Optika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen. Fermat-elv
|
|
- Klára Molnár
- 6 évvel ezelőtt
- Látták:
Átírás
1 Optika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen Kivonat Geometriai optika: közelítés, amely a fényterjedést, közeghatáron való áthaladást geometriai alakzatok görbék segítségével írja le. Ezen görbéket fénysugaraknak nevezzük. Fermat-elv eredeti megfogalmazásban: a fény két pont között a legrövidebb úton terjed. Ez egy hasznos eszköz a fény útjának számolására, szemléltetésére. Fermat-elv A Fermat-elv modern megfogalmazásban: a fény két pont között azon az úton terjed, amely megtételéhez szükséges id széls értéket vesz fel (legkisebb vagy legnagyobb). Ez hasonló a mechanikából ismert Hamilton-elvhez. B B δ (OP L) = δ n(r) ds = δ A A dop L(ɛ) dɛ c B v(r) ds = c δ A = 0 OP L = ɛ=0 1. példa: Fénytörés két közeg határfelületén Igazoljuk a törési törvényt a Fermat-elv segítségével! dt = 0 max min `inexió' (Fermat elv) n 1 sin θ 1 = n 2 sin θ 2 Megoldás: OP L = P P n(r) ds = n 1 a 2 + x 2 + n 2 b 2 + (d x) 2 dop L dx = n 1 x a2 + x n 2(d x) 2 b2 + (d x) = 0 2 = n 1 sin θ 1 = n 2 sin θ 2 1. ábra. Fénytörés 1
2 2. példa: Parabolikus tükör - tökéletes fókuszálás 2. ábra. Parabolikus reektor (forrás: MIT Optics Course Number 2.71 / 2.710) A végtelenb l jöv párhuzamos fénysugarak tökéletesen egy pontba fókuszálódnak le. Az ilyen felületeket ún. karteziánus felületeknek (Cartesian surface) nevezzük. Mi a felület egyenlete? Megoldás: A fénysugarak a legrövidebb optikai úthosszt követik, ami minden fénysugárra ugyanaz. Hasonlítsuk össze a középs és egy széls fénysugár optikai úthosszát: 2f = f s + x 2 + (f s) 2 f + s = x 2 + (f s) 2 x 2 = (f + s) 2 (f s) 2 = 4sf s(x) = x2 4f 3. ábra. Parabolikus tükör fényútjai mer leges és ferde beesés esetén 3. példa: Gömbtükör paraxiális közelítésben Paraxiális közelítésben vizsgáljuk meg a gömbtükör leképezését. Állapítsunk meg egy összefüggést az optikai tengelyen lév tárgypont és képpont pozíciója között (leképkezési 2
3 törvény). Mennyi a gömbtükör fókusztávolsága? (Paraxiális közelítés: a fénysugarak az optikai tengellyel kis szöget zárnak be, és az optikai tengelyhez közel terjednek.) Megoldás: Tekintsük a P 1 pontból θ 1 szög alatt induló fénysugarat, mely a tükrözést követ en P 2 ponton halad át θ 2 szög alatt. (A θ 1 és θ 2 szög el jele pozitív, R, z 1 és z 2 pedig negatív) A gömb sugara legyen R, és a C középpontból az y magasságban elhelyezked tükrözési pontba húzott sugár z-tengellyel bezárt szöge legyen θ 0. Ekkor a P 1 OC háromszög és a COP 2 háromszög küls és bels szögei közötti összefüggések: θ 1 = θ 0 θ ; θ 2 = θ 0 + θ = θ 2 + θ 1 = 2θ 0 2y R, ahol y az magasság, ahol a visszever dés történik. Hasonlóan a többi szögre is a kis szög közelítést alkalmazva: z 1 z 2 R Ha végtelenb l jöv, párhuzamos sugarakat vizsgálunk (z 1 ), akkor azok a z 2 = R 2 pozícióba fókuszálódnak. Ezt nevezzük deníció szerint fókusztávolságnak f z 2 = R 2 és fókuszpontnak (F). 4. ábra. Gömbtükör leképezése paraxiális közelítésben, (kép forrás: Saleh-Teich: Fundamentals of Photonics) 4. példa: Ellipszoid alakú lencse - tökéletes fókuszálás A végtelenb l érkez tengelypárhuzamos fénysugarak tökéletesen egy pontba fókuszálhatók. Határozzuk meg az ideális fókuszáló lencse felületének alakját. Megoldás: A fénysugarak a legrövidebb optikai úthosszt követik, ami minden fénysugárra ugyanaz. Hasonlítsuk össze a középs és egy széls fénysugár optikai úthosszát: OP L = nf = s + n (f s) 2 + x 2 nf s = n (f s) 2 + x 2 n 2 f 2 + s 2 2nfs = n 2 f 2 + n 2 s 2 2n 2 fs + n 2 x 2 n 2 x 2 + (n 2 1)s 2 2(n 2 n)fs = 0 3
4 5. ábra. Gömbtükör leképezése a valóságban, közelítések nélkül 6. ábra. Elliptikus lencse (forrás: MIT Optics Course Number 2.71 / 2.710) Alakítsuk teljes négyzetté a kifejezést, és az ellipszis egyenletét kapjuk: n 2 x 2 + (n 2 1)(s n n + 1 f)2 (n 2 n 1)( n + 1 )2 f 2 = 0 n 2 x 2 n (s n n n + 1 f)2 = ( n + 1 f)2 (s n n+1 f)2 ( n + x2 n+1 f)2 n 1 f = 1 n ábra. Elliptikus lencse fényútjai tengelypárhuzamos sugarak esetén 4
5 5. példa: Gömblencse - paraxiális közelítésben Paraxiális közelítésben vizsgáljuk meg a gömblencse leképezését. 8. ábra. Gömblencse leképezése (forrás: Saleh-Teich: Fundamentals of Photonics) Megoldás: Tekintsük a P 1 pontból θ 1 szög alatt induló fénysugarat, mely a törést követ en P 2 ponton halad át θ 2 szög alatt. A gömb sugara legyen R, és a C középpontból az y magasságban elhelyezked törési pontba húzott sugár z-tengellyel bezárt szöge legyen θ 0. Ekkor a beesési szög θ 1 θ 0, a törési szög pedig θ 2 θ 0. A törési törvény szerint: n 1 sin(θ 1 θ 0 ) = n 2 sin(θ 2 θ 0 ) Kis szögek esetén alkalmazható a következ közelítés: θ sin(θ) tan(θ) Ezeket felhasználva kapjuk a gömblencse leképezési törvényét paraxiális közelítésben: n 1 (θ 1 θ 0 ) = n 2 (θ 2 θ 0 ) n 1 ( y z 1 + y R ) = n 2 ( y z 2 + y R ) n 1 + n 2 = n 2 n 1 z 1 z 2 R = P (a felület tör ereje) 9. ábra. Gömblencse fényútjai tengelypárhuzamos sugarak esetén (Comsol Multiphysics) 5
6 10. ábra. Bikonvex vékonylencse (forrás: Saleh-Teich: Fundamentals of Photonics) Könnyen belátható, hogy egy R 1 és egy R 2 sugarú gömbfelületekb l összeállított bikonvex vékonylencse fókusztávolsága: 1 f = (n 1) ( 1 R 1 1 R 2 ), ugyanis az ered tör er az egyes felületek tör erejének összege. 6. példa: Üregtükör - ellipszis Tekintsünk egy üreget, melynek bels felülete tükör. A fényforrás az üreg tengelye mentén az S(-h,0) pontban helyezkedik el. Az üreg úgy tükrözi az S forráspontból induló összes fénysugarat, hogy azok mind a P(h,0) ponton haladnak keresztül.határozzuk meg az S-b l P-be való terjedés úthosszát és adjuk meg az üreg alakját, valamint az S és P pontok helyét. 11. ábra. Üreg tükör (forrás: MIT Optics Course Number 2.71 / 2.710) Megoldás: A Fermat-elv következtében az optikai úthossz minden fénysugárra meg kell hogy egyezzen. Tekintsük a legegyszer bb útvonalat az üreg tengelye mentén és határozzuk meg ennek a hosszát. Mivel az üreg belsejében n = 1 törésmutatójú leveg van, 6
7 ezért ez megegyezik az optikai úthosszal. OP L = 1 [h + a + (a h)] = 2a Az üreg alakjának meghatározásához használjuk ismét a Fermat-elvet. Tetsz leges (x,y) pontban tükröz d fénysugár optikai úthossza OP L = 2a kell hogy legyen. 12. ábra. Ellipszis alakú tükör leképezése (forrás: MIT Optics Number 2.71 / 2.710) OP L = 2a = (h + x) 2 + y 2 + (h x) 2 + y 2 2a (h + x) 2 + y 2 = (h x) 2 + y 2 4a 2 + h 2 + 2hx + x 2 + y 2 4a (h + x) 2 + y 2 = h 2 2hx + x 2 + y 2 a 2 + hx = a (h + x) 2 + y 2 a 4 + 2a 2 hx + h 2 x 2 = a 2 h 2 + a 2 x 2 + 2a 2 hx + a 2 y 2 a 2 + a2 h 2 x2 = h 2 + x 2 + y 2 y 2 = (a 2 h 2 ) + h2 a 2 a 2 x 2 Vezessük be a b 2 = a 2 h 2 új változót.ezt behelyettesítve kapjuk: y 2 = b 2 b2 a 2 x2 x 2 a 2 + y2 b 2 = 1 Tehát az üreg alakja egy ellipszis, ahol a és b a nagy- és kistengelyek hossza. b denícióját felhasználva h 2 = a 2 b 2, ami éppen az ellipszis fókuszpontjának a középponttól mért távolsága. Tehát az S forrás és a P gy jt pont az ellipszis két gyújtópontjában helyezkedik el. Házi feladat: Üvegb l kilép fény - tökéletes fókuszálás tör felülete Az üvegben (n törésmutatójú) terjed tengelypárhuzamos fénysugarak a leveg be kilépve tökéletesen egy pontba fókuszálhatók. Határozzuk meg az ideális fókuszáló lencse felületének alakját. 7
8 13. ábra. Lencsefelület leképezése (forrás: MIT Optics Course Number 2.71 / 2.710) 8
Optika gyakorlat 1. Fermat-elv, fénytörés, reflexió sík és görbült határfelületen
Optika gyakorlat 1. Fermat-elv, fénytörés, reflexió sík és görbült határfelületen Kivonat Geometriai optika: közelítés, amely a fényterjedést, közeghatáron való áthaladást geometriai alakzatok görbék segítségével
Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető
Optika gyakorlat. Geometriai optika: planparalel lemez, prizma, hullámvezető. példa: Fényterjedés planparalel lemezen keresztül A plánparalel lemezen történő fényterjedés hatására a fénysugár újta távolsággal
Optika gyakorlat 5. Gyakorló feladatok
Optika gyakorlat 5. Gyakorló feladatok. példa: Leképezés - Fruzsika játszik Fruzsika több nagy darab ívelt üveget tart maga elé. Határozd meg, hogy milyen típusú objektívek (gyűjtő/szóró) ezek, és milyen
Optika gyakorlat 3. Sugáregyenlet, fényterjedés parabolikus szálban, polarizáció, Jones-vektor. Hamilton-elv. Sugáregyenlet. (Euler-Lagrange egyenlet)
Optika gyakorlat 3. Sugáregyenlet, fényterjeés parabolikus szálban, polarizáció, Jones-vektor Hamilton-elv t2 t2 δ Lq k, q k, t) t δ T V ) t 0 t 1 t 1 t L L 0 q k q k Euler-Lagrange egyenlet) De mi az
Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)
Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok
Optika gyakorlat Példa: Leképezés hengerlencsén keresztül. 1. ábra. Hengerlencse. P 1 = n l n R = P 2. = 2 P 1 (n l n) 2. n l.
Optika gyakorlat 5. Mátrix optika eladatok: hengerlencse, rezonátor, nagyító, nyalábtágító, távcsövek. Példa: Leképezés hengerlencsén keresztül Adott egy R 2 cm görbületi sugarú,, 7 törésmutatójú gömblencse,
OPTIKA. Vékony lencsék, gömbtükrök. Dr. Seres István
OPTIKA Vékony lencsék, gömbtükrök Dr. Seres István Geometriai optika 3. Vékony lencsék Kettős gömbelület (vékonylencse) énytörése R 1 és R 2 sugarú gömbelületek között n relatív törésmutatójú közeg o 2
OPTIKA. Ma sok mindenre fény derül! /Geometriai optika alapjai/ Dr. Seres István
Ma sok mindenre fény derül! / alapjai/ Dr. Seres István Legkisebb idő Fermat elve A fény a legrövidebb idejű pályán mozog. I. következmény: A fény a homogén közegben egyenes vonalban terjed t s c minimális,
Geometriai Optika (sugároptika)
Geometriai Optika (sugároptika) - Egyszerû optikai eszközök, ahogy már ismerjük õket - Mi van ha egymás után tesszük: leképezések egymásutánja (bonyolult) - Gyakorlatilag fontos eset: paraxiális közelítés
A gradiens törésmutatójú közeg I.
10. Előadás A gradiens törésmutatójú közeg I. Az ugrásszerű törésmutató változással szemben a TracePro-ban lehetőség van folytonosan változó törésmutatójú közeg definiálására. Ilyen érdekes típusú közegek
5.1. ábra. Ábra a 36A-2 feladathoz
5. Gyakorlat 36A-2 Ahogyan a 5. ábrán látható, egy fénysugár 5 o beesési szöggel esik síktükörre és a 3 m távolságban levő skálára verődik vissza. Milyen messzire mozdul el a fényfolt, ha a tükröt 2 o
A fény visszaverődése
I. Bevezető - A fény tulajdonságai kölcsönhatásokra képes egyenes vonalban terjed terjedési sebessége függ a közeg anyagától (vákuumban 300.000 km/s; gyémántban 150.000 km/s) hullám tulajdonságai vannak
Digitális tananyag a fizika tanításához
Digitális tananyag a fizika tanításához A lencsék fogalma, fajtái Az optikai lencsék a legegyszerűbb fénytörésen alapuló leképezési eszközök. Fajtái: a domború és a homorú lencse. optikai középpont optikai
A geometriai optika. Fizika május 25. Rezgések és hullámok. Fizika 11. (Rezgések és hullámok) A geometriai optika május 25.
A geometriai optika Fizika 11. Rezgések és hullámok 2019. május 25. Fizika 11. (Rezgések és hullámok) A geometriai optika 2019. május 25. 1 / 22 Tartalomjegyzék 1 A fénysebesség meghatározása Olaf Römer
FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot?
FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot? 3. Mit nevezünk fényforrásnak? 4. Mi a legjelentősebb
OPTIKA. Vékony lencsék képalkotása. Dr. Seres István
OPTIKA Vékony lencsék képalkotása Dr. Seres István Vékonylencse fókusztávolsága D 1 f (n 1) 1 R 1 1 R 2 Ha f > 0, gyűjtőlencse R > 0, ha domború felület R < 0, ha homorú felület n a relatív törésmutató
OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS
OPTIKA Geometriai optika Snellius Descartes-törvény A fényhullám a geometriai optika szempontjából párhuzamos fénysugarakból áll. A vákuumban haladó fénysugár a geometriai egyenes fizikai megfelelője.
MateFIZIKA: Szélsőértékelvek a fizikában
MateFIZIKA: Szélsőértékelvek a fizikában Tasnádi Tamás 1 2015. április 10.,17. 1 BME, Mat. Int., Analízis Tsz. Tartalom Energiaminimum-elv a mechanikában (ápr. 10.) Okos szappanhártyák (ápr. 10.) Legrövidebb
2. OPTIKA. A tér egy pontján akárhány fénysugár áthaladhat egymás zavarása nélkül.
2. OPTIKA Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert vagy ők maguk fénysugarakat bocsátanak ki (fényforrások), vagy a fényforrások megvilágítják őket. A tárgyakat
Bevezetés az elméleti zikába
Bevezetés az elméleti zikába egyetemi jegyzet Kúpszeletek Lázár Zsolt, Lázár József Babe³Bolyai Tudományegyetem Fizika Kar 2011 TARTALOMJEGYZÉK 6 TARTALOMJEGYZÉK Azokat a görbéket, amelyeknek egyenlete
GEOMETRIAI OPTIKA I.
Elméleti háttér GEOMETRIAI OPTIKA I. Törésmutató meghatározása a törési törvény alapján Snellius-Descartes törvény Az új közeg határához érkező fény egy része behatol az új közegbe, és eközben általában
Optika. sin. A beeső fénysugár, a beesési merőleges és a visszavert, illetve a megtört fénysugár egy síkban van.
Optika Mi a féy? Látható elektromágeses sugárzás. Geometriai optika (modell) Féysugár: ige vékoy párhuzamos féyyaláb Ezt a modellt haszálva az optikai jeleségek széles köréek magyarázata egyszerű geometriai
Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú
Jegyzeteim 1. lap Fotó elmélet 2015. október 9. 14:42 Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú Kardinális elemek A lencse képalkotását meghatározó geometriai elemek,
Történeti áttekintés
A fény Történeti áttekintés Arkhimédész tükrök segítségével gyújtotta fel a római hajókat. A fény hullámtermészetét Cristian Huygens holland fizikus alapozta meg a 17. században. A fénysebességet először
d) A gömbtükör csak domború tükröző felület lehet.
Optika tesztek 1. Melyik állítás nem helyes? a) A Hold másodlagos fényforrás. b) A foszforeszkáló jel másodlagos fényforrás. c) A gyertya lángja elsődleges fényforrás. d) A szentjánosbogár megfelelő potrohszelvénye
Ugrásszerűen változó törésmutató, optikai szálak
9. Előadás Ugrásszerűen változó törésmutató, optikai szálak Ugrásszerűen változó törésmutatójú közeget két, vagy több objektum szoros egymáshoz illesztésével és azokhoz különböző anyag vagy törésmutató
Geometriai optika. Alapfogalmak. Alaptörvények
Alapfogalmak A geometriai optika a fénysugár fogalmára épül, mely homogén közegben egyenes vonalban terjed, két közeg határán visszaverődik és/vagy megtörik. Alapfogalmak: 1. Fényforrás: az a test, amely
13. Előadás. A Grid Source panelen a Polarization fül alatt megadhatjuk a. Rendre az alábbi lehetőségek közül választhatunk:
13. Előadás Polarizáció és anizotrópia A Grid Source panelen a Polarization fül alatt megadhatjuk a sugár polarizációs állapotát Rendre az alábbi lehetőségek közül választhatunk: Polarizálatlan Lineáris
OPTIKA. Gömbtükrök képalkotása, leképezési hibák. Dr. Seres István
OPTIKA Gömbtükrök képalkotása, Dr. Seres István Tükrök http://www.mozaik.info.hu/mozaweb/feny/fy_ft11.htm Seres István 2 http://fft.szie.hu Gömbtükrök Domború tükör képalkotása Jellegzetes sugármenetek
Csillagászati észlelés gyakorlat I. 3. óra: Távcsövek és távcs hibák
Csillagászati észlelés gyakorlat I. 3. óra: Távcsövek és távcs hibák Hajdu Tamás & Sztakovics János & Perger Krisztina B gner Rebeka & Császár Anna Távcs típusok 3 f típust különböztetünk meg: Lencsés
Érettségi feladatok Koordinátageometria_rendszerezve / 5
Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!
Cserti József ELTE TTK. Komplex Rendszerek Fizikája Tanszék
Cserti József ELTE TTK Komplex Rendszerek Fizikája Tanszék Fermat-elv, avagy a fénysugarak terjedésének univerzális törvénye a geometriai optikában Atomoktól a csillagokig előadássorozat középiskolásoknak
α 2 1 α 1 A(X,Y,0) P(X,0,Z) B(X,Y,0) OPTIKAI ALAPISMERETEK
OPTIKAI ALAPISMEETEK HAJDE LEVENTE. Bevezetés Az optika a fény mint elektromos hullám különbözö közegekben való terjedésével, és különbözö fényhullámok kölcsönhatásaival foglalkozik. Ebben a rövid jegyzetben
24. Fénytörés. Alapfeladatok
24. Fénytörés Snellius - Descartes-törvény 1. Alapfeladatok Üvegbe érkezo 760 nm hullámhosszú fénysugár beesési szöge 60 o, törési szöge 30 o. Mekkora a hullámhossza az üvegben? 2. Valamely fény hullámhossza
Megoldás: feladat adataival végeredménynek 0,46 cm-t kapunk.
37 B-5 Fénynyaláb sík üveglapra 40 -os szöget bezáró irányból érkezik. Az üveg 1,5 cm vastag és törésmutatója. Az üveglap másik oldalán megjelenő fénynyaláb párhuzamos a beeső fénynyalábbal, de oldalirányban
Érettségi feladatok: Koordináta-geometria 1/5
Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból
A fény útjába kerülő akadályok és rések mérete. Sokkal nagyobb. összemérhető. A fény hullámhoszánál. A fény hullámhoszával
Optika Fénytan A fény útjába kerülő akadályok és rések mérete Sokkal nagyobb összemérhető A fény hullámhoszánál. A fény hullámhoszával Elektromágneses spektrum Az elektromágneses hullámokat a keltés módja,
11. Előadás Gradiens törésmutatójú közeg II.
11. Előadás Gradiens törésmutatójú közeg II. A következőkben két különleges, gradiens törésmutatójú lencsével fogunk foglalkozni, az úgynevezett Luneburg-féle lencsékkel. Annak is két típusával: a Maxwell-féle
Optikai alapmérések. Mivel több mérésről van szó, egyesével írom le és értékelem ki őket. 1. Törésmutató meghatározása a törési törvény alapján
Optikai alapmérések Mérést végezte: Enyingi Vera Atala Mérőtárs neve: Fábián Gábor (7. mérőpár) Mérés időpontja: 2010. október 15. (12:00-14:00) Jegyzőkönyv leadásának időpontja: 2010. október 22. A mérés
Optika az orvoslásban
Optika az orvoslásban Makra Péter Orvosi Fizikai és Orvosi Informatikai Intézet 2018. november 19. Makra Péter (SZTE DMI) Optika az orvoslásban 2018. november 19. 1 99 Tartalom 1 Bevezetés 2 Visszaverődés
Analitikus térgeometria
5. fejezet Analitikus térgeometria Kezd és végpontjuk koordinátáival adott vektorok D 5.1 A koordináta-rendszer O kezd pontjából a P pontba mutató OP kötött vektort a P pont helyvektorának nevezzük. T
Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.
Matematika 11 Koordináta geometria Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A
Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg
Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón
Koordináta geometria III.
Koordináta geometria III. TÉTEL: A P (x; y) pont akkor és csak akkor illeszkedik a K (u; v) középpontú r sugarú körre (körvonalra), ha (x u) 2 + (y v) 2 = r 2. Ez az összefüggés a K (u; v) középpontú r
A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA ( SZAKKÖZÉPISKOLA ) Javítási-értékelési útmutató
OktatásiHivatal A 014/01. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA ( SZAKKÖZÉPISKOLA ) Javítási-értékelési útmutató 1. feladat: Adja meg az összes olyan (x,
Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága
Földrajzi koordináták Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága Topo-Karto-2 1 Földrajzi koordináták pólus egyenlítő
ANALÍZIS II. Példatár
ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3
Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31
Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós
Fény, mint elektromágneses hullám, geometriai optika
Fény, mint elektromágneses hullám, geometriai optika Az elektromágneses hullámok egyik fajtája a szemünk által látható fény. Látható fény (400 nm 800 nm) (vörös ibolyakék) A látható fehér fény a különböző
Analízis III. gyakorlat október
Vektoranalízis Analízis III. gyakorlat 216. október Gyakorló feladatok és korábbi zh feladatok V1. Igazolja az alábbi "szorzat deriválási" szabályt: div(ff) = F, f + f div(f). V2. Legyen f : IR 3 IR kétszer
3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben.
3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben. TÁVOLSÁG Általános definíció: két alakzat távolsága a két alakzat pontjai között húzható legrövidebb szakasz hosszaa távolság
(a b)(c d)(e f) = (a b)[(c d) (e f)] = = (a b)[e(cdf) f(cde)] = (abe)(cdf) (abf)(cde)
2. házi feladat 1.feladat a b)c d)e f) = a b)[c d) e f)] = = a b)[ecdf) fcde)] = abe)cdf) abf)cde) 2.feladat a) Legyen a két adott pontunk helyzete A = 0, 0), B = 1, 0), továbbá legyen a távolságok aránya
OPTIKA. Vékony lencsék. Dr. Seres István
OPTIKA Vékon lencsék Dr. Seres István Gömbfelület féntörése R sugarú gömbfelület mögött n relatív törésmutatójú közeg x d x
6Előadás 6. Fénytörés közeghatáron
6Előadás 6. Fénytörés közeghatáron Fénytörés esetén a Snellius-Descartes törvény adja meg a beeső- ésa megtört sugár közti összefüggést, mely a következő: sinα n = 2 sin β n 1 Ahol α és β a beesési ill.
Haladók III. kategória 2. (dönt ) forduló
Haladók III. kategória 2. (dönt ) forduló 1. Tetsz leges n pozitív egész számra jelölje f (n) az olyan 2n-jegy számok számát, amelyek megegyeznek az utolsó n számjegyükb l alkotott szám négyzetével. Határozzuk
Az elektromágneses sugárzás kölcsönhatása az anyaggal
Az elektromágneses sugárzás kölcsönhatása az anyaggal Radiometriai alapfogalmak Kisugárzott felületi teljesítmény Besugárzott felületi teljesítmény A fény kölcsönhatása az anyaggal 1. M ΔP W ΔA m 2 E be
Hullámoptika II.Két fénysugár interferenciája
Hullámoptika II. Két fénysugár interferenciája 2007. november 9. Vázlat 1 Bevezet 2 Áttekintés Két rés esetének elemzése 3 Hullámfront-osztáson alapuló interferométerek Amplitúdó-osztáson alapuló interferométerek
Elektromágneses hullámok - Interferencia
Bevezetés a modern fizika fejezeteibe 2. (d) Elektromágneses hullámok - Interferencia Utolsó módosítás: 2012 október 18. 1 Interferencia (1) Mi történik két elektromágneses hullám találkozásakor? Az elektromágneses
c v A sebesség vákumbanihoz képesti csökkenését egy viszonyszámmal, a törémutatóval fejezzük ki. c v
Optikai alapogalmak A ény tulajdonságai A ény elektromágneses rezgés. Kettős, hullám-, illetve részecsketermészete van, ezért bizonyos jelenségeket hullámtani, másokat pedig kvantummechanikai tárgyalással
Optika gyakorlat 9. Dirakció folytatás. 1 i 2π f x x dx. Felhasználva, hogy jelen esetben a transzmissziós függvény τ(x) = tri(x/a): a a.
Optika gyakorlat 9. Dirakció folytatás 1. példa: Dirakciós rés Egy rés transzmissziós függvényét adtuk meg. Számoljuk ki a távoltéri Fraunhofer-féle dirakciós intenzitás eloszlást, bejöv síkhullám E amplitúdó,
7. Előadás. A vékony lencse közelítésben a lencse d vastagsága jóval kisebb, mint a tárgy és képtávolságok.
7. Előadás Lencsék, lencsehibák A vékony lencse A vékony lencse közelítésben a lencse d vastagsága jóval kisebb, mint a tárgy és képtávolságok. A vékony lencse fókusztávolságára á á vonatkozó összefüggés:
8. előadás. Kúpszeletek
8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =
Koordináta-geometria feladatok (emelt szint)
Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik
Optika I. 1. Geometriai optika A geometriai optika törvényei A teljes visszaver dés
Optika I. Utolsó módosítás: 2011. október 12. Az optika tudománya a látás élményéb l fejl dött ki. Bizonyos optikai alapismeretekkel együtt születünk, vagy legalábbis életünk nagyon korai szakában szert
Optika gyakorlat 7. Fresnel együtthatók, Interferencia: vékonyréteg, Fabry-Perot rezonátor
Optika gyakorlat 7. Fresnel együtthatók, Interferencia: vékonyréteg, Fabry-Perot rezonátor Fresnel együtthatók A síkhullámfüggvény komplex alakja: ahol a komplex amplitudó: E E 0 exp i(ωt k r+φ) E 0 exp
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Írd fel a K (0; 2) középpontú 7 sugarú kör egyenletét! A keresett kör egyenletét felírhatjuk a képletbe való behelyettesítéssel: x 2 + (y + 2) 2 = 49. 2. Írd fel annak a körnek az egyenletét,
Forgásfelületek származtatása és ábrázolása
Forgásfelületek származtatása és ábrázolása Ha egy rögzített egyenes körül egy tetszőleges görbét forgatunk, akkor a görbe úgynevezett forgásfelületet ír le; a rögzített egyenes, amely körül a görbe forog,
Függvényhatárérték és folytonosság
8. fejezet Függvényhatárérték és folytonosság Valós függvények és szemléltetésük D 8. n-változós valós függvényen (n N + ) olyan f függvényt értünk amelynek értelmezési tartománya (Dom f ) az R n halmaznak
A szem optikája. I. Célkitűzés: II. Elméleti összefoglalás: A. Optikai lencsék
A szem optikája I. Célkitűzés: Ismertetjük a geometriai optika alapjait, a lencsék képalkotási tulajdonságait. Meghatározzuk szemüveglencsék törőerősségét. Az orvosi gyakorlatban optikai lencsékkel a mikroszkópos
Koordinátageometria. M veletek vektorokkal grakusan. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Koordinátageometria M veletek vektorokkal grakusan 1. Az ABCD négyzet oldalvektorai közül a = AB és b = BC. Adja meg az AC és BD vektorokat a
2. Miért hunyorognak a csillagok? Melyik az egyetlen helyes válasz? a. A Föld légkörének változó törésmutatója miatt Hideg-meleg levegő
1. Milyen képet látunk a karácsonyfán lévı üveggömbökben? a. Egyenes állású, kicsinyített képet. mert c. Egyenes állású, nagyított képet. domborótükör d. Fordított állású, nagyított képet. b. Fordított
Lengyelné Dr. Szilágyi Szilvia április 7.
ME, Anaĺızis Tanszék 2010. április 7. , alapfogalmak 2.1. Definíció A H 1, H 2,..., H n R (ahol n 2 egész szám) nemüres valós számhalmazok H 1 H 2... H n Descartes-szorzatán a következő halmazt értjük:
Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:
005-0XX Emelt szint Koordinátageometria 1) a) Egy derékszögű háromszög egyik oldalegyenese valamelyik koordinátatengely, egy másik oldalegyenesének egyenlete x + y = 10, egyik csúcsa az origó. Hány ilyen
Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg
Analitikus mértan 5. FELADATLAP Síkbeli egyenesek 5.1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az
Gyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal:
Gyakorló feladatok 9.évf.. Mennyi az összes részhalmaza az A a c; d; e; f halmaznak, írd fel az öt elemű részhalmazokat!. Legyen U ;;;;;6;7;8;9, A ;;6;7; és B ;;8. Add meg a következő halmazokat és ábrázold
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd
Objektum definiálása és szerkesztése
2. Előadás Objektum definiálása és szerkesztése A következőkben az egyes elemek definiálását, beillesztését és azok tulajdonságainak beállításait fogjuk megnézni. TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt
A fény mint elektromágneses hullám és mint fényrészecske
A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá
Izsák Imre Gyula természettudományos verseny
199 Jelölje m a, m b, m c egy háromszög magasságait, ρ a háromszög beírt körének a sugarát. Igazoljuk, hogy ma + mb + mc 9ρ Mikor áll fenn az egyenlség? Osszuk fel egy tetszleges ABCD konvex négyszög AB,
Optika fejezet felosztása
Optika Optika fejezet felosztása Optika Geometriai optika vagy sugároptika Fizikai optika vagy hullámoptika Geometriai optika A közeg abszolút törésmutatója: c: a fény terjedési sebessége vákuumban, v:
Geometriai és hullámoptika. Utolsó módosítás: május 10..
Geometriai és hullámoptika Utolsó módosítás: 2016. május 10.. 1 Mi a fény? Részecske vagy hullám? Isaac Newton (1642-1727) Pierre de Fermat (1601-1665) Christiaan Huygens (1629-1695) Thomas Young (1773-1829)
EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY
EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY SÍKIDOMOK Síkidom 1 síkidom az a térelem, amelynek valamennyi pontja ugyan abban a síkban helyezkedik el. A síkidomokat
Transzformáció a főtengelyekre és a nem főtengelyekre vonatkoztatott. Az ellipszis a sík azon pontjainak mértani helye, amelyeknek két adott pontól
Ellipsis.tex, February 9, 01 Az ellipszis Az ellipszis leírása Az ellipszis szerkesztése és tulajdonságai Az ellipszis kanonikus egyenlete A kör vetülete ellipszis Az ellipszis polárkoordinátás egyenlete
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 16 XVI A DIFFERENCIÁLSZÁmÍTÁS ALkALmAZÁSAI 1 Érintő ÉS NORmÁLIS EGYENES, L HOSPITAL-SZAbÁLY Az görbe abszcisszájú pontjához tartozó érintőjének egyenlete (1), normálisának egyenlete
f r homorú tükör gyűjtőlencse O F C F f
0. A fény visszaveődése és töése göbült hatáfelületeken, gömbtükö és optikai lencse. ptikai leképezés kis nyílásszögű gömbtükökkel, és vékony lencsékkel. A fő sugámenetek ismetetése. A nagyító, a mikoszkóp
A NAPPALOK HOSSZA A NAPPAL HOSSZA JÚNIUS 22-ÉN. Olvasd el a szöveget, majd válaszolj az azt követ kérdésekre!
A NAPPALOK HOSSZA Olvasd el a szöveget, majd válaszolj az azt követ kérdésekre! A NAPPAL HOSSZA 2002. JÚNIUS 22-N Míg az északi félteke lakói ma a leghosszabb napjukat ünneplik, addig Ausztráliában ma
Bevezetés a görbe vonalú geometriába
Bevezetés a görbe vonalú geometriába Metrikus tenzor, Christoffel-szimbólum, kovariáns derivált, párhuzamos eltolás, geodetikus Pr hle Zsóa A klasszikus térelmélet elemei (szeminárium) 2012. október 1.
Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program
Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 14 XIV NEVEZETES GÖRbÉk 1 AZ EGYEnES EGYEnLETE A és pontokon átmenő egyenes egyenlete: (1), Az hányados neve iránytényező (iránytangens, meredekség) A ponton átmenő, m iránytangensű
3. OPTIKA I. A tér egy pontján akárhány fénysugár áthaladhat egymás zavarása nélkül.
3. OPTIKA I. Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert vagy ők maguk fénysugarakat bocsátanak ki (fényforrások), vagy a fényforrások megvilágítják őket. A tárgyakat
9. előadás. Térbeli koordinátageometria
9. előadás Térbeli koordinátageometria Koordinátageometria a térben Descartes-féle koordinátarendszerben dolgozunk. A legegyszerűbb alakzatokat fogjuk vizsgálni. Az ezeket leíró egyenletek első-, vagy
, ahol a beesési, a törési (transzmissziós szög), n egy arányszám, az adott közeg (vákuumhoz viszonyított) törésmutatója.
1 / 12 A TételWiki wikiből 1 Bevezető, fény, fénysugár 2 A Fermat-elv 3 Az eikonál közelítés 3.1 Az eikonál közelítés korlátai 4 Analógia a klasszikus mechanikával 4.1 Ami az analógiából hiányzik 5 Paraxiális
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4
Hajder Levente 2017/2018. II. félév
Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév Tartalom 1 A fény elektromágneses hullám Az anyagokat olyan színűnek látjuk, amilyen színű fényt visszavernek
Tartalom. Tartalom. Anyagok Fényforrás modellek. Hajder Levente Fényvisszaverési modellek. Színmodellek. 2017/2018. II.
Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév 1 A fény elektromágneses hullám Az anyagokat olyan színűnek látjuk, amilyen színű fényt visszavernek
12. Előadás. síktükör felé induljon a sugár. Amíg a forrásig visszajut a folyamatot három elemre bonthatjuk
. Előaás ezonátorok P: Bevezető probléma: Egy görbületi sugarú x homorú tükör optikai tengelyén a tükörtől távolságban síktükör található. A síktükörtől milyen x távolságra helyezzünk egy pontszerű fényforrást,
Egybevágósági transzformációk. A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá.
Egybevágósági transzformációk A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá. Egybevágósági transzformációk azok a geometriai transzformációk, amelyeknél bármely
OPTIKA. Vastag lencsék képalkotása lencserendszerek. Dr. Seres István
OPTIKA Vastag lecsék képalkotása lecsereszerek Dr. Seres Istvá OPTIKA mechatroika szak. átrix optika Paraxiális sugármeet (
ARCHIMEDES MATEMATIKA VERSENY
Koszinusztétel Tétel: Bármely háromszögben az egyik oldal négyzetét megkapjuk, ha a másik két oldal négyzetének összegéből kivonjuk e két oldal és az általuk közbezárt szög koszinuszának kétszeres szorzatát.
Leképezési hibák. Főtengelyhez közeli pontok leképezésénél is fellépő hibák Kromatikus aberráció A törésmutató függ a színtől. 1 f
Leképezési hibák A képalkotás leírásánál eddig paraxiális közelítést alkalmaztunk, azaz az optikai tengelyhez közeli, azzal kis szöget bezáró sugarakra korlátoztuk a vizsgálatot A gyakorlatban szükség