Többváltozós, valós értékű függvények

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Többváltozós, valós értékű függvények"

Átírás

1 TÖ Többváltozós, valós értékű függvények

2 TÖ Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza, n változós függvényeknek nevezzük.

3 TÖ Példák:. A gazdasági eredetű problémák matematikai modelljében gyakoriak a sokváltozós függvények (például: termelési függvény). Az R R típusú függvényeket szokás skalármezőnek nevezni. Ilyenek például a skalár jellegű fizikai mennyiségeknek (tömegsűrűség, töltéssűrűség, hőmérséklet, potenciál, stb.) a helytől való függését kifejező függvények.. A geográfiában használt domborzati térképek tekinthetők R R típusú (kétváltozós) függvényeknek.

4 TÖ 4 ábrázolása A többváltozós függvények közül csak a kétváltozósakat tudjuk két dimenzióban ábrázolni. Ekkor is egy háromdimenziós kép térhatású síkbeli ábrázolásáról van szó. Az ábrázolásnak két esetben van szerepe: a többváltozós függvényekkel kapcsolatos fogalmak tartalmának speciálisan kétváltozós függvényeken való bemutatásakor olyan esetekben, amikor egy kétváltozós függvény egy térbeli ponthalmaz (általában felület) megadására szolgál

5 Kétváltozós függvények ábrázolása TÖ 5 (,y) f (,y) f (,y) + y

6 TÖ 6 Definíció: szintvonalak Ha c eleme az (,y) f(,y) függvény értékkészletének, akkor az { (,y) R f(,y) c } síkgörbét c értékhez tartozó szintvonalnak nevezzük.

7 TÖ 7 Definíció: paramétervonalak A kétváltozós függvények paramétervonalai síkgörbék, a függvényfelületnek a függőleges koordinátasíkokkal párhuzamos síkokkal való síkmetszetei. A paramétervonalak olyan egyváltozós függvények grafikonjaként állnak elő, melyek az eredeti kétváltozós függvény egyik változójának rögzítésével keletkeznek.

8 TÖ 8 A második változó rögzítésével keletkező paramétervonalak f(,y ) Példa: Az (,y) + y függvény esetén az y változó értékét -nek rögzítve az + 4 egyváltozós függvényhez jutunk.

9 TÖ 9 Az első változó rögzítésével keletkező paramétervonalak y f(,y) Példa: Az (,y) + y függvény esetén az változó értékét -nak rögzítve az y 9 + y egyváltozós függvényhez jutunk.

10 TÖ Megjegyzés: A kétváltozós függvények (felületek) ábrázolásakor a szintvonalak ill. a paramétervonalak berajzolása segíti a felület alakjának tulajdonságainak vizuális érzékelését.

11 TÖ folytonossága és határértéke Definíció: folytonosság Az f : D ( R n ) R függvény folytonos a P D helyen, ha bármely D-beli sorozat esetén P n P f ( P n ) f ( P ).

12 Definíció: határérték TÖ Tekintsük az f:d( R n ) R függvényt, és legyen P torlódási pontja D-nek. Ha van olyan A R, melyre fennáll, hogy bármely D-beli sorozat esetén P n P, f( P n ) A, (P n P, n N) akkor azt mondjuk, hogy az f függvény határértéke a P helyen A. Jelölés: lim f (P) P P A

13 TÖ Megjegyzés: folytonosság és határérték Legyen D R n nyílt halmaz. A fenti definíciókból látható, hogy az f:d R függvény pontosan akkor folytonos a P D helyen, ha az f határértéke P -ban f(p ).

14 Példa: nem folytonos függvény TÖ 4 y, ha (, y) (,) (, y) + y, ha (, y) (,) f Az f függvénynek a (,) helyen nem létezik határértéke (és így nem is folytonos), mert például lim f n, n n lim n n lim n lim f, n n n n n n 5 5 lim n 5 n lim

15 Definíció: Lineáris függvények TÖ 5 Az A:R n R, A (,,, n ) c + c + + c n n függvényeket, ahol c, c,, c n valós számok, n változós lineáris függvényeknek nevezzük. Megjegyzés: A lineáris függvények alapvető szerepet játszanak a differenciálszámításban, hiszen a differenciálás valójában lineáris függvénnyel való közelítést jelent.

16 TÖ 6 Egyváltozós lineáris függvények és az érintő egyenes Az egyváltozós lineáris függvények az c alakú függvények, melyek grafikonja az origón átmenő c meredekségű egyenes. Egyváltozós differenciálható függvény lineárisan az érintő egyenessel közelíthető, melynek meredeksége az adott pontbeli differenciálhányados.

17 TÖ 7 Kétváltozós lineáris függvények és az érintő sík A kétváltozós lineáris függvények az (, ) c + c alakú függvények, melyek grafikonja az origón átmenő (c,c,-) normálvektorú sík. Kétváltozós differenciálható függvény lineárisan az érintő síkkal közelíthető, melynek normálvektorát az adott pontbeli ún. parciális differenciálhányadosok határozzák meg.

18 TÖ 8 differenciálása Az f:d( R n ) R függvény differenciálható a D értelmezési tartomány P belső pontjában, ha van olyan A:R n R lineáris függvény, melyre lim P P f (P) f (P ) A(P P P P Ekkor az A függvényt az f függvény P helyen vett differenciálhányadosának nevezzük. )

19 TÖ 9 Megjegyzés: A differenciálhányados előbbi definíciója összhangban van az egyváltozós függvények differenciál-hányadosának fogalmával: Az f:d( R) R függvény differenciálható a D értelmezési tartomány belső pontjában, ha van olyan A R szám, melyre lim f () f ( ) A ( Ekkor A azonos az f ( ) differenciálhányadossal. )

20 TÖ Megjegyzések:. Ha differenciálhányados létezik, akkor egyértelmű.. Ahol egy függvény differenciálható, ott folytonos is.. Ha D R n nyílt halmaz (minden pontja belső pont) és az f:d R függvény differenciálható a D minden pontjában, akkor azt mondjuk, hogy f differenciálható a D halmazon.

21 Iránymenti derivált TÖ Definíció: iránymenti derivált Legyen f:d( R n ) R, P a D értelmezési tartomány belső pontja, v R n, v. Az f függvény P pontbeli, v irányban vett iránymenti deriváltján a v f (P + λ v) f (P ) f (P ) lim λ λ határértéket értjük, amennyiben létezik és valós.

22 TÖ Az iránymenti derivált jelentése A v irányban vett iránymenti derivált szemléletesen azt fejezi ki, hogy az értelmezési tartományban az pontból a v irányban haladva mennyi a függvényértékek változásának gyorsasága.

23 TÖ Megjegyzések:. Az iránymenti derivált definíciójában szereplő határérték egyváltozós függvény határértéke (egy változó van: λ).. Ahol az f függvény differenciálható, ott létezik az összes iránymenti deriváltja is.. Az iránymenti deriváltak létezéséből viszont nem következik a differenciálhatóság.

24 Definíció: Parciális derivált TÖ 4 Legyen f:d( R n ) R, P a D értelmezési tartomány belső pontja. Az f függvény P pontbeli, e i irányban vett iránymenti deriváltját az f függvény P pontbeli i-edik (vagy i-edik változó szerinti) parciális differenciálhányadosának, vagy röviden parciális deriváltjának nevezzük (i,,n).

25 TÖ 5 Jelölések: Az f függvény P pontbeli i-edik változó szerinti parciális deriváltjának jelölése: if (P ) vagy f (P i ) Szokás a változó sorszáma helyett magát a változót szerepeltetni a parciális derivált jelölésénél: például az változó szerinti parciális derivált lehetséges jelölései: f (P ) f (P ) f (P )

26 TÖ 6 Megjegyzés: a differenciálhányados és a parciális deriváltak A parciális deriváltak létezéséből általában nem következik a differenciálhatóság, de igaz a következő tétel: Ha az f:b(p )( R n ) R függvénynek a B(P,r) minden pontjában létezik minden változó szerinti parciális deriváltja, továbbá ezek folytonosak P -ban, akkor f differenciálható P -ban.

27 TÖ 7 A parciális derivált közvetlen értelmezése Az előbbiekben a parciális deriváltat, mint speciális irányban vett iránymenti deriváltat értelmeztük. Most megadjuk a parciális derivált közvetlen definícióját. (Az egyszerűség kedvéért a definíciókat csak a kétváltozós esetre írjuk fel, de ezzel analóg módon lehet eljárni kettőnél több változós esetben is.)

28 Definíció: parciális derivált TÖ 8 Legyen f:d( R n ) R, P a D értelmezési tartomány belső pontja. Az f függvény P pontbeli, első változó változó szerinti parciális differenciálhányadosán (vagy röviden parciális deriváltján) a f (, y ) f (, y ) lim f (, y ) határértéket értjük, amennyiben ez létezik és véges.

29 Definíció: parciális derivált TÖ 9 Legyen f:d( R n ) R, P a D értelmezési tartomány belső pontja. Az f függvény P pontbeli, második változó változó szerinti parciális differenciálhányadosán (vagy röviden parciális deriváltján) a f (, y ) lim y y f (, y) y f ( y, y ) határértéket értjük, amennyiben ez létezik és véges.

30 TÖ A parciális deriváltak geometriai jelentése kétváltozós függvény esetén Az első változó szerinti parciális derivált az y változó rögzítésével előálló felületi görbe érintőjének iránytangensét (meredekségét) adja.

31 TÖ A parciális deriváltak geometriai jelentése kétváltozós függvény esetén A második változó szerinti parciális derivált az változó rögzítésével előálló felületi görbe érintőjének iránytangensét (meredekségét) adja.

32 TÖ Definíció: gradiens (vektor) Ha az f:d( R n ) R függvény differenciálható a D értelmezési tartomány P belső pontjában, akkor P -ban léteznek a parciális deriváltak. A P pontbeli parciális deriváltakból képzett vektort gradiensnek, vagy gradiens vektornak nevezzük: ( f (P ), f (P ),..., f (P )) gradf (P ) n

33 TÖ Tétel: az iránymenti deriváltak és a gradiens vektor Legyen az f:d( R n ) R függvény differenciálható a D értelmezési tartomány P belső pontjában. Az iránymenti derivált a gradiens vektor és a megadó egységvektor skaláris szorzataként számítható: v f (P ) gradf (P ), v

34 TÖ 4 Példa: f (,, ) P (,4,) v (,,) Határozzuk meg az f függvény elsőrendű parciális derivált függvényeit gradiens vektorát a P helyen iránymenti deriváltját a P helyen, a v irányban!

35 TÖ 5 4 ),, ( f Az elsőrendű parciális derivált függvények: ),, ( f + + +!!!a számolás közben és konstans!!! 4 ),, ( f + + +!!!a számolás közben és konstans!!! ),, ( f + + +!!!a számolás közben és konstans!!!

36 TÖ 6 Az elsőrendű parciális derivált függvények értéke a P helyen: f (,, ) f (P ) f (,4,) 4 f (,, ) f (P ) f (,4,) 7 4 f (,, ) f (P ) f (,4,) A gradiens vektor: grad f (P ) 7 grad f (,4,),, 4

37 TÖ 7 grad f (P ) 7 grad f (,4,),, 4 v (,,) v v v (,,),, Az iránymenti derivált: v f (P ) grad f (P ), v, 7 4,,,,

38 TÖ 8 Definíció: differenciál Tekintsük az f:d( R n ) R függvényt. Legyen P (,,, n ) a D egy belső pontja, legyen továbbá a D egy pontja és P (,,, n ) -, -,, n n - n. P P P (,,, n )

39 TÖ 9 Ha f differenciálható a P helyen, akkor az f függvény P pontbeli, a P eltéréshez tartozó (első) differenciálja: f (P ) + f (P ) f (P ) n n Megjegyzés A differenciál röviden felírható a gradiens vektor segítségével: gradf (P ), P

40 Definíció: lineáris közelítés TÖ 4 Ha az f:d( R n ) R függvény differenciálható a D értelmezési tartomány P belső pontjában, akkor az f függvény P pontbeli lineáris közelítésén azt értjük, hogy a függvény f f ( P ) f ( P ) megváltozását a megfelelő első differenciállal közelítjük: f f (P) f (P ) gradf (P ), P f (P ) + f (P ) nf (P ) n avagy: f (P) f (P ) + gradf (P ), P

41 Lineáris közelítés kétváltozós függvény esetén TÖ 4 Kétváltozós differenciálható függvény esetén a lineáris közelítés az ún. érintősíkkal való közelítést jelenti. Definíció: érintősík Ha az (,y) f(,y) kétváltozós függvény differenciálható a P (,y ) helyen, akkor az f függvény P pontbeli érintősíkján a következő függvényt (annak grafikonját) értjük: S(, y) f (P ) + f (P ) ( ) + f (P ) (y y) Az f függvény P pontbeli lineáris közelítése: f(,y) S(,y)

42 TÖ 4

43 TÖ 4 Példa: f (,, ) P (,4,) v (,,) Határozzuk meg az f függvény lineáris közelítését a P helyen közelítő értékét a P (.,.98,.95 ) helyen

44 TÖ 44 f (,, ) f (P ) f (,4,) 4 f (,, ) f (P ) f (,4,) 7 4 f (,, ) f (P ) f (,4,) grad f (P ) 7 grad f (,4,),, 4

45 TÖ 45 f (,, ) P (,4,) P (,, ) f(p ) 7 A lineáris közelítés: grad f (P ) 7 grad f (,4,),, 4 f (P) f (P ) f (P + ) + f (P grad f (P ) 7 ( + ), P f (P ) ) +.75 ( + f (P 4) + ).5 ( )

46 TÖ 46 A függvény közelítő értéke az (.,.98,.95 ) helyen: P (,, ) (.,.98,.95 ) f (P) 7 ( ) +.75 ( 4) +.5 ( ) 7 (. ) +.75 (.98 4) +.5 (.95 ) (.) +.5 (.5)

47 TÖ 47 Definíció: másodrendű parciális deriváltak Legyen f:b(p,r)( R n ) R, i {,,n}, j {,,n}. Ha f-nek minden P B(P,r) pontban létezik az i-edik változó szerinti i f(p) parciális deriváltja a P i f(p) parciális derivált függvénynek a P pontban létezik a j-edik változó szerinti parciális deriváltja akkor ezt az f függvény j és i változók szerinti másodrendű parciális deriváltjának nevezzük. Jelölés: j i f (P )

48 TÖ 48 Megjegyzés: A másodrendű parciális deriváltak jelölésére szokásosak még az alábbi jelölések is: f ji f " ji (P ) (P ) A jelölésben utalhatunk közvetlenül azokra a változókra, melyek szerint a deriválást végeztük. Például az, majd az változó szerinti deriválás jelölése: (P ) (P ) f f f (P ) " f (P )

49 Definíció: TÖ 49 Ha f:b(p,r)( R n ) R függvénynek B(P,r)-ban léteznek az elsőrendű parciális derivált függvényei, és ezek újra minden változó szerint parciálisan differenciálhatók a P pontban, akkor azt mondjuk, hogy f kétszer differenciálható P -ban. Definíció: Ha f:b(p,r)( R n ) R függvénynek B(P,r)-ban léteznek az másodrendű parciális derivált függvényei és ezek folytonosak P -ban, akkor azt mondjuk, hogy f kétszer folytonosan differenciálható P -ban.

50 TÖ 5 Megjegyzés: Young tétel Ha az f:b(p,r)( R n ) R függvény kétszer differenciálható P -ban, akkor a P pontbeli másodrendű parciális deriváltak kiszámításakor a deriválások sorrendje felcserélhető, azaz j i f (P ) f (P i j ) i {,,n}, j {,,n}.

51 Kvadratikus függvények TÖ 5 Definíció: Legyen n pozitív egész szám. A Q(h n n,...,h n ) aijhih i j j alakú függvényeket, ahol A(a ij ) egy n-edrendű szimmetrikus mátri, kvadratikus függvényeknek nevezzük. Az A mátri a Q kvadratikus függvény mátria.

52 TÖ 5 Példa: A 4 Az A mátrihoz tartozó ( változós) kvadratikus függvény: Q(h, h, h ) h + h h + h h + + h h + h h h + + h h h h + 4h h + h + 4h +h h 4h h + 6h h

53 TÖ 5 Megjegyzés: Nyilvánvaló, hogy bármely Q kvadratikus függvényre Q(). Definíció: A Q:R n R kvadratikus függvény pozitív definit, ha Q(h) >, ha h negatív definit, ha: Q(h) <, ha h indefinit, ha Q fölvehet pozitív és negatív értéket egyaránt.

54 TÖ 54 Példa: A Q(h, h, h ) h + h + 4h + h h 4h h + 6h h függvény pozitív definit. Ez azonnal látszik az alábbi egyszerű átalakítással: h + h + 4h + h h 4h h + 6h h (h +h ) + (h h ) + (h +h )

55 TÖ 55 Definíció: sarokdeterminánsok Egy n-edrendű kvadratikus mátri sarokdeterminánsai az első k sorban és az első k oszlopban lévő elemekből álló k-adrendű mátriok determinánsai (k,,n). Példa: A sarokdeterminánsok: 4 ( ) D det D det D det 4

56 TÖ 56 Tétel: a definitség megállapítása determinánsokkal Egy kvadratikus függvény pontosan akkor pozitív definit, ha mátriának bal felső sarokdeterminánsai pozitívak: D >, D >,, D n > Egy kvadratikus függvény pontosan akkor negatív definit, ha mátriának bal felső sarokdeterminánsai váltakozó előjelűek úgy, hogy D negatív: D <, D >, D <, D 4 >, Egy kvadratikus függvény mátriának bal felső sarokdeterminánsai nullától különbözőek, és a fenti két eset nem áll fenn, akkor a kvadratikus függvény indefinit.

57 TÖ 57 Példa: Q(h, h, h ) h + h + 4h +h h 4h h + 6h h 4 ( ) det D > det D > Q pozitív definit 4 det D >

58 TÖ 58 Többváltozós differenciálható függvények szélsőérték-számítása Tétel: a helyi szélsőérték létezésének szükséges feltétele Ha az f:d( R n ) R differenciálható függvénynek helyi szélsőértéke van a D értelmezési tartomány P belső pontjában, akkor a P pontbeli elsőrendű parciális deriváltak értéke : f (P ) f (P ) n f(p )

59 TÖ 59 Megjegyzés: Kétváltozós differenciálható függvény esetén ott lehet helyi szélsőérték, ahol az érintő sík vízszintes.

60 TÖ 6 Következmény: Differenciálható függvény esetén a helyi szélsőértékek keresésekor elsőként azokat P helyeket kell meghatározni, ahol a parciális deriváltak értéke, az előző tétel szerint ui. helyi szélsőérték csak ezeken a helyeken lehet. Megjegyzés: Helyi szélsőérték létezéséhez nem elegendő, hogy az elsőrendű parciális deriváltak értéke. Az elegendőséghez további feltételt kell megfogalmazni a másodrendű parciális deriváltakra vonatkozóan.

61 TÖ 6 Definíció: Legyen az f:b(p,r)( R n ) R függvény kétszer folytonosan differenciálható P -ban, és definiáljuk a Q:R n R függvényt a következőképpen: Q(h n n,...,h ) f (P )h h n i j i i j j Megjegyzés: Az így definiált Q függvény kvadratikus.

62 TÖ 6 Tétel: a helyi szélsőérték létezésének elegendő feltétele Legyen az f:b(p,r)( R n ) R függvény kétszer folytonosan differenciálható P -ban. Ha f (P ) f (P ) n f(p ) és Q(h n n,...,h n ) i jf (P )hih j i j pozitív definit, akkor f-nek P -ban helyi minimuma van.

63 Ha f (P ) f (P ) n f(p ) és Q(h Ha n n,...,h n ) i jf (P )hih j i j akkor f-nek P -ban helyi maimuma van. negatív definit, f (P ) f (P ) n f(p ) és Q(h n n,...,h n ) i jf (P )hih j i j indefinit, akkor f-nek P -ban nincs helyi szélsőértéke. TÖ 6

64 TÖ 64 Példa: Határozzuk meg a következő függvény helyi szélsőértékhelyeit és a szélsőértékeket!,,, 4 ),, ( f > > > ),, ( f ),, ( f ),, ( f. lépés Az elsőrendű parciális derivált függvények meghatározása:

65 TÖ 65. lépés A f f n f egyenletrendszer megoldása: f (,, ) 4 f (,, ) P,, f (,, )

66 TÖ 66. lépés A másodrendű parciális derivált függvények meghatározása. 8 4 y + z + 4 (A könnyebb áttekinthetőség kedvéért a függvényeket táblázatba írjuk. Az első sorban a f, a második sorban f, a harmadik sorban a f függvény deriváltjai vannak.)

67 TÖ lépés A másodrendű parciális derivált függvények értékének meghatározása ott, ahol az elsőrendű deriváltak értéke egyszerre volt nulla. Most egy ilyen pont van, a P: z y 4 8,, P 6 6 A

68 TÖ lépés Meg kell állapítani, hogy az A mátri milyen definitségű Q kvadratikus függvényhez tartozik, ebből megállapítható, hogy a vizsgált pontban van-e helyi szélsőérték, és milyen jellegű. D det(6) A D det D det 4 6

69 TÖ 69 D 6 >, D 8 >, D 4 > vagyis az A mátri pozitív definit kvadratikus függvényhez tartozik. Ebből következik, hogy az f-nek P-ben helyi minimuma van.

70 TÖ 7 Megjegyzés A fentiekből látható, hogy a Q(h n n,...,h ) f (P )h h n i j i j i j kvadratikus függvényt nem kell felírni, elegendő csak a mátriával számolni. A most megoldott feladatban a kvadratikus függvény, ami pozitív definitnek bizonyult: Q(h, h, h ) 4 h 4 h h + h 4 h h + 6 h

Többváltozós, valós értékű függvények

Többváltozós, valós értékű függvények Többváltozós függvények Többváltozós, valós értékű függvények Többváltozós függvények Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza,

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 3. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 19 Skalármezők

Részletesebben

Kétváltozós függvények differenciálszámítása

Kétváltozós függvények differenciálszámítása Kétváltozós függvények differenciálszámítása 13. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kétváltozós függvények p. 1/1 Definíció, szemléltetés Definíció. Az f : R R R függvényt

Részletesebben

A legjobb közeĺıtés itt most azt jelentette, hogy a lineáris

A legjobb közeĺıtés itt most azt jelentette, hogy a lineáris Többváltozós függvények differenciálhatósága f(x) f(x Az egyváltozós függvények differenciálhatóságát a lim 0 ) x x0 x x 0 függvényhatárértékkel definiáltuk, s szemléletes jelentése abban mutatkozott meg,

Részletesebben

Losonczi László. Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar

Losonczi László. Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Szélsőértékszámítás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Losonczi László (DE) Szélsőértékszámítás 1 / 21 2. SZÉLSOÉRTÉKSZÁMÍTÁS 2.1 A szélsőérték fogalma, létezése Azt

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

MATEMATIKA 2. dolgozat megoldása (A csoport)

MATEMATIKA 2. dolgozat megoldása (A csoport) MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f

Részletesebben

Lengyelné Dr. Szilágyi Szilvia április 7.

Lengyelné Dr. Szilágyi Szilvia április 7. ME, Anaĺızis Tanszék 2010. április 7. , alapfogalmak 2.1. Definíció A H 1, H 2,..., H n R (ahol n 2 egész szám) nemüres valós számhalmazok H 1 H 2... H n Descartes-szorzatán a következő halmazt értjük:

Részletesebben

A fontosabb definíciók

A fontosabb definíciók A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy

Részletesebben

2014. november Dr. Vincze Szilvia

2014. november Dr. Vincze Szilvia 24. november 2-4. Dr. Vincze Szilvia Tartalomjegyzék. Meredekség, szelő, szelő meredeksége 2. Differencia-hányados fogalma 3. Differenciál-hányados fogalma 5. Folytonosság és differenciálhatóság kapcsolata

Részletesebben

Boros Zoltán február

Boros Zoltán február Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n

Részletesebben

ANALÍZIS III. ELMÉLETI KÉRDÉSEK

ANALÍZIS III. ELMÉLETI KÉRDÉSEK ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. május 15. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

9. feladatsor: Többváltozós függvények deriválása (megoldás)

9. feladatsor: Többváltozós függvények deriválása (megoldás) Matematika Ac gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 017/18 ősz feladatsor: Többváltozós függvények deriválása (megoldás) 1 Számoljuk ki a következő függvények parciális deriváltjait

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése

2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése 2 SZÉLSŽÉRTÉKSZÁMÍTÁS DEFINÍCIÓ 21 A széls érték fogalma, létezése Azt mondjuk, hogy az f : D R k R függvénynek lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ε > 0 hogy f(x 0 )

Részletesebben

Valós függvények tulajdonságai és határérték-számítása

Valós függvények tulajdonságai és határérték-számítása EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye

Részletesebben

12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében?

12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében? Ellenörző Kérdések 1. Mit jelent az, hogy egy f : A B függvény injektív, szürjektív, illetve bijektív? 2. Mikor nevezünk egy függvényt invertálhatónak? 3. Definiálja a komplex szám és műveleteinek fogalmát!

Részletesebben

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L

Részletesebben

1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n.

1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n. 1. Többváltozós függvények 1. Bevezetés Ennek a fejezetnek a célja a kétváltozós függvények vizsgálata, ami során a 3-dimenziós felületeket szeretnénénk megérteni. 1. definíció. Legyen D R n. Ekkor az

Részletesebben

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)

Részletesebben

Tartalomjegyzék Feltétel nélküli szélsőérték számítás

Tartalomjegyzék Feltétel nélküli szélsőérték számítás Dr. Vincze Szilvia Példa Egy adott talajtípuson az átlagosnak megelelő időjárási viszonyok között a búza hozamát hektáronként a elhasznált nitrogén és oszor hatóanyag erősen beolyásolja. A hektáronként

Részletesebben

Kétváltozós függvény szélsőértéke

Kétváltozós függvény szélsőértéke Kétváltozós függvény szélsőértéke Sütő Andrea Kétváltozós függvény szélsőértéke Legyen adott f ( xy, ) kétváltozós függvény és ez legyen folytonosan totálisan differenciálható, azaz létezzenek az elsőrendű

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 30 Egy

Részletesebben

Óravázlatok: Matematika 2.

Óravázlatok: Matematika 2. Óravázlatok: Matematika 2. Bartha Ferenc készültség: March 4, 2003 1. VEKTOR-SKALÁR FÜGGVÉNYEK DIFFERENCIÁLÁSA Legyen a továbbiakban M R n nyílt halmaz és f : M R valós függvény, x (x 1,.., x n ) M Ha

Részletesebben

Függvény differenciálás összefoglalás

Függvény differenciálás összefoglalás Függvény differenciálás összefoglalás Differenciálszámítás: Def: Differenciahányados: f() f(a + ) f(a) függvényérték változása független változó megváltozása Ha egyre kisebb, vagyis tart -hoz, akkor a

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Differenciálhatóság H607, EIC 2019-03-14 Wettl

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1

Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1 Differenciálszámítás 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Differenciálszámítás p. 1/1 Egyenes meredeksége Egyenes meredekségén az egyenes és az X-tengely pozitív iránya

Részletesebben

Gazdasági matematika II.

Gazdasági matematika II. Gazdasági matematika II. Losonczi László, Pap Gyula Debreceni Egyetem Debrecen, 2007/8 tanév, II. félév Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2007/8 tanév, II. félév 1 / 186 Félévközi

Részletesebben

Kalkulus 2., Matematika BSc 1. Házi feladat

Kalkulus 2., Matematika BSc 1. Házi feladat . Házi feladat Beadási határidő: 07.0.. Jelölések x = (x,..., x n, y = (y,..., y n, z = (z,..., z n R n esetén. x, y = n i= x iy i, skalárszorzat R n -ben. d(x, y = x y = n i= (x i y i, metrika R n -ben

Részletesebben

Matematika elméleti összefoglaló

Matematika elméleti összefoglaló 1 Matematika elméleti összefoglaló 2 Tartalomjegyzék Tartalomjegyzék... 2 1. Sorozatok jellemzése, határértéke... 3 2. Függvények határértéke és folytonossága... 5 3. Deriválás... 6 4. Függvényvizsgálat...

Részletesebben

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva? = komolyabb bizonyítás (jeleshez) Ellenőrző kérdések 2006 ősz 1. Definiálja a komplex szám és műveleteinek fogalmát! 2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben

Részletesebben

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2

Részletesebben

Nemlineáris programozás 2.

Nemlineáris programozás 2. Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,

Részletesebben

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév Analízis II. Analízis II. Beugrók Készítette: Szánthó József kiezafiu kukac gmail.com 2009/20 10 1.félév Analízis II. Beugrók Függvények folytonossága: 1. Mikor nevez egy függvényt egyenletesen folytonosnak?

Részletesebben

Gazdasági matematika II.

Gazdasági matematika II. Gazdasági matematika II. Losonczi László, Pap Gyula Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar 2014. február 16. Losonczi László, Pap Gyula (DE, KTK) Gazdasági matematika II. 2014. február

Részletesebben

Gazdasági matematika II.

Gazdasági matematika II. Gazdasági matematika II. Losonczi László, Pap Gyula Debreceni Egyetem Debrecen, 2009/10 tanév, II. félév Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/10 tanév, II. félév 1 / 187 Félévközi

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 A derivált alkalmazásai H607, EIC 2019-04-03 Wettl

Részletesebben

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11 Bodó Beáta ISMÉTLÉS. ch(6 d.. 4.. 6. 7. 8. 9..... 4.. e (8 d ch (9 + 7 d ( + 4 6 d 7 8 + d sin (4 + d cos sin d 7 ( 6 + 9 4 d INTEGRÁLSZÁMÍTÁS 7 6 sh(6 + c 8 e(8 + c 9 th(9 + 7 + c 6 ( + 4 7 + c = 7 4

Részletesebben

Figyelem, próbálja önállóan megoldani, csak ellenőrzésre használja a következő oldalak megoldásait!

Figyelem, próbálja önállóan megoldani, csak ellenőrzésre használja a következő oldalak megoldásait! Elméleti kérdések: Második zárthelyi dolgozat biomatematikából * (Minta, megoldásokkal) E. Mit értünk hatványfüggvényen? Adjon példát nem invertálható hatványfüggvényre. Adjon példát mindenütt konkáv hatványfüggvényre.

Részletesebben

Konjugált gradiens módszer

Konjugált gradiens módszer Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK

Részletesebben

Számítógépes programok alkalmazása az analízisben

Számítógépes programok alkalmazása az analízisben Eötvös Loránd Tudományegyetem Természettudományi Kar Számítógépes programok alkalmazása az analízisben Szakdolgozat Csillagvári Dániel Matematika BSc, elemző szakirány Témavezető: Gémes Margit Analízis

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

Felügyelt önálló tanulás - Analízis III.

Felügyelt önálló tanulás - Analízis III. Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

Vektoranalízis Vektor értékű függvények

Vektoranalízis Vektor értékű függvények VS Vektor értékű üggvények VS A korábbi ejezetekben tanulmányoztuk azokat a üggvényeket, amelyek értékkészlete a valós számok halmazának egy részhalmaza. Ezek egyrészt az R R típusú egyváltozós, valós

Részletesebben

Többváltozós analízis gyakorlat, megoldások

Többváltozós analízis gyakorlat, megoldások Többváltozós analízis gakorlat, megoldások Általános iskolai matematikatanár szak 7/8. őszi félév. Differenciál- és integrálszámítás alkalmazásai. Határozzuk meg az alábbi differenciálegenletek összes,

Részletesebben

A gyakorlatok anyaga

A gyakorlatok anyaga A 7-11. gyakorlatok anyaga a Matematika A1a-Analízis nevű tárgyhoz B és D kurzusok Számhalmazok jelölésére a következő szimbólumokat használjuk: N := {1,,...}, Z, Q, Q, R. Az intervallumokat pedig így

Részletesebben

Lineáris algebra numerikus módszerei

Lineáris algebra numerikus módszerei Hermite interpoláció Tegyük fel, hogy az x 0, x 1,..., x k [a, b] különböző alappontok (k n), továbbá m 0, m 1,..., m k N multiplicitások úgy, hogy Legyenek adottak k m i = n + 1. i=0 f (j) (x i ) = y

Részletesebben

Maple: Deriváltak és a függvény nevezetes pontjai

Maple: Deriváltak és a függvény nevezetes pontjai Maple: Deriváltak és a függvény nevezetes pontjai Bevezető Tudjuk, hogy a Maple könnyűszerrel képes végrehajtani a szimbólikus matematikai számításokat, ezért a Maple egy ideális program differenciál-

Részletesebben

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1

Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1 Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése). Feladat. Határozzuk meg az f(x) x 2 függvény x 0 pontbeli differenciahányados

Részletesebben

Matematikai alapok 1 Tantárgyi útmutató

Matematikai alapok 1 Tantárgyi útmutató Módszertani Intézeti Tanszék Gazdaságinformatikus szak nappali tagozat Matematikai alapok 1 Tantárgyi útmutató 2015/16 tanév II. félév 1/5 Tantárgy megnevezése Matematikai alapok 1 Tantárgy jellege/típusa:

Részletesebben

Kétváltozós függvények ábrázolása síkmetszetek képzése által

Kétváltozós függvények ábrázolása síkmetszetek képzése által Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az

Részletesebben

Függvények Megoldások

Függvények Megoldások Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény

Részletesebben

A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss)

A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) Gyakorló feladatok (Ép. matek). Komple számok: A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) ) Számítsa ki a következő

Részletesebben

Egyváltozós függvények differenciálszámítása

Egyváltozós függvények differenciálszámítása Egyváltozós függvények differenciálszámítása Egyváltozós függvények differenciálszámítása Ebben a részben I egy tetszőleges, pozitív hosszúságú, intervallumot jelöl. Egyváltozós függvények differenciálszámítása

Részletesebben

Differenciálegyenletek. Vajda István március 4.

Differenciálegyenletek. Vajda István március 4. Analízis előadások Vajda István 2009. március 4. Függvényegyenletek Definíció: Az olyan egyenleteket, amelyekben a meghatározandó ismeretlen függvény, függvényegyenletnek nevezzük. Függvényegyenletek Definíció:

Részletesebben

2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x

2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx

Részletesebben

Matematika I. Vektorok, egyenesek, síkok

Matematika I. Vektorok, egyenesek, síkok Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk

Részletesebben

Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK

Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozat fogalma Definíció: Számsorozaton olyan függvényt értünk, amelynek értelmezési tartománya a pozitív egész

Részletesebben

Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája

Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája Tasnádi Tamás 2014. szeptember 11. Kivonat A tárgy a BME Fizika BSc szak kötelező, alapozó tárgya a képzés 1. félévében. A tárgy

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

Gazdasági matematika 1 Tantárgyi útmutató

Gazdasági matematika 1 Tantárgyi útmutató Módszertani Intézeti Tanszék Emberi erőforrások, gazdálkodási és menedzsment, pénzügy és számvitel szakok nappali tagozat Gazdasági matematika 1 Tantárgyi útmutató 2016/17 tanév I. félév 1/5 Tantárgy megnevezése

Részletesebben

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan! Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén

Részletesebben

Vektoranalízis Vektor értékű függvények

Vektoranalízis Vektor értékű függvények Vektoranalízis VS Vektoranalízis Vektor értékű üggvények A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK engedélyével használhatók el! Vektoranalízis VS A korábbi ejezetekben tanulmányoztuk

Részletesebben

Felületek differenciálgeometriai vizsgálata

Felületek differenciálgeometriai vizsgálata Felületek differenciálgeometriai vizsgálata Felületek differenciálgeometriai értelemben Felület: Olyan alakzat, amely előállítható az (u,v) sík egy összefüggő tartományán értelmezett r(u,v) kétparaméteres

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

11. gyakorlat megoldásai

11. gyakorlat megoldásai 11. gyakorlat megoldásai Lokális szélsőértékek F1. Határozzuk meg az alábbi kétváltozós függvények lokális szélsőértékeit! (a) f(x, y) = 4x 2 + 2xy + 5y 2 + 2, (b) f(x, y) = y 4 y + x 2 y + 2xy, (c) f(x,

Részletesebben

Többváltozós függvények Feladatok

Többváltozós függvények Feladatok Többváltozós függvények Feladatok 2. szeptember 3. Határozzuk meg az alábbi sorozatok határértékét illetve torlódási pontjait!. ( n n2 + n n 3 2. ( n + n n5 n2 +2n+ 5 n n+ 3. ( sin(nπ/2 n n! Határozzuk

Részletesebben

Differenciál - és integrálszámítás. (Kreditszám: 7) Tantárgyfelelős: Dr. Losonczi László egyetemi tanár. Meghirdető tanszék: Analízis Tanszék

Differenciál - és integrálszámítás. (Kreditszám: 7) Tantárgyfelelős: Dr. Losonczi László egyetemi tanár. Meghirdető tanszék: Analízis Tanszék Differenciál - és integrálszámítás (Óraszám: 3+3) (Kreditszám: 7) Tantárgyfelelős: Dr. Losonczi László egyetemi tanár Meghirdető tanszék: Analízis Tanszék Debrecen, 2005 A tárgy neve: Differenciál- és

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

Ellenőrző kérdések a Matematika I. tantárgy elméleti részéhez, 2. rész

Ellenőrző kérdések a Matematika I. tantárgy elméleti részéhez, 2. rész Ellenőrző kérdések a Matematika I. tantárgy elméleti részéhez, 2. rész Mintakérdések a 2. ZH elméleti részéhez. Nem csak ezek a kérdések szerepelhetnek az elméleti részben, de azért hasonló típusú kérdések

Részletesebben

Analízis tételek alkalmazása KöMaL és más versenyfeladatokon

Analízis tételek alkalmazása KöMaL és más versenyfeladatokon EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR Analízis tételek alkalmazása KöMaL és más versenyfeladatokon Lukács Imola Matematika BSc Szakdolgozat Témavezető: Gémes Margit Műszaki gazdasági tanár

Részletesebben

MATEMATIKA 2. TANTÁRGYLEÍRÁS. 1.2 Azonosító (tantárgykód) GKNB_MSTM Kurzustípusok és óraszámok (heti/féléves)

MATEMATIKA 2. TANTÁRGYLEÍRÁS. 1.2 Azonosító (tantárgykód) GKNB_MSTM Kurzustípusok és óraszámok (heti/féléves) TANTÁRGYLEÍRÁS 1 ALAPADATOK 1.1 Tantárgy neve MATEMATIKA 2. 1.2 Azonosító (tantárgykód) GKNB_MSTM008 1.3 Kurzustípusok és óraszámok (heti/féléves) kurzustípus óraszám (heti) előadás (elmélet) 2 gyakorlat

Részletesebben

11. gyakorlat megoldásai

11. gyakorlat megoldásai 11. gyakorlat megoldásai Lokális szélsőértékek F1. Határozza meg az alábbi kétváltozós függvények lokális szélsőértékeit! (a) f(x, y) = 4x 2 + 2xy + 5y 2 + 2, (b) f(x, y) = y 4 3y + x 2 y + 2xy, (c) f(x,

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:

Részletesebben

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) (11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

A derivált alkalmazásai

A derivált alkalmazásai A derivált alkalmazásai Összeállította: Wettl Ferenc 2014. november 17. Wettl Ferenc A derivált alkalmazásai 2014. november 17. 1 / 57 Tartalom 1 Függvény széls értékei Abszolút széls értékek Lokális széls

Részletesebben

Gazdasági matematika

Gazdasági matematika ALKALMAZOTT KVANTITATÍV MÓDSZERTAN TANSZÉK Gazdasági matematika Tantárgyi útmutató Pénzügy és számvitel, Gazdálkodási és menedzsment, Emberi erőforrások alapképzési szakok nappali tagozat új tanrendűek

Részletesebben

Gépi tanulás a gyakorlatban. Lineáris regresszió

Gépi tanulás a gyakorlatban. Lineáris regresszió Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Gazdasági matematika II. vizsgadolgozat megoldása, június 10 Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett

Részletesebben

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk. . Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján

Részletesebben

{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek

{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek 1. MAEMAIKAI ÖSSZEFOGLALÓ 1.1. Vektorok közötti műveletek Azok a fizikai mennyiségek, melyeknek nagyságukon kívül irányuk is van, vektoroknak nevezzük. A vektort egyértelműen megadhatjuk a hosszával és

Részletesebben

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mikor nevezünk egy gráfot gyengén és mikor erősen összefüggőnek? Adjon példát gyengén összefüggő de erősen nem összefüggő

Részletesebben

Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei

Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei Indukált mátrixnorma Definíció A. M : R n n R mátrixnormát a. V : R n R vektornorma által indukált mátrixnormának nevezzük, ha A M = max { Ax V : x V = 1}. Az indukált mátrixnorma geometriai jelentése:

Részletesebben

6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények

6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények 6. Folytonosság pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények Egy függvény egy intervallumon folytonos, ha annak miden pontjában folytonos. folytonos függvények tulajdonságai

Részletesebben

Matematika szigorlat június 17. Neptun kód:

Matematika szigorlat június 17. Neptun kód: Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat

Részletesebben

Függvények vizsgálata

Függvények vizsgálata Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =

Részletesebben