EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei"

Átírás

1 Eukldes tér, metrkus tér, ormált tér, magasabb dmeós terek vektoraak söge, eek követkemée Metrkus tér Defícó. A H halmat metrkus térek eveük, ha va ola, metrkáak eveett m: H H R {0} függvé, amelre a követkeők teljesülek:./ m, 0, akkor és csak akkor, ha po. deft./ m, m, smmetra 3./ H eseté m, m, m, háromsög egelőtleség A metrka a 3 dmeós geometra tér távolságáak általáosítása. Példa: dskrét metrka: m,:, ha és külöböők, és lege m,:0, ha. Bércesé Novák Áges

2 Normált tér Defícó: A H halmat ormált ak eveük, ha va ola : H R {0} függvé, a ú. orma, amelre a követkeők teljesülek:. 0 akkor és csak akkor, ha 0. α α 3. vektorok össeadása, sámok össeadása A orma függvét sokás a absolút értékhe hasoló. jellel s jelöl.. 0, akkor és csak akkor, ha 0. α α 3.. háromsög egelőtleség A orma a absolút érték függvé ullától való távolság, vektor hossa általáosítása. Tehát a vektor hossa s tekthető ormáak, és a sokásos absolút érték s mel halmaba? Tétel: Mde ormált tér metrkus tér B.: Kostruktív, megaduk eg metrkát: m,: - Erről kell boíta, hog redelkek a metrka tulajdoságaval, hf előadáso leírtuk. Bércesé Novák Áges

3 Bércesé Novák Áges 3 Defícó: A s: V V R függvét skalárs soratakskalársoratak eveük, ha a követkeő tulajdoságokkal redelkek:. V eseté s, 0, és s, 0 a. cs. a., ha 0 potív deft., V eseté s, s, smmetrkus 3., V és λ R eseté sλ, λs, homogé 4.,, V eseté s, s, s, leárs vektorok össeadása, sámok össeadása Példa: Lege,,, K T R és,,, K T R. Ekkor a két vektor eg lehetséges skalárs sorata: s, K Defícó: A skalársoratos tereket eukldes terekek eveük. Tétel: Mde, véges dmeós vektortér Eukldes tér. B.: Kostruktív, megaduk eg skalársoratot. A előő példába sereplő skalársorat megfelel: s, K V eseté s, 0, és s, 0 a. cs. a., ha 0 potív deft 0 K., V eseté s, s, smmetrkus s, K s,, V és λ R eseté sλ, λs, homogé sλ, λ λ λ λ λ K λs,,, V eseté s, s, s, leárs s,,, s s K

4 Megjegés: Sokás a skalársoratot a követkeőképpe s jelöl:. s,<,> vag:. s,. Tétel: Mde skalársoratos tér ormált tér. B.: kostruktív: megadjuk a ormát :s, / A orma első és másodk tulajdosága a skalársorat első és másodk tulajdoságából teljesül hf., előadáso leírtuk. A háromsög-egelőtleséghe aoba be kell boíta a alább tételt: Tétel : Cauch-Buakovskj-Schwart egelőtleség: <a,b> <a,a>.<b,b> Boítás: Tektsük a <aλb, aλb skalársoratot. 0 <aλb, aλb > a potív deft tulajdoság matt 0 <aλb, aλb ><a,a><a, λb> <λb, a> <λb, λb <a,a><a, λb> <λb, λb> λ <b, b> <a,b>λ<a,a>. E λ-ra éve eg egsmeretlees másodfokú egelőtleség: λ s<b, b> <a,b>λ<a,a>aλ BλC Mvel e függvéek legfeljebb eg göke lehet, a dskrmás em potív, aa B -4AC 0 4<a,b> -4<b,b><a,a> 0, amből: <a,b> <a,a><b,b> Amből a s követkek, hog <a,b> a. b Tétel: Mde skalársoratos tér ormált tér. B.: kostruktív: megadjuk a ormát. Lege :<,> / A orma 3. tulajdoságáak, a háromsög-egelőtleségek a boítása: <, > / <,> / <,> / Bércesé Novák Áges 4

5 <,><,><,><,> <,><,><,> / <,> /., eért valóba: Tétel: Mde Eukldes tér metrkus tér. B.: Kostruktív, megaduk eg metrkát: m,: <-, -> / E függvére a metrka előírt tulajdosága teljesülek. B.: hf. előadáso serepelt Defícó: Eukldes térbe két vektor, a és b által beárt α söget a követkeőképpe lehet értelme. Lege <.,.> eg skalársorat V-be, és valamel vektor ormája : <,> /. Ekkor: < a, b > cosα a b Megjegés: A defícó heles, hse a CBS: <a,b> <a,a> <b,b> <a,b> <a,a> / <b,b> / < a, b > - a b A cos függvé va össhagba a R 3 -ra voatkoó smeretekkel, emmatt em a s függvé-t válastjuk Defícó: At modjuk, hog a a vektor ortogoáls merőleges a b vektorra, ha <a,b>0 Tétel: Ortogoáls em ulla vektorok függetleek. B: α α... α k k 0, at kell b., hog mdegk α 0. Vegük redre a,, k vektorokkal való skalársoratot, kapjuk, hog α <, >0, mvel <, > em ulla, eért mdegk α 0. Tétel: Mde eukldes térbe va ortogoáls bás Tétel: Mde altérbe va ortogoáls bás. A boítást em kell tud Bércesé Novák Áges 5

6 B.: Kostruktív. Potosa at boítjuk, hog bármel függetle redserből kdulva, íg básból s, tuduk ugaola elemsámú ortogoáls redsert kostruál. A eljárás eve: GRAM-SCHMIDT ortogoalácó. Lege b, b, b k a függetle redser. Ebből a c, c,, c k ortogoáls redser a követkeőképpe kapható: c :b c :b α c, ebből α <-b,c >/<c,c >, íg c :b -<b,c >/<c,c >c. c k :b k- α k c α k c. α k,k- c k-, eek a defáló egeletek redre véve a skalársoratát a c, c,. c k- vektorokkal, a egütthatókra követkeőt kapjuk: α kj <-b k-,c j >/<c j,c j > A kostrukcó matt a kapott redser ortogoáls. Defícó: Ortoormált a vektorredser, ha párokét ortogoáls, és mde eleméek ormája. Követkemé: Mde eukldes térek va ortoormált bása. B.: lege a orma a skalársoratból sármatatott: c < c, c > Tetsőleges básból kdulva, a Gram-Schmdt eljárással kapott ee skalársoratot hasálva! ortogoáls bás mde elemét sorouk ee orma recprokával: c * c / c, ekkor valóba c * < c / c, c / c >/ c < c, c >/ c. c Tétel: A eukldes tér valamel bása akkor és csak akkor ortoormált, ha eg vektor koordátáját a követkeőképpe kapjuk meg: a α e, αk < a, e k > B.: hf. Bércesé Novák Áges 6

7 A követkeőkbe rögített básra voatkotatva tektsük koordáta mátrát: mde vektorak a,, K, és,, K, T A mátrok sorásáak sabálat sem előtt tartva, mvel mde vektor specáls mátr, a skalársoratot defálhatjuk mátrok sorásakét s. Eért a első vektor sor, a másodkat oslopvektorak fogható fel. Tehát a tér vektorat oslopmátr-sal repreetáljuk, és íg skalársoratuk két mátr sorata, eg k típusú, és eg k típusú. Emmatt egk traspoáltját kell ve. A komple tereket s fgelembe véve, a és vektorok skalársoratát a követkeő mátr- sorással sokás értelme: <,>: T. A követkeőkbe skalársorat alatt e mátr soratot érjük. Volt: Defícó : A A mátr traspoáltja, A T k A k Defícó: smmetrkus mátr: AA T Defícó: Eg trasformácót smmetrkusak eveük, ha va ola bás, amelre éve a trasf. mátra smmetrkus. Lemma: Ha a leképeés A mátra smmetrkus, és <,>: T, akkor <,A><A,> B.: <, A>A T. T.A T T.A <A,> A smmetrkus, AA T Tétel: Smmetrkus mátr külöböő sajátértékehe tartoó sajátvektorok ortogoálsak merőlegesek. B.: A λ / vel balról skalársorat A λ / gel jobbról skalársorat <, A > <, λ > λ <, > <A, > <λ, > λ <, > Mvel <, A ><A, >, a egeleteket kvova egmásból: 0 λ - λ <, >, mvel λ λ, eért <, > 0, vags a két sajátvektor valóba ortogoáls/merőleges Defícó: A G mátr ortogoáls, ha G.G T E, ahol E a megfelelő típusú egségmátr. Példa: elforgatás mátra R -be Bércesé Novák Áges 7

8 A eleveés oka, hog a mátr sor és oslopvektora ortogoálsak ld. a mátrokról sóló fle-t A def. követkemée: G.G T E / G - G T G - Lemma: A G mátr akkor és csak akkor ortogoáls, ha G T G - B.: hf. A ortogoáls mátr tehát defálható eképpe: Defícó: A G mátr ortogoáls, ha G T G - Tétel: A ortogoáls trasformácó megőr a <,>: T skalársoratot lege a képe : A a lege b képe : A b <, > A b T A a b T A T A a b T E.a b T E.a <a, b> Követkemé: Ortogoáls trasformácó távolságtartó, ormatartó, sögtartó B.: skalársorat orma távolság sög Tétel: determások sorás tétele: det A.BdetA.detB, amebe a A.B sorás elvégehető em b. Tétel: Ortogoáls mátr determásáak absolút értéke. B.: detedeta.a - deta deta - deta. deta deta Tétel: Ortogoáls trasformácó sajátértékeek absolút értéke. Boítás: A λ A T λ T A két egeletet össesorova: A T A λ T λ T A T Aλ T λ T A - Aλ T T Eλ T, valóba, λ Bércesé Novák Áges 8

y x Komplex mennyiségek tulajdonságai, műveletei Komplex mennyiség komplex szám komplex vektor. a) Komplex mennyiség algebrai alakja: z x iy,

y x Komplex mennyiségek tulajdonságai, műveletei Komplex mennyiség komplex szám komplex vektor. a) Komplex mennyiség algebrai alakja: z x iy, SZÉCHENYI ISVÁN EGYEEM ALKALMAZO MECHANIKA ANSZÉK MECHANIKA-REZGÉSAN GYAKORLA (kdolgota: Fehér Lajos, eg ts; ara Gábor, mérök taár; Molár Zoltá, eg adj) Komle meségek, Mátr- és Vektoralgebra, Dfferecálegeletek

Részletesebben

y x Komplex mennyiségek tulajdonságai, műveletei Komplex mennyiség komplex szám komplex vektor. a) Komplex mennyiség algebrai alakja:, z x iy x

y x Komplex mennyiségek tulajdonságai, műveletei Komplex mennyiség komplex szám komplex vektor. a) Komplex mennyiség algebrai alakja:, z x iy x SZÉCHENYI ISVÁN EGYEEM LKLMZO MECHNIK NSZÉK MECHNIK-REZGÉSN GYKORL (kdolgota: Fehér Lajos, tas m; ara Gábor, mérök taár; Molár Zoltá, eg adj) Komle meségek, Mátr- és Vektoralgebra, Dfferecálegeletek Komle

Részletesebben

2. Koordináta-transzformációk

2. Koordináta-transzformációk Koordnáta-transformácók. Koordnáta-transformácók Geometra, sámítógép graka feladatok során gakran van arra sükség, hog eg alakatot eg ú koordnáta-rendserben, vag a elenleg koordnáta rendserben, de elmogatva,

Részletesebben

Tuzson Zoltán A Sturm-módszer és alkalmazása

Tuzson Zoltán A Sturm-módszer és alkalmazása Tuzso Zoltá A turm-módszer és alalmazása zámtala szélsérté probléma megoldása, vag egeltleség bzoítása ago gara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölder-féle egeltleség, derválta

Részletesebben

(1) Milyen esetben beszélünk tartós nyugalomról? Abban az esetben, ha a (vizsgált) test a helyzetét hosszabb időn át nem változtatja meg.

(1) Milyen esetben beszélünk tartós nyugalomról? Abban az esetben, ha a (vizsgált) test a helyzetét hosszabb időn át nem változtatja meg. SZÉCHENYI ISTVÁN EGYETEM MECHNIK - STTIK LKLMZTT MECHNIK TNSZÉK Elmélet kérdések és válaszok egetem alapképzésbe (Sc képzésbe) résztvevő mérökhallgatók számára () Mle esetbe beszélük tartós ugalomról?

Részletesebben

Megjegyzés: Amint már előbb is említettük, a komplex számok

Megjegyzés: Amint már előbb is említettük, a komplex számok 1 Komplex sámok 1 A komplex sámok algeba alakja 11 Defícó: A komplex sám algeba alakja: em más, mt x y, ahol x, y R és 1 A x -et soktuk a komplex sám valós éséek eve, míg y -t a komplex sám képetes (vagy

Részletesebben

Projektív ábrázoló geometria, centrálaxonometria

Projektív ábrázoló geometria, centrálaxonometria Projektív ábráoló geometria, centrálaonometria Ennél a leképeésnél a projektív teret seretnénk úg megjeleníteni eg képsíkon, hog a aonometrikus leképeést (paralel aonometriát) speciális esetként megkaphassuk.

Részletesebben

Máté: Számítógépes grafika alapjai

Máté: Számítógépes grafika alapjai VETÍTÉSEK Vetítések fajtái / Trasformációk amelek -imeiós objektumokat kisebb imeiós terekbe visek át. Pl. 3D 2D Vetítés köéotja ersektívikus A A B Vetítési B Vetítés köéotja a végtelebe árhuamos A A B

Részletesebben

2.4. Vektor és mátrixnormák

2.4. Vektor és mátrixnormák 4 Vektor és mátrormák következõkbe összefoglluk témkörhöz felhszálásr kerülõ már tult smeretgot s Defícó : IK IR, ( IN, I K vlós vg komle számok hlmzát elöl) többváltozós függvét vektorormák evezzük, h

Részletesebben

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai Tárcsák számítása A felületszerkezetek A felületszerkezetek típusa A tartószerkezeteket geometra méretek alapjá osztálozzuk Az eddg taulmáakba szereplı rúdszerkezetek rúdjara az a jellemzı hog a hosszuk

Részletesebben

NÉMETH LÁSZLÓ VÁROSI MATEMATIKA VERSENY 2013 HÓDMEZŐVÁSÁRHELY OSZTÁLY ÁPRILIS 8.

NÉMETH LÁSZLÓ VÁROSI MATEMATIKA VERSENY 2013 HÓDMEZŐVÁSÁRHELY OSZTÁLY ÁPRILIS 8. . feladat: Eg 5 fős osztálba va fiú és 4 lá. z iskolai bálo (fiú-lá) pár fog tácoli. Háféleképpe tehetik ezt meg? párok sorredje em számít, viszot az, hog ki kivel tácol, az már ige. (0 pot) Válasszuk

Részletesebben

1. Sajátérték és sajátvektor

1. Sajátérték és sajátvektor 1. Sajátérték és sajátvektor Leképezés diagoális mátrixa. Kérdés Mely bázisba lesz egy traszformáció mátrixa diagoális? A Hom(V) és b 1,...,b ilye bázis. Ha [A] b,b főátlójába λ 1,...,λ áll, akkor A(b

Részletesebben

Kozák Imre Szeidl György FEJEZETEK A SZILÁRDSÁGTANBÓL

Kozák Imre Szeidl György FEJEZETEK A SZILÁRDSÁGTANBÓL Koák Imre Seidl Görg FEJEZETEK SZILÁRDSÁGTNBÓL KÉZIRT 008 0 Tartalomjegék. fejeet. tenorsámítás elemei.. Beveető megjegések.. Függvének.3. másodrendű tenor fogalmának geometriai beveetése 5.4. Speciális

Részletesebben

A felhasznált térfogalmak: lineáris tér (vektortér), normált tér, Banach tér, euklideszi-tér, Hilbert tér. legjobban közelítõ elem, azaz v u

A felhasznált térfogalmak: lineáris tér (vektortér), normált tér, Banach tér, euklideszi-tér, Hilbert tér. legjobban közelítõ elem, azaz v u Approxmácó Bevezetés A felhaszált térfogalmak: leárs tér (vektortér) ormált tér Baach tér eukldesz-tér Hlbert tér V ormált tér T V T kompakt halmaz Ekkor v V u ~ T legjobba közelítõ elem azaz v u ~ f {

Részletesebben

III. FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK

III. FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK Függvéek és tulajdoságaik 69 III FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK 6 Gakorlatok és feladatok ( oldal) Írd egszerűbb alakba: a) tg( arctg ) ; c) b) cos( arccos ) ; d) Megoldás a) Bármel f : A B cos ar

Részletesebben

3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 3. Sztereó kamera Kató Zoltá Képfeldolgozás és Számítógépes Grafika taszék SZTE (http://www.if.u-szeged.hu/~kato/teachig/) Sztereó kamerák Az emberi látást utáozza 3 Sztereó kamera pár Két, ugaazo 3D látvát

Részletesebben

15. Többváltozós függvények differenciálszámítása

15. Többváltozós függvények differenciálszámítása 5. Többváltoós függvének differenciálsámítása 5.. Határoa meg a alábbi kétváltoós függvének elsőrendű parciális derivált függvéneit és a gradiens függvénét, valamint eek értékét a megadott pontban:, =

Részletesebben

Regresszió számítás. Mérnöki létesítmények ellenőrzése, terveknek megfelelése. Geodéziai mérések pontok helyzete, pontszerű információ

Regresszió számítás. Mérnöki létesítmények ellenőrzése, terveknek megfelelése. Geodéziai mérések pontok helyzete, pontszerű információ Regresszó számítás Mérök létesítméek elleőrzése, terekek megfelelése Deformácózsgálat Geodéza mérések potok helzete, potszerű formácó Leárs regresszó Regresszós sík Regresszós göre Legkse égzetek módszere

Részletesebben

F.I.1. Vektorok és vektorműveletek

F.I.1. Vektorok és vektorműveletek FI FÜGGELÉK: FI Vektorok és vektorműveletek MATEMATIKAI ÖSSZEFOGLALÓ Skláris menniség: oln geometrii vg fiiki menniség melet ngság (előjel) és mértékegség jelleme Vektor menniség: iránított geometrii vg

Részletesebben

Matematika OKTV I. kategória 2017/2018 második forduló szakgimnázium-szakközépiskola

Matematika OKTV I. kategória 2017/2018 második forduló szakgimnázium-szakközépiskola O k t a t á s i H i v a t a l A 017/018. tanévi Országos Középiskolai Tanulmáni Versen második forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató 1. Adja meg

Részletesebben

1 1 y2 =lnec x. 1 y 2 = A x2, ahol A R tetsz. y =± 1 A x 2 (A R) y = 3 3 2x+1 dx. 1 y dy = ln y = 3 2 ln 2x+1 +C. y =A 2x+1 3/2. 1+y = x.

1 1 y2 =lnec x. 1 y 2 = A x2, ahol A R tetsz. y =± 1 A x 2 (A R) y = 3 3 2x+1 dx. 1 y dy = ln y = 3 2 ln 2x+1 +C. y =A 2x+1 3/2. 1+y = x. Mat. A3 9. feladatsor 06/7, első félév. Határozzuk meg az alábbi differenciálegenletek típusát (eplicit-e vag implicit, milen rendű, illetve fokú, homogén vag inhomogén)! a) 3 (tg) +ch = 0 b) = e ln c)

Részletesebben

1. Lineáris leképezések

1. Lineáris leképezések Lineáris leképezések A lineáris leképezés fogalma Definíció (F5 Definíció) Legenek V és W vektorterek UGYANAZON T test fölött Az A : V W lineáris leképezés, ha összegtartó, azaz v,v 2 V esetén A(v +v 2

Részletesebben

Dr. Égert János Dr. Molnár Zoltán Dr. Nagy Zoltán ALKALMAZOTT MECHANIKA

Dr. Égert János Dr. Molnár Zoltán Dr. Nagy Zoltán ALKALMAZOTT MECHANIKA Dr Égert Jáos Dr Molár Zoltá Dr Nag Zoltá ALKALMAZOTT MECHANIKA UNIVERSITAS-GYŐR Noprofit Kft Gőr, 00 SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR ALKALMAZOTT MECHANIKA TANSZÉK ALKALMAZOTT MECHANIKA

Részletesebben

9. osztály 1.) Oldjuk meg a valós számhármasok halmazán a következő egyenletet!

9. osztály 1.) Oldjuk meg a valós számhármasok halmazán a következő egyenletet! HANCSÓK KÁLMÁN MEGYEI MAEMAIKAVERSENY MEZŐKÖVESD Sóeli feldto és megoldáso ostál ) Oldju meg vlós sámhármso hlmán öveteő egenletet! ( pont) A egenlet l oldlát átlíthtju öveteőéppen: A l oldl egi tgj sem

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

GEOMETRIAI OPTIKA - ÓRAI JEGYZET

GEOMETRIAI OPTIKA - ÓRAI JEGYZET ε ε hullámegelet: Mérökizikus szak, Optika modul, III. évolam /. élév, Optika I. tárg GEOMETRIAI OPTIKA - ÓRAI JEGYZET (Erdei Gábor, Ph.D., 6. AJÁNLOTT SZAKIRODALOM: ELMÉLETI ALAPOK Maxwell egeletek E(

Részletesebben

Többváltozós függvények Riemann integrálja

Többváltozós függvények Riemann integrálja Többváltozós üggvének Riemann integrálja Többváltozós üggvének Riemann integrálja Többváltozós üggvének Riemann integrálja Az integrál konstrukciója tetszőleges változószám esetén Deiníció: n dimenziós

Részletesebben

x = 1 egyenletnek megoldása. Komplex számok Komplex számok bevezetése

x = 1 egyenletnek megoldása. Komplex számok Komplex számok bevezetése Komplex sámok Komplex sámok beveetése A valós sámok körét a követkeőképpen építettük fel. Elősör a termésetes sámokat veettük be. Itt két művelet volt, a össeadás és a sorás (ismételt össeadás A össeadás

Részletesebben

SZÁMELMÉLET. Szigeti Jenő

SZÁMELMÉLET. Szigeti Jenő SZÁMELMÉLET Sigeti Jeő. OSZTHATÓSÁG A osthatósággal kapcsolatba égy alapvető eredméyt kölük bioyítás élkül. Jelölje φ() a {,,..., } halmaból ao elemek sámát, amelyek relatív prímek a -he. Ha például p

Részletesebben

Példa: 5 = = negatív egész kitevő esete: x =, ha x 0

Példa: 5 = = negatív egész kitevő esete: x =, ha x 0 Ha mást em moduk, szám alatt az alábbiakba, midig alós számot értük. Műeletek összeadás: Példa: ++5 tagok: amiket összeaduk, az előző éldába a, az és az 5 szorzás: Példa: 5 téezők: amiket összeszorzuk,

Részletesebben

A lecke célja: A tananyag felhasználója megismerje az erőrendszerek egyenértékűségének és egyensúlyának feltételeit.

A lecke célja: A tananyag felhasználója megismerje az erőrendszerek egyenértékűségének és egyensúlyának feltételeit. modul: Erőrendserek lecke: Erőrendserek egenértékűsége és egensúl lecke célj: tnng felhsnálój megsmerje erőrendserek egenértékűségének és egensúlánk feltételet Követelmének: Ön kkor sjátított el megfelelően

Részletesebben

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és 2015.09.28. és 2015.09.30. 2015.09.28. és 2015.09.30. 1 / Tartalom 1 A valós függvén fogalma 2 A határérték fogalma a végtelenben véges pontban Végtelen határértékek 3 A határértékek kiszámítása A rend

Részletesebben

Dr. Égert János Dr. Nagy Zoltán ALKALMAZOTT RUGALMASSÁGTAN

Dr. Égert János Dr. Nagy Zoltán ALKALMAZOTT RUGALMASSÁGTAN Dr Égert János Dr Nag Zoltán ALALMAZOTT UGALMASSÁGTAN Dr Égert János Dr Nag Zoltán ALALMAZOTT UGALMASSÁGTAN UNIVESITAS-GYŐ Nonprofit ft Gőr 9 SZÉCHENYI ISTVÁN EGYETEM GYŐ Írta: Dr Égert János Dr Nag Zoltán

Részletesebben

26 Győri István, Hartung Ferenc: MA1114f és MA6116a előadásjegyzet, 2006/2007

26 Győri István, Hartung Ferenc: MA1114f és MA6116a előadásjegyzet, 2006/2007 6 Győri Istvá, Hartug Ferec: MA4f és MA66a előadásjegyet, 006/007. A -trasformált.. Egy iformációátviteli probléma Legye adott egy üeetátviteli redserük, amelybe a üeeteket két alapjel modjuk a és b segítségével

Részletesebben

Hvezetés (írta:dr Ortutay Miklós)

Hvezetés (írta:dr Ortutay Miklós) Hveeé (íra:dr Orua Mkló. Hável módok:. Alapfogalmak 3. Feladaok 4. Háadá é kovekcó Hável, eergarapor hajóer (hmérékle külöbég haáára.. Hável módok: veeée hável, hveeé (elem réeckék hmogáa, cak lárd fába

Részletesebben

Relációk. Vázlat. Példák direkt szorzatra

Relációk. Vázlat. Példák direkt szorzatra 8.. 7. elácók elácó matematka fogalma zükséges fogalom: drekt szorzat Halmazok Descartes drekt szorzata: Legenek D D D n adott doman halmazok. D D D n : = { d d d n d k D k k n } A drekt szorzat tehát

Részletesebben

σ = = (y', z' ) = EI (z') y'

σ = = (y', z' ) = EI (z') y' 178 5.4.. Váltoó kerestmetsetű rudak tsta hajlítása Enhén váltoó kerestmetsetű, tsta hajlításra génbevett rúdnál a eges pontok fesültség állapota - a váltoó kerestmetsetű rudak tsta nomásáho vag húásáho

Részletesebben

Vázlat. Relációk. Példák direkt szorzatra

Vázlat. Relációk. Példák direkt szorzatra 7..9. Vázlat elácók a. elácó fogalma b. Tulajdonsága: refleív szmmetrkus/antszmmetrkus tranztív c. Ekvvalenca relácók rzleges/parcáls rrendez relácók felsmere d. elácók reprezentálása elácó matematka fogalma

Részletesebben

Lineáris egyenlet. Lineáris egyenletrendszer. algebrai egyenlet konstansok és első fokú ismeretlenek pl.: egyenes egyenlete

Lineáris egyenlet. Lineáris egyenletrendszer. algebrai egyenlet konstansok és első fokú ismeretlenek pl.: egyenes egyenlete Lieáris egyelet algebrai egyelet kostasok és első fokú ismeretleek pl.: egyees egyelete Lieáris egyeletredser y a b lieáris egyeletek csoportja ugya ao a váltoó halmao Lieáris egyeletredser B b B b B b

Részletesebben

I. Vektorok. Adott A (2; 5) és B ( - 3; 4) pontok. (ld. ábra) A két pont által meghatározott vektor:

I. Vektorok. Adott A (2; 5) és B ( - 3; 4) pontok. (ld. ábra) A két pont által meghatározott vektor: I. Vektorok 1. Vektorok összege Általánosan: Az ábra alapján Adott: a(4; 1) és b(; 3) a + b (4 + ; 1 + 3) = (6; ) a(a 1 ; a ) és b(b 1 ; b ) a + b(a 1 + b 1 ; a + b ). Vektorok különbsége Általánosan:

Részletesebben

9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA

9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA 9. LINÁRIS TRANSZFORMÁCIÓK NORMÁLALAKA Az 5. fejezetbe már megmeredtü a leár trazformácóal mt a leár leépezée egy ülölege típuával a 6. fejezetbe pedg megvzgáltu a leár trazformácó mátr-reprezetácóját.

Részletesebben

3. MÉRETEZÉS, ELLENŐRZÉS STATIKUS TERHELÉS ESETÉN

3. MÉRETEZÉS, ELLENŐRZÉS STATIKUS TERHELÉS ESETÉN ÉRETEZÉS ELLENŐRZÉS STATIUS TERHELÉS ESETÉN A méreteés ellenőrés célkitűése: Annak elérése hog a serkeet rendeltetésserű hasnálat esetén előírt ideig és előírt bitonsággal elviselje a adott terhelést anélkül

Részletesebben

Példatár megoldások. æ + ö ç è. ö ç è. ö ç è. æ ø. = ø

Példatár megoldások. æ + ö ç è. ö ç è. ö ç è. æ ø. = ø Műsaki matematika I. Lineáris algebra pldatár s feladattár Ksítette a Centroset SakkpsServesi Nonprofit Kft. Pldatár megoldások. feladat megoldása Mivel s B típusa megegeik, a sseadás elvgehető s Z is

Részletesebben

MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 2010.

MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 2010. MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 00.. Tetszőleges, nem negatív szám esetén, Göktelenítsük a nevezőt: (B). Menni a 0 kifejezés értéke? (D) 0 0 0 0 0000 400 0. 5 Felhasznált

Részletesebben

Másodfokú függvények

Másodfokú függvények Másodfokú függvének Definíció: Azokat a valós számok halmazán értelmezett függvéneket, amelek hozzárendelési szabála f() = a + bc + c (a, b, c R, a ) alakú, másodfokú függvéneknek nevezzük. A másodfokú

Részletesebben

) ( s 2 2. ^t = (n x 1)s n (s x+s y ) x +(n y 1)s y n x+n y. +n y 2 n x. n y df = n x + n y 2. n x. s x. + s 2. df = d kritikus.

) ( s 2 2. ^t = (n x 1)s n (s x+s y ) x +(n y 1)s y n x+n y. +n y 2 n x. n y df = n x + n y 2. n x. s x. + s 2. df = d kritikus. Kétmtás t-próba ^t ȳ ( s +( s + + df + vag ha, aor ^t ȳ (s +s Welch-próba ^d ȳ s + s ( s + s df ( s ( s + d rtus t s (α, +t s (α, s + s Kofdecatervallum ét mta átlagáa ülöbségére SE s ( + s ( ±t (α,df

Részletesebben

10.3. A MÁSODFOKÚ EGYENLET

10.3. A MÁSODFOKÚ EGYENLET .. A MÁSODFOKÚ EGYENLET A másodfokú egenlet és függvén megoldások w9 a) ( ) + ; b) ( ) + ; c) ( + ) ; d) ( 6) ; e) ( + 8) 6; f) ( ) 9; g) (,),; h) ( +,),; i) ( ) + ; j) ( ) ; k) ( + ) + 7; l) ( ) + 9.

Részletesebben

823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825.

823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825. Egész kitevôjû htváok 7 8 A helese kitöltött keresztrejtvé: 8 ár 8 A rímek összege: + + 9 8 ) $ $ 8 ) $ $ 9$ $ 7 $ $ 0 c) $ ( + ) ( + ) 8 ) $ $ k ( - ) - - - ) r s - 7 m k l ( + ) 7 8 ( - ) 8 ( + ) 7 (

Részletesebben

Függvények határértéke és folytonossága. pontban van határértéke és ez A, ha bármely 0 küszöbszám, hogy ha. lim

Függvények határértéke és folytonossága. pontban van határértéke és ez A, ha bármely 0 küszöbszám, hogy ha. lim Függvének határértéke és oltonossága Deiníció: Az -hoz megadható olan üggvénnek az A. pontban van határértéke és ez A ha bármel küszöbszám hog ha A akkor. Jele: a) Függvén határértékének ogalma visszavezethető

Részletesebben

2. Koordináta-transzformációk

2. Koordináta-transzformációk Koordnáta-transformácók. Koordnáta-transformácók Geometra, sámítógép graka feladatok során gakran van arra sükség, hog eg alakatot eg ú koordnáta-rendserben, vag a elenleg koordnáta rendserben, de elmogatva,

Részletesebben

GYÖRKÖNY TELEPÜLÉSRENDEZÉSI TERVE 1

GYÖRKÖNY TELEPÜLÉSRENDEZÉSI TERVE 1 1!%!" #$!!"!!"#!"#!!$!" %&'()*' +,+-+).'/-0(+)-0 /-0 -&123&45)'*' 15+,+-+).' &'!( 67- ) *!+, ' 15!+'+,+-+).' 8.)3-/ 9 -&123&45)'*' 15+,+-+).' -., +, (/!% %&'()*' +,+-+).' 0!% : 71); 1

Részletesebben

2, 1. annyi, hogy merőleges legyen a másik két vektorra, például választható egész koordinátájú vektor is:

2, 1. annyi, hogy merőleges legyen a másik két vektorra, például választható egész koordinátájú vektor is: Grm-Shmitortogonliáió. köetkeő független ektorokól Grm-Shmit móserrel állítson elő ortogonális áist!mj kpott ektorokól állítson elő ortonormált áist!. Normáljk kpott ektorokt: e mert e könne sámolás égett

Részletesebben

A fő - másodrendű nyomatékok meghatározása feltételes szélsőérték - feladatként

A fő - másodrendű nyomatékok meghatározása feltételes szélsőérték - feladatként A fő - másodrendű nomatékok meghatározása feltételes szélsőérték - feladatként A Keresztmetszeti jellemzők című mappa első lakója eg ritkábban látható levezetést mutat be amel talán segít helesen elrendezni

Részletesebben

D G 0 ;8 ; 0 0 " & *!"!#$%&'" )! "#$%&' (! )* +,-. /0 )* **! / 0 1 ) " 8 9 : 7 ; 9 < = > A! B C D E +,-./0! 1#! 2 3!./0

D G 0 ;8 ; 0 0  & *!!#$%&' )! #$%&' (! )* +,-. /0 )* **! / 0 1 )  8 9 : 7 ; 9 < = > A! B C D E +,-./0! 1#! 2 3!./0 D G 0"" @;8 < @;0 0"7@ & *!"!#$%&'" )! "#$%&'(! )*+,-./0)* **! / 0 1 ) 2 3 4 5 6 1 7 " 8 9 : 7 ; 9 < = > 9? @ A! B C D E +,-./0!1#! 2 3!./04456171#461,!FGHIJKLM 5 NO N"JPQRFGLSTUV@AW"9?@AW G X6YJK # #

Részletesebben

5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI-

5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI- 5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI- FÉLE RELATIVITÁSI ELV m, m,,m r, r,,r r, r,, r 6 db oordáta és sebességompoes 5.. Dama Mozgásegyelete: m r = F F, ahol F jelöl a

Részletesebben

Szilárdságtan. Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR

Szilárdságtan. Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Miskolci Egetem GÉÉMÉRNÖKI É INORMTIKI KR ilárságtan (Oktatási segélet a Gépésmérnöki és Informatikai Kar sc leveleős hallgatói résére) Késítette: Nánori riges, irbik ánor Miskolc, 2008. Een kéirat a Gépésmérnöki

Részletesebben

Regresszió és korreláció

Regresszió és korreláció Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 01.11.1 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés

Részletesebben

EGY FÁZISÚ TÖBBKOMPONENS RENDSZEREK: AZ ELEGYEK KÉPZDÉSE

EGY FÁZISÚ TÖBBKOMPONENS RENDSZEREK: AZ ELEGYEK KÉPZDÉSE EG FÁZISÚ ÖBBOMPONENS RENDSZERE: AZ ELEGE ÉPZDÉSE AZ ELEGÉPZDÉS ERMODINAMIÁJA: GÁZO Általáos megfotolások ülöböz kéma mség komoesek keveredésekor változás törték a molekulárs kölcsöhatásokba és a molekulák

Részletesebben

Tömegpont-rendszer mozgása

Tömegpont-rendszer mozgása TÓTH A: Mechaka/5 (kbővített óraválat) Tömegpot-redser mogása Boyolultságba a tömegpot utá követkeő és gyakorlat sempotból s ge fotos eset amkor több tömegpotból álló redsert ú külső tömegpot-redsert (rövdebbe:

Részletesebben

Egzakt következtetés (poli-)fa Bayes-hálókban

Egzakt következtetés (poli-)fa Bayes-hálókban gakt követketetés pol-fa Baes-hálókban Outlne Tpes of nference B method: exact, stochastc B purpose: dagnostc sngle-step, sequental DSS, explanaton generaton Hardness of exact nference xact nference n

Részletesebben

Y 10. S x. 1. ábra. A rúd keresztmetszete.

Y 10. S x. 1. ábra. A rúd keresztmetszete. zilárdságtan mintafeladatok: tehetetlenségi tenzor meghatározása, a tehetetlenségi tenzor főtengelproblémájának megoldása két mintafeladaton keresztül Először is oldjuk meg a gakorlatokon is elhangzott

Részletesebben

A szilárdságtan 2D feladatainak az feladatok értelmezése

A szilárdságtan 2D feladatainak az feladatok értelmezése A silárdságtan D feladatainak a feladatok értelmeése Olvassa el a ekedést! Jegee meg a silárdságtan D feladatainak csoportosítását! A silárdságtan (rugalmasságtan) kétdimeniós vag kétméretű (D) feladatai

Részletesebben

Algebrai egész kifejezések (polinomok)

Algebrai egész kifejezések (polinomok) Algebrai egész kifejezések (polinomok) Betűk használata a matematikában Feladat Mekkora a 107m 68m oldalhosszúságú téglalap alakú focipála kerülete, területe? a = 107 m b = 68 m Terület T = a b = 107m

Részletesebben

MECHANIKA I. - STATIKA. BSc-s hallgatók számára

MECHANIKA I. - STATIKA. BSc-s hallgatók számára ECHNK. - STTK BSc-s hllgtók sámár ECHNK. - STTK Tnkönv és jeget BSc-s hllgtók résére - - Dr. Glmbos rges echnk. Sttk tnkönv és jeget BSc-s hllgtók résére Írt és serkestette: Dr. Glmbos rges és Sándor

Részletesebben

44. HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, 2015 Szóbeli feladatok megoldásai. Megoldás: 6

44. HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, 2015 Szóbeli feladatok megoldásai. Megoldás: 6 9 évfolm HNCSÓK KÁLMÁN MEGYEI MTEMTIKVERSENY MEZŐKÖVESD 5 Szóbeli feldto megoldási ) dju meg zot z egész értéeet mele mellett z 6 6 Z 6 6 6 6 is egész szám! pot 6 6 6 pot mide egész -re pártl íg or lesz

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám redje A hatváyo periódiusa ismétlőde. Tétel Legye 0 z C. Ha z egységgyö, aor hatváyai periódiusa ismétlőde. Ha z em egységgyö, aor bármely ét, egész itevőjű hatváya ülöböző. Tegyü föl,

Részletesebben

Kétváltozós függvények

Kétváltozós függvények Kétváltozós függvéek Tartalomjegzék Többváltozós függvéek... Kétváltozós függvéek... Nevezetes felületek... 3 Forgásfelületek... 3 Kétváltozós függvé határértéke... 4 Foltoos kétváltozós függvéek... 6

Részletesebben

VIII.4. PONT A RÁCSPONTOK? A feladatsor jellemzői

VIII.4. PONT A RÁCSPONTOK? A feladatsor jellemzői VIII.4. PONT A RÁCSPONTOK? Tárg, téma Geometria, algebra és számelmélet. Előzmének A feladatsor jellemzői Pontok ábrázolása koordináta-rendszerben, abszolút érték fogalma, oszthatóság fogalma, (skatula

Részletesebben

Regresszió és korreláció

Regresszió és korreláció Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 016.11.10 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés

Részletesebben

A differenciálegyenlet általános megoldása az összes megoldást tartalmazó halmaz.

A differenciálegyenlet általános megoldása az összes megoldást tartalmazó halmaz. Differenciálegenletek Bevezetés Differenciálegenletnek olan egenletet nevezünk, amelben az ismeretlen eg függvén és az egenlet tartalmazza az ismeretlen függvén (valahánad rendű) deriváltját. Például:

Részletesebben

Á ű ő ö Í é é ő Ö Ö é ő Ö ő ö é é Ö ü é ó Ő é é ó é ó é é é é Ö ó ó ő é Ü é ó ö ó ö é é Ő ú é é é é ő Ú é ó Ő ö Ő é é é é ű ö é Ö é é ó ű ö é ő é é é é é é é é é Ö é Ö ü é é é é ö ü é ó é ó ó é ü ó é é

Részletesebben

ű Ő ű Ü Ü Ü ű ű Ú ű ű ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű Ú Ü Ő ű Ö ű Ü ű Ö ű Ú ű ű Ű É É ű ű ű ű ű ű ű Ü ű ű ű ű ű ű ű Ú ű ű ű É Ű É Ü Ü Ú É É ű ű ű Ü ű É É Ű É ű ű ű ű ű ű ű Ö Ó ű ű ű ű ű ű Ö É Ó É É É Ü

Részletesebben

:.::-r:,: DlMENZI0l szoc!0toolnl ránsnnat0m A HELYI,:.:l:. * [:inln.itri lú.6lrl ri:rnl:iilki t*kill[mnt.ml Kilírirlrln K!.,,o,.r*,u, é é é ő é é é ő é ő ő ú í í é é é ő é í é ű é é ő ő é ü é é é í é ő

Részletesebben

Ü Éü É ü í í Í ö Ü Ú ú Ó í ő í Ö ű ö Ó ú Ű ü í Ó ö Ó Ü Ó Ó í í ú í Ü Ü ő Ú Ó Ó í ú É ÉÉ É Á Ü Ü Ü Ú ő í Ő Ó Ü ő ö ü ő ü ö ú ő ő ő ü ö ő ű ö ő ü ő ő ü ú ü ő ü ü Í ü Í Á Ö Í É Ú ö Í Á Ö í É ö í ő ő í ö ü

Részletesebben

ú Ú Ö É ú ü í í ü í í í í ü Ú í ű í ú ü ü í í ü ü í ü ü ú Í í ű í ü ü Ü í í ü í ú ű ú ú í í ü ú í ü É ü Ö í í ü ú ű í í ü í ű í í Í Ö í í ü Ö ú É Í í í í ü ű ü ű ü ü ü ü í í í í ú í ü í ú É ü ü ü ü í ü

Részletesebben

ó ó ú ú ó ó ó ü ó ü Á Á ü É ó ü ü ü ú ü ó ó ü ó ü ó ó ú ú ú ü Ü ú ú ó ó ü ó ü ü Ü ü ú ó Ü ü ű ű ü ó ü ű ü ó ú ó ú ú ú ó ú ü ü ű ó ú ó ó ü ó ó ó ó ú ó ü ó ó ü ü ó ü ü Ü ü ó ü ü ü ó Ü ó ű ü ó ü ü ü ú ó ü

Részletesebben

Ü Ö Á Á Á Á Á É ű Ü Ú ű ű Á É ű Ú Ü ű Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Ü Ü Ü Ö Ö Ú Ö Ü Ö ű ű ű ű ű Á ű Ú ű ű ű ű ű É Á Ö Ö Ö ű ű ű Á ű ű ű ű ű ű ű ű ű ű Ü Ü Ü Ü ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű ű ű ű Ü Ö Ü Ó Ö ű ű ű

Részletesebben

Ö Ó ú É ű É Ö Ö Ö Ü Ó Ú É ú É Ü Ú ú Ü ű ú Ü Ö Ö ú ű Ú ű ű ú Ö Ö Ö Ö É ú ú Ő Ö ú Ü Ó ú Ú Ü Ö ű ű ű Ö ű ú Ó ű Ö Ü ű ú ú ú ú É ú Ö ú ú Ü ú Ó ú ú ú ú ú ú ű ű ú ű ú ú ű Ö ú ú ú ű Ö ú ű ú ű Ü Ö Ü ű Ü Ö ú ú Ü

Részletesebben

Á Á Ó É ö ó ó ó ő ő ó ö ő ő ű ó ú ö ó ó ő ó ü ó ó ő ó ó ő ó ü ó ő ő ő ó ő ő ö ó ó ó ö ö ü ö Á Á Ó ü ó ö ó ő ó ő ő Á É Á Ó ű ü ö ó ő ó ú ÉÉ ó ú ő ö ó ó ó ó ó ö ö ő ü ó ö ö ü ó ű ö ó ó ó ó ú ó ü ó ó ö ó

Részletesebben

É É É ü É ó ó É ű ó ÉÉ ó É ó É É ó É ü ó ó Ó ű ó ó ó ó ü É ü ű ó É É É É ü ü ó ó ó ü É ó É ó É ó ó ó ü ü ü ü ó ü ü ü ü ó ű ű É Í Ó Ü Ö ó ó ó Ó ó ü ü ü ű ó ü ü ű ü ü ó ü ű ü ó ü ó ó ó ó ó ó ó ü ó ó ó ű

Részletesebben

3. Lokális approximáció elve, végeselem diszkretizáció egydimenziós feladatra

3. Lokális approximáció elve, végeselem diszkretizáció egydimenziós feladatra SZÉCHENYI ISÁN EGYEEM AAMAZO MECHANIA ANSZÉ 6. MECHANIA-ÉGESEEM MÓDSZER EŐADÁS (kidolgozta: Szüle eronika, eg. ts.) I. előadás. okális aroimáció elve, végeselem diszkretizáció egdimenziós feladatra.. Csomóonti

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egenletek, egenletrendszerek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Inverz függvények Inverz függvények / 26

Inverz függvények Inverz függvények / 26 Inverz függvének 2015.10.14. Inverz függvének 2015.10.14. 1 / 26 Tartalom 1 Az inverz függvén fogalma 2 Szig. monoton függvének inverze 3 Az inverz függvén tulajdonságai 4 Elemi függvének inverzei 5 Összefoglalás

Részletesebben

Kétváltozós függvények ábrázolása síkmetszetek képzése által

Kétváltozós függvények ábrázolása síkmetszetek képzése által Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az

Részletesebben

Matematika szintfelmérő szeptember

Matematika szintfelmérő szeptember Matematika szintfelmérő 015. szeptember matematika BSC MO 1. A faglaltok éjszakáján eg közvéleménkutatásban vizsgált csoport %-ának ízlett az eperfaglalt, 94%-ának pedig a citromfaglalt. A két gümölcsfaglalt

Részletesebben

Ö Á Í Í ű ű ú ű ű ű ű ú ú ú ú ű ű ű ű ű ű ű ű ű ú ű ú ú ú ű ú Á ú ű ű Ó ú ű ű ű ú Ó ú ű ú É ú ú ú ű ű ú ű ú Ú Á ú É ú Ó ú ú ú ú ű ű ű ú É Á É É ű ű Í ú ú Ó Í ű Í ű ű ú ű ű ű É ű ú Á ű ű ú Í ű Á ű ú ú É

Részletesebben

ö ö ö ö ö ö ö ű ű ö ö ö ö ö Ő ö Ó Ú ö Ö ö ö ö ö Ö Ő ö ö Í Ó Ó Ő ö ö ö ö ö Ő Ő Ó Ő É ö Ú ö ö Ő ö ö ö ö ö ö ö Ő ö Ő É ö Ő ö ö Ő ö ö ö Ó ű ö ö ö Ő ö ö ö Í Ő Ó Í ö ö ö ö Ő Ő Ő Ő Í Ó Ő Ő Í Ő ö ö ö ö ö Ő Ő ö

Részletesebben

Ú ű ü ü Ü ű É É Ö Ö Á ü ü ü ű É ú Á Ö Ü ü ü ű É Á É Ű ű Ü Ü ű ü ű ü ű ü Ü ü ü Ű Á Á Á ű ú ű Á Ó Ó É Á Ó Á Ó ű ü ü ű ű ü ú ú ü ü ü ű ü ű Ü ű ü ü ú ü Ö ü ú ú ü ü ü ü ű ú ü Ó ü Ó Ó ü ü Ó ü ü Ó ű ű ú ű ű ü

Részletesebben

3D Számítógépes Geometria II.

3D Számítógépes Geometria II. 3D Sámíógées Geomea II.. Racoáls göék és felüleek h://cg..me.hu/oal/3dgeo hs://.vk.me.hu/kees/agak/viiiav6 D. Váad Tamás D. Salv Pée ME Vllamosméök és Ifomaka Ka Iáíásechka és Ifomaka Tasék Taalom movácó

Részletesebben

Tárgyév adata 2013. december 31. Tárgyév adata 2014. december 31. A tétel megnevezése

Tárgyév adata 2013. december 31. Tárgyév adata 2014. december 31. A tétel megnevezése A tétel megnevezése Tárgyév adata 2013. december 31. Tárgyév adata 2014. december 31. 1. Pénzeszközök 19 798 163 488 2. Állampapírok 411 306 73 476 a) forgatási célú 411 325 73 408 b) befektetési célú

Részletesebben

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága Azoos évleges értékű, htelesített súlyokból alkotott csoportok együttes mérés bzoytalasága Zeleka Zoltá* Több mérés feladatál alkalmazak súlyokat. Sokszor ezek em egyekét, haem külöböző társításba kombácókba

Részletesebben

Kényszereknek alávetett rendszerek

Kényszereknek alávetett rendszerek Kéyszerekek alávetett redszerek A koordátákak és sebességekek előírt egyeleteket kell kelégítee a mozgás olyamá. (Ezeket a eltételeket, egyeleteket s ayag kölcsöhatások bztosítják, de ezek a kölcsöhatások

Részletesebben

STATIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2003/2004 tavaszi félév)

STATIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2003/2004 tavaszi félév) STATIKA A minimum test kérdései a gépésmérnöki sak hallgatói résére (2003/2004 tavasi félév) Statika Pontsám 1. A modell definíciója (2) 2. A silárd test értelmeése (1) 3. A merev test fogalma (1) 4. A

Részletesebben

Lineáris algebra Gyakorló feladatok

Lineáris algebra Gyakorló feladatok Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések

Részletesebben

A hatványozás első inverz művelete, az n-edik gyökvonás.

A hatványozás első inverz művelete, az n-edik gyökvonás. Ismétlés: Htváozás egész kitevő eseté A htváozás iverz műveletei. (Htvá, gök, logritmus) De.: :... Ol téezős szorzt, melek mide téezője. : htvál : kitevő : htváérték A htváozás zoossági egész kitevő eseté:

Részletesebben

STATISZTIKA 1. KÉPLETGYŰJTEMÉNY. alapfogalmak egy ismérv szerinti elemzés két ismérv szerinti elemzés standardizálás indexszámítás

STATISZTIKA 1. KÉPLETGYŰJTEMÉNY. alapfogalmak egy ismérv szerinti elemzés két ismérv szerinti elemzés standardizálás indexszámítás STTSZTK. KÉPLETGYŰJTEMÉY alaogalma eg smér szer elemzés é smér szer elemzés sadardzálás dexszámíás . LPOGLMK..smére íusa TEÜLET, DŐEL, MŐSÉG, MEYSÉG. MŐSÉG omáls (éleges) soaság eleme alamle uladoságo

Részletesebben

1. Operáció kutatás matematikát matematikai statisztika és számítástechnika. legjobb megoldás optimum operációkutatás definíciója :

1. Operáció kutatás matematikát matematikai statisztika és számítástechnika. legjobb megoldás optimum operációkutatás definíciója : 1. Operácó kutatás Az operácó kutatás 1940 ó ta smeretes. Bár a techka felő dés, a termelés folamatok szervezése már korábba s géelte a matematka eszkö zö k felhaszálását, - amelekbe fellelhető k az operácó

Részletesebben

5. modul: Szilárdságtani Állapotok. 5.3. lecke: A feszültségi állapot

5. modul: Szilárdságtani Állapotok. 5.3. lecke: A feszültségi állapot 5 modul: Silárdságtai Állapotok 53 lck: A fsültségi állapot A lck célja: A taaag flhasálója mgismrj a fsültségi állapot fogalmait valamit mg tudja határoi g lmi pot körték fsültségi állapotát Kövtlmék:

Részletesebben

1. MÁSODRENDŰ NYOMATÉK

1. MÁSODRENDŰ NYOMATÉK Gak 01 Mechanka. Szlárdságtan 016 01 Segédlet MECHNK. TNNYG SMÉTLÉSE Tartalom 1. MÁSODRENDŰ NYOMTÉK... 1. RÁCSOS TRTÓ.... GÉNYEVÉTEL ÁRÁK... 5. TÉREL TRTÓK GÉNYEVÉTEL ÁRÁ... 8 Ez a Segédlet a 015, 016

Részletesebben