3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás"

Átírás

1 3D - geometra modellezés, alakzatrekostrukcó, yomtatás 8 Rekurzív felosztáso alauló felületek htt://cgtbmehu/ortal/ode/3 htts://wwwvkbmehu/kezes/targyak/viiiav54 Dr Várady Tamás, Dr Salv Péter BME, Vllamosmérök és Iformatka Kar Iráyítástechka és Iformatka Taszék

2 Tartalom Áttektés Polgook rekurzív felosztása (subdvso) saroklevágó algortmusok teroláló algortmus Poléderek rekurzív felosztása követelméyek alakérdések Doo-Sab algortmus, Catmull-Clark algortmus, 3 Közéosztás, 4 Loo-féle osztás, 5 3 osztás 3D-s számítógées geometra

3 Szabadformájú felületek - áttektés Tezor szorzat alaú felületek égyoldalú ( 4) aramétertartomáy, N x M-es kotrol háló Bézer felületek (olomáls) B-sle felületek (szakaszokét olomáls) Bézer és B-sle felületek kterjesztése racoáls Bézer felületek ( 4) racoáls B-sle felületek ( 4) T-sle-ok ( 4, szakaszos olomok, háyos kotrollháló) T [ C] [ ( v s ( u, v) [ α( u)] β )] 3 Iteroláló (traszft) felületek következő óra határgörbék és keresztdervált függvéyek Coos atch ( 4) általáos -oldalú felületek 4 Poléder-alaú általáos toológájú felületek felosztásos felületek (rekurzív szubdvízó) (összellesztett sle felületek)? Subdvso vdeo Áttektés 3

4 Rekurzív olgo-felosztás Rekurzív olgo-felosztás {,, K, k ) } {, korább olgo otok leárs kombácója: l m α j j( m), m, K, k j kérdések: kovergál valamlye görbéhez? olomáls görbe? mlye mértékbe sma? Chak algortmus (sarok levágás): másodfokú B-sle (!), C, K, k 3 3 ; } Polgook rekurzív felosztása (0,) (,)(,) (5,) (,5) (,5) (3,4) (,3)(3,) (0,,,3,4) (0,,5,,5,3,4) (3,5) 4

5 Ujjgyakorlat*- rekurzív olgo osztás Chak-féle osztás Rekurzív felosztáso alauló görbék 5

6 Ujjgyakorlat - rekurzív olgo osztás Chak-féle osztás Rekurzív felosztáso alauló görbék 6

7 7 Polgook rekurzív felosztása Rekurzív olgo-felosztás Felosztás alteratív súlyokkal (húrfelezés) kovergál, harmadfokú B-sle, C a folytoosság aalízs elve (sajátértékek): dagozálás (sajátvektorok, sajátértékek): AD D D D , ; Λ A E EΛ D A D E EΛ EΛE EΛE A D A A D D Λ E E E E A R R R, ,, 0 *

8 8 Polgook rekurzív felosztása Rekurzív olgo-felosztás 3 3 Iteroláló felosztás (égy-ot): közéső ot meghatározása: harmadfokú Lagrage terolácó kovergál, C határgörbe ) 9 9 ( 6 ;? Curves alet

9 Rekurzív oléder-felosztás (Doo-Sab) (Loo) Rekurzív felosztáso alauló felületek (Pxar) 9

10 Rekurzív oléder-felosztás Követelméyek: általáos toológa lokáls módosíthatóság egyszerű szabályok (maszk) hatékoy algortmus (koverzó sebessége) aff lekézésre varás sma felület herarchkus rerezetácó kovex burok Alakérdések: fomítás szabály: sarok-levágás vagy csúcs-beszúrás a oldérsorozat háromszög vagy égyszög alaú aroxmácó vagy terolácó smaság (G vagy G ) szabályos csúcsok vs külöleges (extraordary) csúcsok Felosztás roblémák Rekurzív felosztáso alauló felületek 0

11 Rekurzív oléder-felosztás 3 Doo-Sab felületek a Chak algortmus általáosítása mde -oldalú la összezsugorodk, és új csúcs keletkezk rajta: v () α v j j 5 α, 4 j π ( j) 3 cos α j 4 LAP-la az eredet la belsejébe ÉL-la mdg égyoldalú, az élek meté CSÚCS-la csúcs körül a égyoldalú laok száma ő másodfokú B-sle felület darabok G szabályos csúcsok (4) külöleges csúcsok s keletkezek: 4 oldalú laok, 4 fokú csúcsok 8 Rekurzív felosztáso alauló felületek

12 Ujjgyakorlat* - Doo-Sab-féle rekurzív felosztás 3-oldalú: db 4-oldalú: 4 db 5-oldalú: db 3-oldalú: Cs:?, É:, L:?, Össz? 4-oldalú: Cs:?, É:, L:?, Össz? 5-oldalú: Cs:?, É:, L:?, Össz? Rekurzív felosztáso alauló felületek

13 Ujjgyakorlat - Doo-Sab-féle rekurzív felosztás 3-oldalú: db 4-oldalú: 4 db 5-oldalú: db 3-oldalú: Cs:, É: 0, L:, Össz 3 4-oldalú: Cs:, É: 8, L:4, Össz 3 5-oldalú: Cs: 0, É: 0, L:, Össz Rekurzív felosztáso alauló felületek 3

14 Ujjgyakorlat* - Doo-Sab súlyok π ( j) 3 cos 5 4,, α, α j, j 4 4,3,4 α 4 α 3?? α? α? Rekurzív felosztáso alauló felületek 4

15 Ujjgyakorlat - Doo-Sab súlyok π ( j) 3 cos 5 4,, α, α j, j,3,4 4 4 α α 3 6 α 9 6 α 3 6 Rekurzív felosztáso alauló felületek 5

16 Rekurzív oléder-felosztás 4 Catmull-Clark felületek harmadfokú B-sle felületek általáosítása (közéot osztás - cetral slt) () új LAP-csúcs közéot, f j () új ÉL-csúcs az él végotjaak és a szomszédos LAP-csúcsok átlaga, e j () új CSÚCS-csúcs la által körülvéve: v 3 v f e v j j j j új laok, az első osztás utá égyoldalú hurkok: f e e kovergál, szabályos csúcs (4) G határfelület, külöleges csúcsok ( 4) G v f? Huma Face-Subdvso Rekurzív felosztáso alauló felületek 6

17 Rekurzív oléder-felosztás 5 3 Közéosztásos felületek (Peters & Ref) a legegyszerűbb séma mde élre új felező ot új laok befoglalt LAP-laok csúcskörül CSÚCSlaok égyoldalú laok domálak szabályos csúcsok (4) külöleges csúcsok az eredet csúcsok körül kovergál, G határfelület Rekurzív felosztáso alauló felületek 7

18 Rekurzív oléder-felosztás 6 4 Loo-féle felosztás háromszöghálók fomítása () az adott él csúcsa: v,v () a csatlakozó csúcsok: v, v 3 4 új ÉL-csúcs: 3 e j ( v v ) ( v 3 v 4 ) 8 8 új CSÚCS-csúcs szomszéd alajá: v ( α) v α v j sma határfelület szabályos csúcsok (6) G, (egyedfokú Bézer háromszögek); külöleges csúcsok ( 6) csak G 3 5 3, 3; π α α cos, > j, (Maszkok) Rekurzív felosztáso alauló felületek 8

19 Rekurzív oléder-felosztás felosztás háromszögháló fomított háromszögháló () mde háromszöget három részre hasítuk () a keletkező égyszögátlókat megcseréljük (fl) közéot csúcsok összekötése az eredet csúcsokat újraszámoljuk szomszédos csúcs alajá: α v ( α ) v v j j, α π 4 cos mde terácó cserél a struktúra ráyítását, két terácó egy háromszögből 9-et készít sma határfelület szabályos csúcsok (6) G, külöleges csúcsok ( 6) csak G 9 Rekurzív felosztáso alauló felületek 9

3D számítógépes geometria és alakzatrekonstrukció

3D számítógépes geometria és alakzatrekonstrukció D számítógées geometra és alakzatrekostrukcó 8 Rekurzív felosztáso alauló felületek htt://cgtbmehu/ortal/ode/ htts://wwwvkbmehu/kezes/targyak/viiima0 Dr Várady Tamás Dr Salv Péter BME Vllamosmérök és Iformatka

Részletesebben

3D-s számítógépes geometria

3D-s számítógépes geometria 3D-s számítógées geometra 7a. Rekurzív felosztáso alauló felületek htt://cg.t.bme.hu/ortal/ode/3 htts://www.vk.bme.hu/kezes/targyak/viiiav0 Dr. Várady Tamás BME, Vllamosmérök és Iformatka Kar Iráyítástechka

Részletesebben

3D-s számítógépes geometria és alakzatrekonstrukció

3D-s számítógépes geometria és alakzatrekonstrukció 3D-s számítógépes geometra és alakzatrekostrukcó b Háromszöghálók http://cgtbmehu/portal/ode/3 https://wwwvkbmehu/kepzes/targyak/viiiav08 Dr Várady Tamás, Salv Péter BME, Vllamosmérök és Iformatka Kar

Részletesebben

3D számítógépes geometria és alakzatrekonstrukció

3D számítógépes geometria és alakzatrekonstrukció 3D számítógépes geometra és alakzatrekostrukcó b Háromszöghálók - algortmusok http://cgtbmehu/portal/ode/3 https://wwwvkbmehu/kepzes/targyak/viiima0 Dr Várady Tamás, Dr Salv Péter BME, Vllamosmérök és

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás ek - 2019. április 2. http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME,

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geometra modellezés, alakzatrekonstrukcó, nyomtatás 17. 3D Szegmentálás http://cg.t.bme.hu/portal/node/312 https://www.vk.bme.hu/kepzes/targyak/viiiav54 Dr. Várady Tamás, Dr. Salv Péter BME, Vllamosmérnök

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás Önálló projektek - 2017. április 7. http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr.

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geomera modelleés alakarekosrukó omaás. A éer és -sle rereeáó keresése h://g..me.hu/oral/ode/3 hs://.vk.me.hu/kees/argak/viiiav54 Dr. Várad Tamás Dr. Salv Péer ME Vllamosmérök és Iformaka Kar Iráíásehka

Részletesebben

i 0 egyébként ábra. Negyedfokú és ötödfokú Bernstein polinomok a [0,1] intervallumon.

i 0 egyébként ábra. Negyedfokú és ötödfokú Bernstein polinomok a [0,1] intervallumon. 3. Bézer görbék 3.1. A Berste polomok 3.1. Defícó. Legye emegatív egész, tetszőleges egész. A ( ) B (u) = u (1 u) polomot Berste polomak evezzük, ahol ( ) = {!!( )! 0, 0 egyébkét. A defícóból közvetleül

Részletesebben

3D-s számítógépes geometria

3D-s számítógépes geometria 3D-s számítógépes geometra 11. 3D szegmentálás http://cg.t.bme.hu/portal/node/31 https://www.vk.bme.hu/kepzes/targyak/viiiav01 Dr. Várady Tamás BME, Vllamosmérnök és Informatka Kar Irányítástechnka és

Részletesebben

3D Számítógépes Geometria II.

3D Számítógépes Geometria II. 3D Számítógépes Geometra II. 3. Szabadformáú felületek llesztése és smítása http://cg.t.bme.h/portal/3dgeo https://www.k.bme.h/kepzes/targyak/viiiav16 Dr. Várady Tamás Dr. Sal Péter BME Vllamosmérnök és

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geometra modellezés, alakzatrekonstrukcó, nyomtatás b Háromszöghálók - algortmusok http://cgtbmehu/portal/node/3 https://wwwvkbmehu/kepzes/targyak/viiiav54 Dr Várady Tamás, Dr Salv Péter BME, Vllamosmérnök

Részletesebben

3D számítógépes geometria és alakzatrekonstrukció

3D számítógépes geometria és alakzatrekonstrukció 3D számítógépes geometria és alakzatrekonstrukció 2a. Háromszöghálók http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki

Részletesebben

3D-s számítógépes geometria és alakzatrekonstrukció

3D-s számítógépes geometria és alakzatrekonstrukció 3D-s számítógépes geometria és alakzatrekonstrukció 2a. Háromszöghálók http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav08 Dr. Várady Tamás, Salvi Péter BME, Villamosmérnöki

Részletesebben

3D-s számítógépes geometria

3D-s számítógépes geometria 3D-s számítógépes geometria 2. Háromszöghálók I. http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav01 Dr. Várady Tamás BME, Villamosmérnöki és Informatikai Kar Irányítástechnika

Részletesebben

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011 1 Molár-Sáska Gáboré: Hajós György Verseyre javasolt feladatok SZIE.YMÉTK 011 1. Írja fel a számokat 1-tıl 011-ig egymás utá! Határozza meg az így kapott agy szám 0-cal való osztási maradékát!. Az { }

Részletesebben

3D számítógépes geometria és alakzatrekonstrukció

3D számítógépes geometria és alakzatrekonstrukció 3D számítógépes geometria és alakzatrekonstrukció 12. Tömör testek modellezése http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME,

Részletesebben

3D számítógépes geometria és alakzatrekonstrukció

3D számítógépes geometria és alakzatrekonstrukció 3D számítógépes geometria és alakzatrekonstrukció 1a. Bevezetés http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki

Részletesebben

3D Számítógépes Geometria II.

3D Számítógépes Geometria II. 3D Sámíógées Geomea II.. Racoáls göék és felüleek h://cg..me.hu/oal/3dgeo hs://.vk.me.hu/kees/agak/viiiav6 D. Váad Tamás D. Salv Pée ME Vllamosméök és Ifomaka Ka Iáíásechka és Ifomaka Tasék Taalom movácó

Részletesebben

3D számítógépes geometria 2

3D számítógépes geometria 2 3D számítógépes geometria Numerikus analízis alapok ujjgyakorlat megoldások Várady Tamás, Salvi Péter / BME October, 18 Ujjgyakorlat 1 Feladat: 1 cos(x) dx kiszámítása trapéz-módszerrel Ujjgyakorlat 1

Részletesebben

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0 Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások

Részletesebben

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geometra modellezés alazatreonstró nyomtatás 9. Szabadformáú felülete smtása http://g.t.bme.h/portal/node/3 https://www..bme.h/epzes/targya/viiiav54 Dr. Várady Tamás Dr. Sal éter BME Vllamosmérnö

Részletesebben

Számítógépes Grafika mintafeladatok

Számítógépes Grafika mintafeladatok Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk

Részletesebben

3D-s számítógépes geometria és alakzatrekonstrukció

3D-s számítógépes geometria és alakzatrekonstrukció 3D-s számítógépes geometria és alakzatrekonstrukció Tesztkörnyezet II http://cg.iit.bme.hu/portal/node/312 https://portal.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki

Részletesebben

Geometriai modellezés. Szécsi László

Geometriai modellezés. Szécsi László Geometriai modellezés Szécsi László Adatáramlás vezérlés Animáció világleírás Modellezés kamera Virtuális világ kép Képszintézis A modellezés részfeladatai Geometria megadása [1. előadás] pont, görbe,

Részletesebben

Gráfelmélet/Diszkrét Matematika MSc hallgatók számára. 13. Előadás

Gráfelmélet/Diszkrét Matematika MSc hallgatók számára. 13. Előadás Gráfelmélet/Diszkrét Matematika MSc hallgatók számára 13. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2009. december 7. Gráfok sajátértékei Definíció. Egy G egyszerű gráf sajátértékei az A G

Részletesebben

3D Számítógépes Geometria II.

3D Számítógépes Geometria II. 3D zámítógépes Geomet II. 9. Négyoldlú felületekből összetett 3D modellek http://g.t.bme.h/potl/3dgeo https://www.k.bme.h/kepzes/tgyk/viiiav6 D. Vády Tmás D. l Péte BME Vllmosméök és Ifomtk K Iáyítástehk

Részletesebben

7. gyakorlat megoldásai

7. gyakorlat megoldásai 7. gyakorlat megoldásai Komple számok, sajátértékek, sajátvektorok F1. Legyen z 1 = + i és z = 1 i. Számoljuk ki az alábbiakat: z 1 z 1 + z, z 1 z, z 1 z,, z 1, z 1. z M1. A szorzásnál használjuk, hogy

Részletesebben

Rekurzív sorozatok. SZTE Bolyai Intézet nemeth. Rekurzív sorozatok p.1/26

Rekurzív sorozatok. SZTE Bolyai Intézet   nemeth. Rekurzív sorozatok p.1/26 Rekurzív sorozatok Németh Zoltán SZTE Bolyai Intézet www.math.u-szeged.hu/ nemeth Rekurzív sorozatok p.1/26 Miért van szükség közelítő módszerekre? Rekurzív sorozatok p.2/26 Miért van szükség közelítő

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória Megoldások és javítási útmutató 1. Az a b pozitív egészek és tudjuk hogy a 2

Részletesebben

IV. INTEGRÁLSZÁMÍTÁS Feladatok november

IV. INTEGRÁLSZÁMÍTÁS Feladatok november IV. INTEGRÁLSZÁMÍTÁS Feladatok 9. november Határozatlan integrálás Elemi függvények integrálja 4.5. 4.6. 3 4.7. ( ) 4.8. ( ) 4.9. + 4 4.. ( + )( + ) 4.4. + ( + ) 4.5. 4.6. 6 5 + 5 ln + 4.8. cos cos sin

Részletesebben

Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz. 2 dx = 1, cos nx dx = 2 π. sin nx dx = 2 π

Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz. 2 dx = 1, cos nx dx = 2 π. sin nx dx = 2 π Matematika Ac gyakorlat Vegyzméröki, Bioméröki, Köryezetméröki szakok, 7/8 ősz 4. feladatsor: Fourier-sorok megoldás. Legye fx = ha x, ], fx = ha x, π]. Írjuk fel f Fourier-sorát. Mely potokba állítja

Részletesebben

A szerkezetszintézis matematikai módszerei

A szerkezetszintézis matematikai módszerei 5 A szerkezetsztézs matematka módszere.4 Derváltat em haszáló elárások Azo optmáló elárások, melyek a keresés sorá csak a célfüggvéy értéket haszálák, derváltakat em, azokat derváltat em haszáló elárásak

Részletesebben

I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)

I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25) I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =

Részletesebben

Görbe- és felületmodellezés. Szplájnok Felületmodellezés

Görbe- és felületmodellezés. Szplájnok Felületmodellezés Görbe- és felületmodellezés Szplájnok Felületmodellezés Spline (szplájn) Spline: Szakaszosan, parametrikus polinomokkal leírt görbe A spline nevét arról a rugalmasan hajlítható vonalzóról kapta, melyet

Részletesebben

3D számítógépes geometria és alakzatrekonstrukció

3D számítógépes geometria és alakzatrekonstrukció 3D számítógépes geometria és alakzatrekonstrukció 14. Digitális Alakzatrekonstrukció - Bevezetés http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr.

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

Többváltozós analízis gyakorlat, megoldások

Többváltozós analízis gyakorlat, megoldások Többváltozós analízis gakorlat, megoldások Általános iskolai matematikatanár szak 7/8. őszi félév. Differenciál- és integrálszámítás alkalmazásai. Határozzuk meg az alábbi differenciálegenletek összes,

Részletesebben

Hajder Levente 2018/2019. II. félév

Hajder Levente 2018/2019. II. félév Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2018/2019. II. félév Tartalom 1 2 Törtvonal Felületi folytonosságok B-spline Spline variánsok Felosztott (subdivision) görbék

Részletesebben

3D-s számítógépes geometria

3D-s számítógépes geometria 3D-s számítógépes geometria 2. Háromszöghálók http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav01 Dr. Várady Tamás BME, Villamosmérnöki és Informatikai Kar Irányítástechnika

Részletesebben

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben? . Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs

Részletesebben

1. Határozzuk meg, hogy mikor egyenlő egymással a következő két mátrix: ; B = 8 7 2, 5 1. Számítsuk ki az A + B, A B, 3A, B mátrixokat!

1. Határozzuk meg, hogy mikor egyenlő egymással a következő két mátrix: ; B = 8 7 2, 5 1. Számítsuk ki az A + B, A B, 3A, B mátrixokat! . Mátrixok. Határozzuk meg, hogy mikor egyenlő egymással a következő két mátrix: [ ] [ ] π a A = ; B = 8 7, 5 x. 7, 5 ln y. Legyen 4 A = 4 ; B = 5 5 Számítsuk ki az A + B, A B, A, B mátrixokat!. Oldjuk

Részletesebben

3D-s számítógépes geometria és alakzatrekonstrukció

3D-s számítógépes geometria és alakzatrekonstrukció 3D-s számítógépes geometria és alakzatrekonstrukció 14. Digitális Alakzatrekonstrukció - Bevezetés http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav08 Dr. Várady Tamás,

Részletesebben

Kényszereknek alávetett rendszerek

Kényszereknek alávetett rendszerek Kéyszerekek alávetett redszerek A koordátákak és sebességekek előírt egyeleteket kell kelégítee a mozgás olyamá. (Ezeket a eltételeket, egyeleteket s ayag kölcsöhatások bztosítják, de ezek a kölcsöhatások

Részletesebben

Fraktálok. Löwy Dániel Hints Miklós

Fraktálok. Löwy Dániel Hints Miklós alkalmazott erjedéses folyamat sajátságait. Továbbá nemcsak az alkoholnak az emberi szervezetre gyakorolt hatását tudjuk megfigyelni (például a szomszéd dülöngélését és kurjongatását), hanem az alkoholnak

Részletesebben

3D Számítógépes Geometria II.

3D Számítógépes Geometria II. 3D Számítógépes Geometria II. 1. Bevezetés http://cg.iit.bme.hu/portal/3dgeo2 https://www.vik.bme.hu/kepzes/targyak/viiiav16 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki és Informatikai Kar Irányítástechnika

Részletesebben

EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei

EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei Eukldes tér, metrkus tér, ormált tér, magasabb dmeós terek vektoraak söge, eek követkemée Metrkus tér Defícó. A H halmat metrkus térek eveük, ha va ola, metrkáak eveett m: H H R {0} függvé, amelre a követkeők

Részletesebben

3D Számítógépes Geometria II.

3D Számítógépes Geometria II. 3D Számítógépes Geometra II. 8. n-olalú ézer felülete ttp://cg.t.bme.u/portal/3geo2 ttps://www.v.bme.u/epzes/targya/viiiav6 Dr. Váray Tamás Dr. Salv Péter ME Vllamosmérnö és Informata Kar Irányítástecna

Részletesebben

Függvényhatárérték és folytonosság

Függvényhatárérték és folytonosság 8. fejezet Függvényhatárérték és folytonosság Valós függvények és szemléltetésük D 8. n-változós valós függvényen (n N + ) olyan f függvényt értünk amelynek értelmezési tartománya (Dom f ) az R n halmaznak

Részletesebben

= λ valós megoldása van.

= λ valós megoldása van. Másodredű álladó együtthatós lieáris differeciálegyelet. Általáos alakja: y + a y + by= q Ha q = 0 Ha q 0 akkor homogé lieárisak evezzük. akkor ihomogé lieárisak evezzük. A jobb oldalo lévő q függvéyt

Részletesebben

Keresztmetszet másodrendű nyomatékainak meghatározása

Keresztmetszet másodrendű nyomatékainak meghatározása BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra

Részletesebben

5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás

5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás 5. házi feladat 1.feladat A csúcsok: A = (0, 1, 1) T, B = (0, 1, 1) T, C = (1, 0, 0) T, D = ( 1, 0, 0) T AB, CD kitér élpárra történ tükrözések: 1 0 0 T AB = 0 1 0, elotlási rész:(i T AB )A = (0, 0, )

Részletesebben

I. rész. Valós számok

I. rész. Valós számok I. rész Valós számok Feladatok 3 4 Teljes idukció Igazolja a teljes idukcióval a következ állítások helyességét!.. k 2 = k= ( + )(2 + ). 6.2. 4 + 2 7 + + (3 + ) = ( + ) 2..3. a) b) ( + ) = +. k ( ) =

Részletesebben

Geometria II gyakorlatok

Geometria II gyakorlatok Geometria II gyakorlatok Kovács Zoltán Copyright c 2011 Last Revision Date: 2011. november 29. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát technikával készült, a megjelenés

Részletesebben

Tehetetlenségi nyomatékok

Tehetetlenségi nyomatékok Tehetetlenségi nyomtékok 1 Htározzuk meg z m tömegű l hosszúságú homogén rúd tehetetlenségi nyomtékát rúd trtóegyenesét metsző tetszőleges egyenesre vontkozón, h rúd és z egyenes hjlásszöge α, rúd középpontjánk

Részletesebben

3D Számítógépes Geometria II.

3D Számítógépes Geometria II. 3D Számítógépes Geometria II. 1. Bevezetés http://cg.iit.bme.hu/portal/3dgeo2 https://www.vik.bme.hu/kepzes/targyak/viiiav16 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki és Informatikai Kar Irányítástechnika

Részletesebben

Az integrálszámítás néhány alkalmazása

Az integrálszámítás néhány alkalmazása Az integrálszámítás néhány lklmzás (szerkesztés ltt) Dr Toledo Rodolfo 4 november 4 Trtlomjegyzék Két függvények áltl htárolt terület Forgástestek térfogt és felszíne 5 3 Ívhosszszámítás 7 4 Feldtok 8

Részletesebben

3D Számítógépes Geometria II.

3D Számítógépes Geometria II. 3D Számítógépes Geometria II. Önálló hallgatói projektek, 2018. szept. 24. http://cg.iit.bme.hu/portal/3dgeo2 https://www.vik.bme.hu/kepzes/targyak/viiiav16 Dr. Várady Tamás, Dr. Salvi Péter, Vaitkus Márton

Részletesebben

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k.

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k. 8. KIS REZGÉSEK STABIL EGYENSÚLYI HELYZET KÖRÜL 8.. A rezgések szétcsatolása harmoikus közelítésbe. Normálrezgések Egyesúlyi helyzet: olya helyzet, amelybe belehelyezve a redszert (ulla kezdősebességgel),

Részletesebben

TANMENET. Matematika

TANMENET. Matematika Bethlen Gábor Református Gimnázium és Szathmáry Kollégium 6800 Hódmezővásárhely, Szőnyi utca 2. Telefon: +36-62-241-703 www.bgrg.hu OM: 029736 TANMENET Matematika 2016/2017 5.A természettudományos képzés

Részletesebben

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik Szögek, szögpárok és fajtáik Szögfajták: Jelölés: Mindkét esetben: α + β = 180 Pótszögek: Olyan szögek, amelyeknek összege 90. Oldalak szerint csoportosítva A háromszögek Általános háromszög: Minden oldala

Részletesebben

8. Geometria = =

8. Geometria = = 8. Geometria I. Nulladik ZH-ban láttuk: 1. Egy négyzet átlójának hossza 4 + 2. Mennyi a négyzet oldalhossza? (A) 1 + 2 2 (B) 4 + 2 (C) 2 2 + 2 (D) 2 + 2 (E) 2 2 + 1 Egy a oldalú négyzet átlója a 2. Ezt

Részletesebben

Számítógépes geometria (mester kurzus) III

Számítógépes geometria (mester kurzus) III 2010 sz, Debreceni Egyetem Felületek A felület megadása implicit: F : R 3 R, F (x, y, z) = 0 Euler-Monge: f : [a, b] [c, d] R, z = f (x, y) paraméteres: r : [a, b] [c, d] R 3 trianguláris háló direkt megadása

Részletesebben

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék Mskol Egyetem Gépészmérök és Iformatka Kar Alkalmazott Iformatka Taszék 2012/13 2. félév 9. Előadás Dr. Kulsár Gyula egyetem does Matematka modellek a termelés tervezésébe és ráyításába Néháy fotosabb

Részletesebben

Diszkrét matematika II., 3. előadás. Komplex számok

Diszkrét matematika II., 3. előadás. Komplex számok 1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,

Részletesebben

Geometria II gyakorlatok

Geometria II gyakorlatok Geometria II gyakorlatok Kovács Zoltán Copyright c 2011 Last Revision Date: 2012. május 8. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát technikával készült, a megjelenés

Részletesebben

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje?

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje? Előzetes megjegyzés: 1. Az időt nyugodtan mérhetjük méterben. ct [s ] = t [m ] A film kétórás volt. = A film 2.16 milliárd kilométernyi ideig tartott. 2. A tömeget is nyugodtan mérhetjük méterben! GM [kg]

Részletesebben

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje?

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje? Előzetes megjegyzés: 1. Az időt nyugodtan mérhetjük méterben. ct [s ] = t [m ] A film kétórás volt. = A film 2.16 milliárd kilométernyi ideig tartott. 2. A tömeget is nyugodtan mérhetjük méterben! GM [kg]

Részletesebben

1. Írd le kis írott betűkkel a nyomtatott betűket! 10/ a b é f ly d ó zs g j. 2. Írd le nagy írott betűkkel a nyomtatott betűket!

1. Írd le kis írott betűkkel a nyomtatott betűket! 10/ a b é f ly d ó zs g j. 2. Írd le nagy írott betűkkel a nyomtatott betűket! Név: A csoport 1. Írd le kis írott betűkkel a nyomtatott betűket! 10/ a b é f ly d ó zs g j 2. Írd le nagy írott betűkkel a nyomtatott betűket! 10/ N R Cs D Ü T Ő Gy L E 3. Másold le a szavakat írott betűkkel!

Részletesebben

MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 2010.

MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 2010. MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 00.. Tetszőleges, nem negatív szám esetén, Göktelenítsük a nevezőt: (B). Menni a 0 kifejezés értéke? (D) 0 0 0 0 0000 400 0. 5 Felhasznált

Részletesebben

Racionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q

Racionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q Szóbeli tételek matematikából 1. tétel 1/a Számhalmazok definíciója, jele (természetes számok, egész számok, racionális számok, valós számok) Természetes számok: A pozitív egész számok és a 0. Jele: N

Részletesebben

Matematika 11. osztály

Matematika 11. osztály ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Humán tagozat Matematika 11. osztály II. rész: Trigonometria Készítette: Balázs Ádám Budapest, 018 . Tartalomjegyzék Tartalomjegyzék II. rész: Trigonometria...........................

Részletesebben

Jelek 1/44 1. JELEK 2

Jelek 1/44 1. JELEK 2 Jelek /44. JELEK 2. Jelek rerezetácó, a rerezetácók traszformácó 2.. Absztrakt matematka modellek 2..2 Az dő-, frekveca- és oerátor-tartomáyba értelmezett rerezetácók 3..3 Jel rerezetácók traszformácó

Részletesebben

Elemi matematika szakkör

Elemi matematika szakkör Elemi matematika szakkör Kolozsvár, 2016. január 11. 1.1. Feladat. (V:266,.L. 1/2000) z háromszögben m(â) = 30 és m( ) = 45. z és oldalakon vegyük fel az és pontokat úgy, hogy 3 = és 2 =. Számítsd ki az

Részletesebben

ADALÉKANYAG SZEMMEGOSZLÁSÁNAK TERVEZÉSE

ADALÉKANYAG SZEMMEGOSZLÁSÁNAK TERVEZÉSE ADALÉKANYAG SZEMMEGOSZLÁSÁNAK TERVEZÉSE Ismeretek a BME házi feladat elkészítéséhez Dr. Kausay Tibor Kausay 1 Kausay 2 Kausay 3 Ugyanebből a meggondolásból alkalmazzák a négyzetlyukú szitákat, ugyanis

Részletesebben

Írja át a következő komplex számokat trigonometrikus alakba: 1+i, 2i, -1-i, -2, 3 Végezze el a műveletet: = 2. gyakorlat Sajátérték - sajátvektor 13 6

Írja át a következő komplex számokat trigonometrikus alakba: 1+i, 2i, -1-i, -2, 3 Végezze el a műveletet: = 2. gyakorlat Sajátérték - sajátvektor 13 6 Építész Kar Gakorló feladatok gakorlat Számítsa ki az alábbi komple számok összegét, különbségét, szorzatát, hánadosát: a/ z = i z = i b/ z = i z = - 7i c/ z = i z = i d/ z = i z = i e/ z = i z = i Írja

Részletesebben

286 Versenyre előkészítő feladatok VIII. FEJEZET. ÖSSZEFOGLALÓ FELADATOK VIII.1. Versenyre előkészítő feladatok (337. oldal)

286 Versenyre előkészítő feladatok VIII. FEJEZET. ÖSSZEFOGLALÓ FELADATOK VIII.1. Versenyre előkészítő feladatok (337. oldal) 86 Verseyre előészítő feladato VIII FEJEZET ÖSSZEFOGLALÓ FELADATOK VIII Verseyre előészítő feladato (7 oldal) Két samtás, 66 lletve 88-cm agyságú szőyegdarab (mde mező cm agyságú) segítségével le ell fed

Részletesebben

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június ÖKONOMETIA Készült a TÁMOP-4.1.-08//A/KM-009-0041pályázat projet eretébe Tartalomfejlesztés az ELTE TáTK Közgazdaságtudomáy Taszéé az ELTE Közgazdaságtudomáy Taszé az MTA Közgazdaságtudomáy Itézet és a

Részletesebben

. feladatsor 8. Hányféleképpen lehet sorba rendezni a METALLICA szó betűit?...( pont) 9. Tamás elhatározta, hogy fából kifaragja a Kheopsz piramis kic

. feladatsor 8. Hányféleképpen lehet sorba rendezni a METALLICA szó betűit?...( pont) 9. Tamás elhatározta, hogy fából kifaragja a Kheopsz piramis kic . feladatsor. Feladatsor I. rész. Adja meg a következő halmazok elemeit, ha A= { e dit}. Egyszerűsítse a következő törtet: (! ) ; ; ;, B e; mil ; ;! = { } A B; B/ A...( pont) 4 4 + 4... (3 pont) 3. Hány

Részletesebben

1. Gyökvonás komplex számból

1. Gyökvonás komplex számból 1. Gyökvoás komplex számból Gyökvoás komplex számból Ismétlés: Ha r,s > 0 valós, akkor r(cosα+isiα) = s(cosβ+isiβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete: ( s(cosβ+isiβ)

Részletesebben

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E

Részletesebben

Megáll a józan ész! ( vagy csak az ész? ) Ágotai László (Kisújszállás)

Megáll a józan ész! ( vagy csak az ész? ) Ágotai László (Kisújszállás) Megáll a józan ész! ( vagy csak az ész? ) Ágotai László (Kisújszállás) A foglalkozáson olyan bizonyításokkal, okoskodásokkal foglalkozunk, amelyekből kapott eredmények a józan eszünknek és az eddigi matematikai

Részletesebben

10.M ALGEBRA < <

10.M ALGEBRA < < 0.M ALGEBRA GYÖKÖS KIFEJEZÉSEK. Mutassuk meg, hogy < + +... + < + + 008 009 + 009 008 5. Mutassuk meg, hogy va olya pozitív egész szám, amelyre 99 < + + +... + < 995. Igazoljuk, hogy bármely pozitív egész

Részletesebben

A szerkezetszintézis matematikai módszerei

A szerkezetszintézis matematikai módszerei 7 A szerkezetsztézs matematka módszere 1.5 Első derváltat géylő módszerek Az első derváltat géylő módszerek (elsőredű módszerek, melyek felhaszálják a grades formácókat, általába hatékoyabbak, mt a ulladredű

Részletesebben

Az előadás kvaternió alapú dárumtranszformációs analitikus megoldást ismertet Bemutatja

Az előadás kvaternió alapú dárumtranszformációs analitikus megoldást ismertet Bemutatja A dátumtranszformácó a geodézában alkalmazott számítás módszer számos, különböző algortmuson alauló megoldása smert A megoldások többsége ks szögelfordulásokat feltételez lnearzálás szükséges a transzformácós

Részletesebben

NE HABOZZ! KÍSÉRLETEZZ!

NE HABOZZ! KÍSÉRLETEZZ! NE HABOZZ! KÍSÉRLETEZZ! FOLYADÉKOK FELSZÍNI TULAJDONSÁGAINAK VIZSGÁLATA KICSIKNEK ÉS NAGYOKNAK Országos Fizikatanári Ankét és Eszközbemutató Gödöllő 2017. Ötletbörze Kicsiknek 1. feladat: Rakj három 10

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok II. Vektorok II. DEFINÍCIÓ: (Vektorok hajlásszöge) Két vektor hajlásszögének azt a φ (0 φ 180 ) szöget nevezzük, amelyet a vektorok egy közös pontból felmért reprezentánsai által meghatározott félegyenesek

Részletesebben

Klasszikus algebra előadás. Waldhauser Tamás március 24.

Klasszikus algebra előadás. Waldhauser Tamás március 24. Klasszikus algebra előadás Waldhauser Tamás 2014. március 24. Irreducibilitás 3.33. Definíció. A p T [x] polinom irreducibilis, ha legalább elsőfokú, és csak úgy bontható két polinom szorzatára, hogy az

Részletesebben

Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata

Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata Referencia egyenlet x D Α x Α x x 0 Α sin Ω t req t,t x t D Α t x t Α x t x 0 Α Sin Ω t Α x t D Α x t x t Α Sin t Ω x 0 Homogén rész megoldása

Részletesebben

Mátrixok 2017 Mátrixok

Mátrixok 2017 Mátrixok 2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4

Részletesebben

Gráfelméleti alapfogalmak-1

Gráfelméleti alapfogalmak-1 KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára Gráfelméleti alapfogalmak Előadó: Hajnal Péter 2015 1. Egyszerű gráfok Nagyon sok helyzetben egy alaphalmaz elemei között kitűntetett

Részletesebben

Határozott integrál és alkalmazásai

Határozott integrál és alkalmazásai Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,

Részletesebben

Digitális Domborzat Modellek (DTM)

Digitális Domborzat Modellek (DTM) Dgtáls Domborzat Modellek (DTM) DTM fogalma A földfelszín számítógéppel kezelhető topográfa modellje Cél: tetszőleges pontban magasság érték nterpolálása a rendelkezésre álló támpontok alapján Interpolácós

Részletesebben

Számítógépes geometria (mester kurzus)

Számítógépes geometria (mester kurzus) 2010 sz, Debreceni Egyetem Csuklós szerkezetek animációja (Kép 1985-b l: Tony de Peltrie) Csontváz-modellek Csuklós szerkezet (robotkar) A robotkar részei: csuklók (joints) rotációs prizmatikus (transzlációs)

Részletesebben

Szárítás során kialakuló hővezetés számítása Excel VBA makróval

Szárítás során kialakuló hővezetés számítása Excel VBA makróval Szárítás során kalakuló hővezetés számítása Excel VBA makróval Rajkó Róbert 1 Eszes Ferenc 2 Szabó Gábor 1 1 Szeged Tudományegyetem, Szeged Élelmszerpar Főskola Kar Élelmszerpar Műveletek és Környezettechnka

Részletesebben

Integrálszámítás (Gyakorló feladatok)

Integrálszámítás (Gyakorló feladatok) Integrálszámítás (Gyakorló feladatok). Határozatlan integrál. Alapintegrálok F. Számítsa ki az alábbi határozatlan integrálokat! a) (x x + ) b) (6x x + 5) c) (x + x + x ) d) ( x + x x e) ( ) + e x ) f)

Részletesebben

Regresszió számítás. Mérnöki létesítmények ellenőrzése, terveknek megfelelése. Geodéziai mérések pontok helyzete, pontszerű információ

Regresszió számítás. Mérnöki létesítmények ellenőrzése, terveknek megfelelése. Geodéziai mérések pontok helyzete, pontszerű információ Regresszó számítás Mérök létesítméek elleőrzése, terekek megfelelése Deformácózsgálat Geodéza mérések potok helzete, potszerű formácó Leárs regresszó Regresszós sík Regresszós göre Legkse égzetek módszere

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Oktatásért Közalapítvány támogatásával Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Megoldások és javítási útmutató 1. Határozzuk

Részletesebben