7 35, 6 6, Alkalmazás: LSM FindFitTranspose, 2, 3, 5,2, 2, 4, 6,Α xα0,α,α0, x Α.0857, Α PseudoInverseA.2, 2, 4, , 8 35 N%.0857, GraphicsRGBColor, 0, 0, PointSize.03, Point, 2, Point2, 2, Point3, 4, Point5, 6, RGBColor0,, 0, Line0, 835,7, ; Show%;
6 nummethods2x.nb 6 PlotΑ xα0.α.0857,α ,x, 0, 7, PlotStyleRGBColor0,, 0, PrologRGBColor, 0, 0, PointSize.03, Point, 2, Point2, 2, Point3, 4, Point5, 6; Demonstráció: Eüh. változtatása megoldásvektor komponeneinek változása Munka programcsomagokal: Nem minden függvény/szolgáltatás érhető el a Mathematica indítása után, de programcsoma gok bárnmikor betölthetők. Itt a Lináris Algebra csomagot töltjük be. In[30]:= In[3]:= LinearAlgebra? MatrixConditionNumber MatrixConditionNumbermat gives an estimate of the infinitynorm condition number of the matrix mat of approximate numbers. MatrixConditionNumbermat, p gives an estimate of the condition number in the pnorm, where p must be, 2, or Infinity. More Két egyenletrendszer megoldásvekrorainak összehasonlítása. Az együtthatók alig térnek el. Elsõ egyenletrendszer In[32]:= In[34]:= Out[34]= er 2x6y8; er2 2x600000^5 y800000^5; Solveer, er2,x, y x, y Második egyenletrendszer In[35]:= er2 2x6y8; er22 2x ^5 y ^5; General::spell : Possible spelling error: new symbol name "er2" is similar to existing symbol "er2". More
7 nummethods2x.nb 7 In[37]:= Out[37]= Solveer2, er22,x, y x 0, y 2 Mekkora eltérést okozott a 22 és b 2 kicsi megváltozása a megoldásvektorban? (! a számításokat szimbolikusan végeztük, ez nem okozhat pontatlanságot itt) In[38]:= A ^5 ; In[39]:= NMatrixConditionNumberA MatrixConditionNumber::prec : MatrixConditionNumber has received a matrix with infinite precision. Out[39]= Megj. Normálás szükségessége In[40]:= In[43]:= Out[43]= In[44]:= A., 2,3, 4; A2 0., 20,30, 40; A3.7, 27,37, 47; MatrixConditionNumberA, MatrixConditionNumberA2, MatrixConditionNumberA3 2., 2., 2. InverseA3 MatrixForm Out[44]//MatrixForm= In[45]:= NNormInverseA3, Infinity Out[45]= 2. In[46]:= InverseMatrixNormNA3 Out[46]= 2. Kondiciószám kiszámítása (lsd. később)
8 nummethods2x.nb 8 Gauss Elimináció, Trianguláris Felbontás LU (LR) felbontás Cél: LU (LR) felbontás, ahol L alsó trianguláris, l ii U felülrõl trianguláris Megj. Nem minden mátrixnak létezik, még akkor sem, ha az nemszinguláris. Ha létezik, nem feltétlen egyértelmű. Elegendõ felt. a felb. létezésére: Balfelsõ fõminorok nemzérók Feladat: Ellenõrizzük, hogy az alábbi mátrixok esetén létezik felbontás (és ezekre a mátrixokra a fõelem kiv. nélküli par ketta alg. meghatározza az egyértelmű felbontást) Vn_ : Tablei^j,i, 2, n,j, 0, n In[50]:= A ; A ; A3 V0; *Hint In[5]:= DetA2 Out[5]= 8 In[52]:= Out[52]= In[53]:= TableMinorsA2, i,,i, LengthA2, 3, 8 TableMinorsA3, i,,i, LengthA3 Out[53]=,, 2, 2, 288, 34560, , , , In[54]:= In[55]:= Out[55]= In[56]:= Out[56]= LinearAlgebra SubMatrixA2,,,2, 2, 2,4, 5 Det% 3
9 nummethods2x.nb 9 In[57]:= Out[57]= And TableDetSubMatrixA2,,,i, i 0,i, 3 True Elimináló mátrixok In[59]:= In[60]:= A A2; A MatrixForm Out[60]//MatrixForm= In[6]:= In[62]:= L ; 7 0 L.A MatrixForm Out[62]//MatrixForm= In[63]:= In[64]:= L ; 0 2 L2.L.A MatrixForm Out[64]//MatrixForm= In[65]:= InverseL.InverseL2 MatrixForm Out[65]//MatrixForm= In[66]:= Out[66]= MatrixFormInverseL.InverseL2, MatrixFormL2.L.A, MatrixFormA , ,
10 nummethods2x.nb 0 Feladat V[4], Mathematica built in fgv. In[7]:= LUD LUDecompositionV4; LUD MatrixForm Out[7]//MatrixForm= Hogyan kajuk L t és U t? In[72]:= MatrixForm Out[72]//MatrixForm= In[73]:= V4 MatrixForm Out[73]//MatrixForm=
anal2_03_szelsoertek_demo.nb 1
anal szelsoertek_demo.nb parciális deriválás f x^ y^; f Sin x Cos y ; g D f, x ; h D f, y ; Show GraphicsArray PlotD f, x,,, y,,, AxesLabel StringForm "f ``", f, None, None, DisplayFunction Identity, PlotD
Problémás regressziók
Universitas Eotvos Nominata 74 203-4 - II Problémás regressziók A közönséges (OLS) és a súlyozott (WLS) legkisebb négyzetes lineáris regresszió egy p- változós lineáris egyenletrendszer megoldása. Az egyenletrendszer
Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei
Indukált mátrixnorma Definíció A. M : R n n R mátrixnormát a. V : R n R vektornorma által indukált mátrixnormának nevezzük, ha A M = max { Ax V : x V = 1}. Az indukált mátrixnorma geometriai jelentése:
Gauss elimináció, LU felbontás
Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek
Mátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
Lineáris algebra Gyakorló feladatok
Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések
Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.
1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű
Lineáris algebra. (közgazdászoknak)
Lineáris algebra (közgazdászoknak) 10A103 FELADATOK A GYAKORLATRA (3.) 2018/2019. tavaszi félév Lineáris egyenletrendszerek 3.1. Feladat. Oldjuk meg az alábbi lineáris egyenletrendszereket Gauss-eliminációval
NUMERIKUS MÓDSZEREK I. TÉTELEK
NUMERIKUS MÓDSZEREK I. TÉTELEK Szerkesztette: Balogh Tamás 014. január 19. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
Numerikus módszerek 1.
Numerikus módszerek 1. 3. előadás: Mátrixok LU-felbontása Lócsi Levente ELTE IK 2013. szeptember 23. Tartalomjegyzék 1 Alsó háromszögmátrixok és Gauss-elimináció 2 Háromszögmátrixokról 3 LU-felbontás Gauss-eliminációval
9. gyakorlat Lineáris egyenletrendszerek megoldási módszerei folyt. Néhány kiegészítés a Gauss- és a Gauss Jordan-eliminációhoz
9. gyakorlat Lineáris egyenletrendszerek megoldási módszerei folyt. Néhány kiegészítés a Gauss- és a Gauss Jordan-eliminációhoz. Mindkét eliminációs módszer műveletigénye sokkal kisebb, mint a Cramer-szabályé:
Gauss-eliminációval, Cholesky felbontás, QR felbontás
Közelítő és szimbolikus számítások 4. gyakorlat Mátrix invertálás Gauss-eliminációval, Cholesky felbontás, QR felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei
9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet
9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2
Numerikus matematika. Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, Lebegőpontos számok
Numerikus matematika Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, 2007 Lebegőpontos számok Normák, kondíciószámok Lineáris egyenletrendszerek Legkisebb négyzetes
Numerikus matematika vizsga
1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos
Gauss-Seidel iteráció
Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS
Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek
Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns
Normák, kondíciószám
Normák, kondíciószám A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris egyenletrendszerek Nagyon sok probléma közvetlenül lineáris egyenletrendszer megoldásával kezelhetı Sok numerikus
12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor
12. előadás Egyenletrendszerek, mátrixok Dr. Szörényi Miklós, Dr. Kallós Gábor 2015 2016 1 Tartalom Matematikai alapok Vektorok és mátrixok megadása Tömbkonstansok Lineáris műveletek Mátrixok szorzása
Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások
Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások 1. Feladat. (6p) Jelöljön. egy tetszőleges vektornormát, ill. a hozzá tartozó indukált mátrixnormát! Igazoljuk, hogy ha A
1 Lebegőpontos számábrázolás
Tartalom 1 Lebegőpontos számábrázolás... 2 2 Vektornormák... 4 3 Indukált mátrixnormák és tulajdonságaik... 5 4 A lineáris rendszer jobboldala hibás... 6 5 A kondíciószám és tulajdonságai... 7 6 Perturbációs
Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi
Gyakorló feladatok Agbeko Kwami Nutefe és Nagy Noémi 25 Tartalomjegyzék. Klasszikus hibaszámítás 3 2. Lineáris egyenletrendszerek 3 3. Interpoláció 4 4. Sajátérték, sajátvektor 6 5. Lineáris és nemlineáris
Lineáris algebra és a rang fogalma (el adásvázlat, szeptember 29.) Maróti Miklós
Lineáris algebra és a rang fogalma (el adásvázlat, 2010. szeptember 29.) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: (1) A mátrixalgebrával kapcsolatban: számtest
Számítógépes Modellezés 3. Limesz, Derivált, Integrál. Direkt (normál) értékadás (=) p legyen a 6. Chebysev polinom.
Számítógépes Modellezés 3 Limesz, Derivált, Integrál Direkt (normál) értékadás (=) p legyen a. Chebysev polinom. p ChebyshevT, x 8 x 48 x 4 3 x Helyettesítési érték meghatározásához a változó/határozatlan
Komputeralgebra Rendszerek
Komputeralgebra Rendszerek A szimbolikus megoldó a MAPLE -ben Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2014. március 4. TARTALOMJEGYZÉK 1 of 41 TARTALOMJEGYZÉK I 1 TARTALOMJEGYZÉK 2 Funkció és
Construction of a cube given with its centre and a sideline
Transformation of a plane of projection Construction of a cube given with its centre and a sideline Exercise. Given the center O and a sideline e of a cube, where e is a vertical line. Construct the projections
12 48 b Oldjuk meg az Egyenlet munkalapon a következő egyenletrendszert az inverz mátrixos módszer segítségével! Lépések:
A feladat megoldása során az Excel 2010 használata a javasolt. A feladat elvégzése során a következőket fogjuk gyakorolni: Egyenletrendszerek megoldása Excelben. Solver használata. Mátrixműveletek és függvények
10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak
10. Előadás Megyesi László: Lineáris algebra, 98. 108. oldal. Gondolkodnivalók Mátrix inverze 1. Gondolkodnivaló Igazoljuk, hogy invertálható trianguláris mátrixok inverze is trianguláris. Bizonyítás:
Bevezetés az algebrába 1
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 1 BMETE92AX23 Determinánsok H406 2017-11-27 Wettl Ferenc ALGEBRA
NUMERIKUS MÓDSZEREK X. GYAKORLAT. 10a Lagrange Interpoláció
NUMERIKUS MÓDSZEREK X. GYAKORLAT 10a Lagrange Interpoláció Adjuk meg az Lagrange alapinterpolációs polinomokat, majd ezek segítségével állítsuk elõ a Lagrange interpolációs polinomot! Próbáljuk ki a következõ
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 11 XI LINEÁRIS EGYENLETRENDSZEREk 1 LINEÁRIS EGYENLETRENDSZER A lineáris egyenletrendszer általános alakja: (1) Ugyanez mátrix alakban: (2), ahol x az ismeretleneket tartalmazó
8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer
8. Előadás Megyesi László: Lineáris algebra, 51. 56., 70. 74. oldal. Gondolkodnivalók Elemi bázistranszformáció 1. Gondolkodnivaló Most ne vegyük figyelembe, hogy az elemi bázistranszformáció során ez
Numerikus módszerek beugró kérdések
1. Definiálja a gépi számok halmazát (a tanult modellnek megfelelően)! Adja meg a normalizált lebegőpontos szám alakját. (4 pont) Az alakú számot normalizált lebegőpontos számnak nevezik, ha Ahol,,,. Jelöl:
LINEÁRIS EGYENLETRENDSZEREK október 12. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak
LINEÁRIS EGYENLETRENDSZEREK 004. október. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László:
1. Determinánsok. Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert:
1 Determinánsok 1 Bevezet definíció Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert: a 11 x 1 +a 12 x 2 = b 1 a 21 x 1 +a 22 x 2 = b 2 Szorozzuk meg az első egyenletet
3. el adás: Determinánsok
3. el adás: Determinánsok Wettl Ferenc 2015. február 27. Wettl Ferenc 3. el adás: Determinánsok 2015. február 27. 1 / 19 Tartalom 1 Motiváció 2 A determináns mint sorvektorainak függvénye 3 A determináns
1. A kétszer kettes determináns
1. A kétszer kettes determináns 2 2-es mátrix inverze Tétel [ ] [ ] a c 1 d c Ha ad bc 0, akkor M= inverze. b d ad bc b a Ha ad bc = 0, akkor M-nek nincs inverze. A főátló két elemét megcseréljük, a mellékátló
Név: RV 1. ZH. Számítógépes Modellezés (Mathematica) A csoport Okt. 15. csütörtök
Név: RV 1. ZH. Számítógépes Modellezés (Mathematica) A csoport Okt. 15. csütörtök Oldjuk meg az alábbi problémákat. Ügyeljünk a mukafüzet struktúrájára, használjunk szöveges cellát a megjegyzésekhez, vagy
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
Num. Math. 12. Numerikus Integrálás: Gauss-kvadratú ra. Általánosított kvadratúra probléma: a. Most csak azzal foglakozunk, amikor Ω=1, [a,b]=[-1,1].
Num. Math. Numerikus Integrálás: Gauss-kvadratú ra Általánosított kvadratúra probléma: a b f x Ω x x Most csak azzal foglakozunk, amikor Ω=, [a,b]=[-,]. Nem ekvidisztáns alappontrendszer, n pont esetén
Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg
LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott
Lineáris algebra gyakorlat
Lineáris algebra gyakorlat 0. gyakorlat Gyakorlatvezet : Bogya Norbert 202. április 23. Sajátérték, sajátvektor, sajátaltér Tartalom Sajátérték, sajátvektor, sajátaltér 2 Gyakorló feladatok a zh-ra (rutinfeladatok)
Összeállította: dr. Leitold Adrien egyetemi docens
Lineáris egyenletrendszerek Összeállított: dr. Leitold Adrien egyetemi docens 2008.09.08. Leontieff-modellek Leontieff-modellek: input-output modellek gzdság leírásár legyen n féle, egymássl összefüggésben
9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell
9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Tegyük fel, hogy egy elemi bázistranszformáció kezdetekor a sor- és oszlopindexek sorban helyezkednek
Egyenletek, egyenletrendszerek, matematikai modell. 1. Oldja meg az Ax=b egyenletrendszert Gauss módszerrel és adja meg az A mátrix LUfelbontását,
Egyenletek egyenletrendszerek matematikai modell Oldja meg az A=b egyenletrendszert Gauss módszerrel és adja meg az A mátri LUfelbontását ahol 8 b 8 Oldja meg az A=b egyenletrendszert és határozza meg
Gyakorló feladatok I.
Gyakorló feladatok I. a Matematika Aa Vektorüggvények tárgyhoz (D D5 kurzusok) Összeállította: Szili László Ajánlott irodalmak:. G.B. Thomas, M.D. Weir, J. Hass, F.R. Giordano: Thomas-féle KALKULUS I.,
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,
Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
alakú számot normalizált lebegőpontos számnak nevezik, ha ,, és. ( : mantissza, : mantissza hossza, : karakterisztika) Jelölés: Gépi számhalmaz:
1. A lebegőpontos számábrázolás egy modellje. A normalizált lebegőpontos szám fogalma, a legnagyobb, legkisebb pozitív szám, a relatív pontosság az M(t,-k,+k) gépi számhalmazban. Az input függvény (fl)
Polinomok, Lagrange interpoláció
Közelítő és szimbolikus számítások 8. gyakorlat Polinomok, Lagrange interpoláció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján 1. Polinomok
Numerikus módszerek 1.
Numerikus módszerek 1. Tantárgy kódja: IP-08bNM1E, IP-08bNM1G (2+2) Az elsajátítandó ismeretanyag rövid leírása: A lebegıpontos számábrázolás egy modellje. A hibaszámítás elemei. Lineáris egyenletrendszerek
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,
Performance Modeling of Intelligent Car Parking Systems
Performance Modeling of Intelligent Car Parking Systems Károly Farkas Gábor Horváth András Mészáros Miklós Telek Technical University of Budapest, Hungary EPEW 2014, Florence, Italy Outline Intelligent
Totális Unimodularitás és LP dualitás. Tapolcai János
Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni
Kronecker-modulusok kombinatorikája és alkalmazások
Kronecker-modulusok kombinatorikája és alkalmazások BBTE, Magyar Matematika es Informatika Intézet Tegezek Meghatározás Egy Q tegez egy irányított multigráf (két csomópont között több irányított él is
rank(a) == rank([a b])
Lineáris algebrai egyenletrendszerek megoldása a Matlabban Lineáris algebrai egyenletrendszerek a Matlabban igen egyszer en oldhatók meg. Legyen A az egyenletrendszer m-szer n-es együtthatómátrixa, és
Vektorterek. =a gyakorlatokon megoldásra ajánlott
Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,
15. LINEÁRIS EGYENLETRENDSZEREK
15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
y = y 0 exp (ax) Y (x) = exp (Ax)Y 0 A n x n 1 (n 1)! = A I + d exp (Ax) = A exp (Ax) exp (Ax)
III Az exp (Ax mátrixfüggvény módszere Ha y = ay, y( = y, a = állandó y = y exp (ax d dx [exp (Ax] = Y = AY, Y ( = Y, Y (x = exp (AxY exp (Ax = I + n= A n x n (n! = A A n x n, n! ] A n x n I + = A exp
Robotok inverz geometriája
Robotok inverz geometriája. A gyakorlat célja Inverz geometriai feladatot megvalósító függvények implementálása. A megvalósított függvénycsomag tesztelése egy kétszabadságfokú kar előírt végberendezés
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
Limesz, Derivált, Integrál
Modellezés Limesz, Derivált, Integrál Direkt (normál) értékadás (=) p legyen a 6. Chebysev polinom. p ChebyshevT6, x 8 x 48 x 4 3 x 6 (Formális) derivált Dp, x 36 x9 x 3 9 x DSinx, x Cosx DSinx, x, Sinx
Saj at ert ek-probl em ak febru ar 26.
Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre
Cluster Analysis. Potyó László
Cluster Analysis Potyó László What is Cluster Analysis? Cluster: a collection of data objects Similar to one another within the same cluster Dissimilar to the objects in other clusters Cluster analysis
Lineáris algebra és mátrixok alkalmazásai
EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR Lineáris algebra és mátrixok alkalmazásai Szakdolgozat Készítette: Ruzsányi Orsolya Matematika BSc, matematikai elemző szakirány Témavezető: Fialowski
Növényvédő szerek A 500 0 0 0 0 65000 B 0 0 50 500 500 60000 C 50 25 0 50 50 12000 D 0 25 5 50 0 6000
A feladat megoldása során az Excel 2010 használata a javasolt. A feladat elvégzése során a következőket fogjuk gyakorolni: Termelési és optimalizálási feladatok megoldása. Mátrixműveletek alkalmazása.
1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1
numerikus analízis ii 34 Ezért [ a, b] - n legfeljebb n darab gyöke lehet = r (m 1) n = r m + n 1 19 B - SPLINEOK VOLT: Ω n véges felosztás S n (Ω n ) véges dimenziós altér A bázis az úgynevezett egyoldalú
6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján
Közelítő és szimbolikus számítások 6. gyakorlat Sajátérték, Gersgorin körök Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján . Mátrixok sajátértékei
Matematika szigorlat június 17. Neptun kód:
Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat
11. Előadás. 11. előadás Bevezetés a lineáris programozásba
11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez
XI A MÁTRIX INVERZE 1 Az inverzmátrix definíciója Determinánsok szorzástétele Az egységmátrix definíciója: 1 0 0 0 0 1 0 0 E n = 0 0 1 0 0 0 0 1 n-edrenű (azaz n n típusú) mátrix E n -nel bármely mátrixot
11. gyakorlat megoldásai
11. gyakorlat megoldásai Lokális szélsőértékek F1. Határozzuk meg az alábbi kétváltozós függvények lokális szélsőértékeit! (a) f(x, y) = 4x 2 + 2xy + 5y 2 + 2, (b) f(x, y) = y 4 y + x 2 y + 2xy, (c) f(x,
Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27
Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek
Mérnökgeodéziai hálózatok feldolgozása
Mérnökgeodéziai hálózatok feldolgozása dr. Siki Zoltán siki@agt.bme.hu XIV. Földmérő Találkozó Gyergyószentmiklós 2013.05.09-12. Mérnökgeodéziai hálózatok nagy relatív pontosságú hálózatok (1/100 000,
1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0
I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)
Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei
A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.
Lineáris algebra numerikus módszerei
Hermite interpoláció Tegyük fel, hogy az x 0, x 1,..., x k [a, b] különböző alappontok (k n), továbbá m 0, m 1,..., m k N multiplicitások úgy, hogy Legyenek adottak k m i = n + 1. i=0 f (j) (x i ) = y
n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )
Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )
Bázistranszformáció és alkalmazásai 2.
Bázistranszformáció és alkalmazásai 2. Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Mátrix rangja 2 Mátrix inverze 3 Mátrixegyenlet Mátrix rangja Tartalom 1 Mátrix rangja
Rang, sajátérték. Dr. Takách Géza NyME FMK Informatikai Intézet takach/ február 15
Diszkrét matematika II, 2 el adás Rang, sajátérték Dr Takách Géza NyME FMK Informatikai Intézet takachinfnymehu http://infnymehu/ takach/ 25 február 5 Gyakorlati célok Ezen el adáson, és a hozzá kapcsolódó
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek 1 Alapfogalmak 1 Deníció Egy m egyenletb l álló, n-ismeretlenes lineáris egyenletrendszer általános alakja: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
differenciálegyenletek
Állandó együtthatójú lineáris homogén differenciálegyenletek L[y] = y (n) + a 1y (n 1) + + a ny = 0 a i R (1) a valós, állandó együtthatójú lineáris homogén n-ed rendű differenciálegyenlet Megoldását y
LINEÁRIS ALGEBRA (A, B, C) tematika (BSc) I. éves nappali programtervező informatikus hallgatóknak évi tanév I. félév
LINEÁRIS ALGEBRA (A, B, C) tematika (BSc) I éves nappali programtervező informatikus hallgatóknak 2010-2011 évi tanév I félév Vektoriális szorzat és tulajdonságai bizonyítás nélkül: Vegyes szorzat és tulajdonságai
Numerikus módszerek II. zárthelyi dolgozat, megoldások, 2014/15. I. félév, A. csoport. x 2. c = 3 5, s = 4
Numerikus módszerek II. zárthelyi dolgozat, megoldások, 204/5. I. félév, A. csoport. Feladat. (6p) Alkalmas módon választva egy Givens-forgatást, határozzuk meg az A mátrix QR-felbontását! Oldjuk meg ennek
Kiegészítő előadás. Vizsgabemutató Matlab. Dr. Kallós Gábor, Dr. Szörényi Miklós, Fehérvári Arnold. Széchenyi István Egyetem
Kiegészítő előadás Vizsgabemutató Dr. Kallós Gábor, Dr. Szörényi Miklós, Fehérvári Arnold 2016 2017 1 Virágboltos feladat Egy virágboltban négyféle virágból állítanak össze csokrokat. Az első összeállítás
3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek
3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1
Numerikus integrálás április 20.
Numerikus integrálás 2017. április 20. Integrálás A deriválás papíron is automatikusan elvégezhető feladat. Az analitikus integrálás ezzel szemben problémás vannak szabályok, de nem minden integrálható
I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)
I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =
T Á J É K O Z T A T Ó. A 1108INT számú nyomtatvány a http://www.nav.gov.hu webcímen a Letöltések Nyomtatványkitöltő programok fülön érhető el.
T Á J É K O Z T A T Ó A 1108INT számú nyomtatvány a http://www.nav.gov.hu webcímen a Letöltések Nyomtatványkitöltő programok fülön érhető el. A Nyomtatványkitöltő programok fület választva a megjelenő
MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATE-INFO UBB verseny, 218. március 25. MATEMATIKA írásbeli vizsga FONTOS TUDNIVALÓK: 1 A feleletválasztós feladatok,,a rész esetén
Programozás burritokkal
Monádok (folytatás) Programozás burritokkal [2..21] Programozás monádokkal: Programstrukturálás type IO α = World (α, World) -- putstr :: String IO () -- getline :: IO String (>>=) :: IO α (α IO β) IO
NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK
NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK Szerkesztette: Balogh Tamás 04. január 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el!
Kijelző...P.27 Kezdeti Lépések Statisztikai Számítások Kifejezések és Értéket Bevitele Haladó Tidp,ányos Számítások Beviteli Tartományok...P.
Abszolútérték Számítása... P.38 Mérnöki Jelölés... P.38 megjelenítési értéket Váltása... P.38 Számolás Komplex Számokkal... P.39 n-alapú Számiítások és Logikal Számítsok... P.39 Statisztikai Számítások
Bevezetés az algebrába 1
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 1 BMETE92AX23 Egyenletrendszerek H406 2016-10-03 Wettl Ferenc
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c
MA1143v A. csoport Név: december 4. Gyak.vez:. Gyak. kódja: Neptun kód:.
MAv A. csoport Név:... Tekintsük az alábbi mátriot! A 7 a Invertálható-e az A mátri? Ha igen akkor bázistranszformációval határozza meg az inverzét! Ellenőrizze számításait! b Milyen egyéb mátritulajdonságokra
Alkalmazott algebra - SVD
Alkalmazott algebra - SVD Ivanyos Gábor 20 sz Poz. szemidenit mátrixok spektrálfelbontásának általánosítása nem feltétlenül négyzetes mátrixokra LSI - mögöttes szemantikájú indexelés "Közelít " webkeresés
11. gyakorlat megoldásai
11. gyakorlat megoldásai Lokális szélsőértékek F1. Határozza meg az alábbi kétváltozós függvények lokális szélsőértékeit! (a) f(x, y) = 4x 2 + 2xy + 5y 2 + 2, (b) f(x, y) = y 4 3y + x 2 y + 2xy, (c) f(x,
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,