Kényszereknek alávetett rendszerek
|
|
- Borbála Somogyiné
- 7 évvel ezelőtt
- Látták:
Átírás
1 Kéyszerekek alávetett redszerek A koordátákak és sebességekek előírt egyeleteket kell kelégítee a mozgás olyamá. (Ezeket a eltételeket, egyeleteket s ayag kölcsöhatások bztosítják, de ezek a kölcsöhatások agyo boyolultak lehetek, ezért egyszerűbb, ha a eltételeket mt egyeleteket vesszük gyelembe.) Példák: 1. Nyugvó lejtő: x =tg y kéyszereltétel: x tg y=0 z-re cs kkötés sebességekre: ẋ tg ẏ=0 l =1, tg, 0 l r=0 tt l =kostas, vagys em ügg a koordátáktól és az dőtől x, y, z, t= x y tg l x = x =1 ; l y= y = tg ; l z= z =0 t =0= D dőtől üggetle geometra kéyszer (holoom szkleroom redszer) 2. Matematka ga: kéyszereltétel: x 2 y 2 l 2 =0 sebességekre: 2 x ẋ2 y ẏ=0 dőüggetle geometra kéyszer 3. Tszta gördülés: x= R ẋ= R ẋ R =0 ha a mozgás leárs, akkor geometra kéyszer (lásd: 6. példa) 4. Kettős csga: l=r z 1 a z a z=d z 1 d=álladó l ' =R' z 2 zz 3 z z 2 z 3 2 z=d ' d '=álladó 2 z 1 z 2 z 3 =c 1
2 geometra kéyszer 2 ż 1 ż 2 ż 3 =0 l 1 =0,0,2 l 2 =0,0,1 l 3 =0,0,1 D=0 5. Mozgó lejtő: x ' =tg y ' x=x ' y' = y u t x tg ytg u t=0 ẋ tg ẏtg u=0 geometra kéyszer, de dőüggő 6. Függőleges síkú korog gördülése vízsztes síko: a korog középpotja: x, y, a orgásszög: a korog tegelyéek és az x-tegelyek a hajlásszöge: v=a a gördülés eltétele (cs csúszás) ẋ=v s ẏ= v cos ẋ a s =0 kéyszereltételek: ẏa cos=0 kematka kéyszer Nem küszöbölhető k a eltételekből a sebesség, vagys em tudjuk csupá a koordátákkal elír. D=0 aholoom mechaka redszer, a több példa holoom 7. Merev test: olya test, melybe bármely két pot távolsága a mozgás olyamá álladó adott db tömegpot: m 1, m 2,, m tömegek r 1,, r helyvektorok kössük össze őket súlytala rudakkal tegyük el, hogy r r j =d j =álladó, j=1,2,, x x j 2 y 2 z 2 eltétel, ey egyelet va 2 Egy merev test megadásához általába elegedő 6 adat, ha a test leárs, akkor elég 5 adat. geometra kéyszer 2
3 8. Kettős ga: geometra kéyszer Kéyszereltétel: sebességbe leárs egyelet mechaka redszer: m 1, m 2,, m koordáták: r 1,, r sebességek: r 1, r 2,, r elírása: l 1 r 1 l 2 r 2 l r D=0, ahol D, l -k üggvéye a koordátákak, esetleg az dőek: l r 1,, r, t és Dr 1,, r, t a kéyszereltétel: l v D=0 A kéyszereltételek osztályozása: geometra vagy tegrálható, ha va olya r 1,, r, t, hogy l = r D= t r r t =0 = d dt r, 1 r,, 2 r, t r 1,, r, t =álladó r r t dt= r, r,, r, t=álladó 1 2 kematka, ha cs lye üggvéy Időüggés szempotjából: dőüggetle vagy stacoárus kéyszerek dőüggő vagy em stacoárus kéyszerek Mechaka redszer: tömegpotok: m 1, m 2,, m koordáták (3 db): r 1,, r sebességek: r 1, r 2,, r belső és külső erők: F 1, F 2,, F kéyszereltételek (r db): l v D =0,, r szabadság ok: =3 r Ha mde kéyszer geometra, akkor a mechaka redszer holoom redszer, egyébkét aholoom. Ha mde kéyszer dőüggetle, akkor a mechaka redszer szkleroom redszer, egyébkét reoom. Legegyszerűbb redszerek a szkleroom, holoom redszerek. Vrtuáls elmozdulás: r 1,, r (3 koordáta), ha kelégítk a l r =0,,r egyeletredszert. Magyarázat: és 3
4 l v D =0 / dt l v dt D dt=0 d r Ha d r kelégít a et egyeletredszert, akkor ez valód elmozdulás. Észrevétel: két valód elmozdulás külöbsége vrtuáls elmozdulás (ha dt közös, vagys az dőtartamok megegyezek) l d r D dt=0 1 / l d r ' D dt=0 l d r d r ' =0 r Ha a redszer szkleroom, akkor a valód és vrtuáls elmozdulások azoosak. Például: 1. Álló lejtő: l r=0, ahol l =1, tg,0 l merőleges a lejtőre a lejtő egyelete: x, y, z= x tg y=0 ívóelület l = x, y, z merőleges a lejtőre r a lejtő síkjába esk 2. Mozgó lejtő: r olya (em valód) elmozdulás, mtha a lejtő mozgása beagyott vola. Azaz az elmozdulás végtele gyorsa (dő élkül) következe be. 4
5 A damka általáos egyelete m 1, m 2,, m r 1,, r F 1, F 2,, F szabaderők Az -edk tömegpot mozgásegyelete: általába m r F m r = F K de. K = m r F kéyszererők Elv: K r =0 alapelv A tapasztalat szert a kéyszererők mukája vrtuáls elmozdulás sorá ulla. Egy üggvéy ívóelülete legye: x, y, z=0 r merőleges a elülethez tartozó l -ra l = merőleges a elületre r l r=0 Ha K r =0 K l K = r Ez az elv csak súrlódásmetese érvéyes, vagys a kéyszererők közé em tartozhat a súrlódás, ezért a szabaderők közé soroljuk. S= K A kéyszererők vrtuáls mukája ulla: F m r r =0 a damka általáos egyelete (DÁE) 5
6 Lagrage-éle elsőajú mozgásegyeletek A mozgás olyamá teljesüle kell a kéyszereltételekek. A kéyszereltételeket -val szorozva és összeadva, ezt az összeget a damka általáos egyeletéhez hozzáadva egy 3 tagú kejezést kapuk, amely ullával egyelő: r l r =0,, r ; r3 r l r =0 F r DÁE l m r r =0 3 tag A x 1, y 1, z 1, x 2,, z 3 kompoes közül csak 3 r üggetle koordáta lehet. A 3 tagot csoportosítsuk: 3 r üggetle kompoesre r üggő kompoesre Válasszuk meg 1,, r -eket úgy, hogy a üggő tagok md kesseek. r F l m r r üggetleek 3 r tag r F l m r r =0 üggőek r tag legye ulla A üggetle koordáták együtthatóak ekkor szükséges ulláak le. Ezzel mdg elérhető: m r = F l r,, r 3 egyelet r 1 t r t 1 r 3 r db smeretle, 3 r db egyelet l r D =0,,r r db egyelet A et 3 r db bekeretezett egyeletet Lagrage-éle elsőajú mozgásegyeletekek evezzük. Példa: mozgás yugvó lejtő: x =tg y ẋ tg ẏ=0 l =1, tg,0 m r=m g l l r=0 Lagrage-éle elsőajú mozgásegyeletek 6
7 Kompoesekbe: m ẍ=m g 1=m g m ÿ=m 0 tg = tg m z=m 0 0=0 ẋ tg ẏ=0 Derecáljuk a kéyszert még egyszer: ẍ tg ÿ=0 ẍ= ÿ tg m ẍ=m ÿ tg m ÿ= m ẍ tg = tg m ẍ= tg 2 =m g = m g 1tg 2 = m g cos2 m ẍ=m g m g cos 2 =m g 1 cos 2 =m g s 2 ÿ= ẍ tg = g s 2 =g s cos tg ẍ= g s s ÿ=g s cos z=0 K x = 1== m g cos 2 K y = tg=m g s cos K z = 0=0 Megjegyzés: jobb koordátázás, ha az x-tegely a lejtővel párhuzamos, az y-tegely pedg a lejtőre merőleges. 7
8 Lagrage-éle másodajú mozgásegyeletek A redszer legye holoom! Példa: matematka ga x 2 y 2 l 2 =0 2 x ẋ2 y ẏ=0 l r=0 l = x, y,0 x=l cos y=l s x 2 y 2 l 2 0 mert: l 2 cos 2 l 2 s 2 l 2 =l 2 cos 2 s 2 1 Tegyük el, hogy va olya q 1, q 2,,q koordáta (ú. általáos koordáták), hogy ezekkel kejezve az r 1,, r derékszögű koordátákat a kéyszereltételek azoossággá válak. q 1, q 2,, q r 1 =r 1 q 1, q 2,,q, t =3 r r =r q 1, q 2,, q, t,, l 2 1 r 1,, r, t=0 r 1,, r, t=0,, r r 1 q 1, q 2,, q, t,, r q 1, q 2,,q, t,, t 0 a q-k változása közbe s ulla marad q q q 0= = r 1 q r 1 q 1 r 1 q 1 q r 2 0= l r q q r egy vrtuáls elmozdulás r = d dt r q, q,, q r 1 2, t= q q r t r q = r q A sebességek általáos sebességek szert derecálháyadosa egyelő a koordáták általáos koordáták szert derecálháyadosával. A q-k az általáos koordáták, ha a üggvéyek elegedőe smák (többször olytoosa derecálhatóak), q -ok az általáos sebességek. Egyszerűe belátható a következő egyelőség s: d dt r q = r q 8
9 A et összeüggések segítségével a damka általáos egyeletéből megkaphatjuk az általáos koordáták dőüggését meghatározó derecálegyeleteket, az ú. Lagrage-éle másodajú mozgásegyeleteket: DÁE: bal oldal: F r = m r r =1 F r q Q általáos erő q = Q q jobb oldal (a et bekeretezett összeüggések elhaszálásával): r m r q q = m r r q q ={ d m r r dt q = { d 1 dt q 2 m r 2 1 q 2 m r 2} q = d T T dt q q q = m r r q } q = Q q Mvel az általáos koordáták üggetleek, ezért mde koordátára külö e kell álla az utóbb egyeletek d T T =Q dt q q,, db másodredű derecálegyelet Ezek az ú. Lagrage-éle másodajú mozgásegyeletek. A T mozgás eerga és a Q általáos erő kejezhető az általáos koordáták és az általáos sebességek segítségével. 9
9. HAMILTON-FÉLE MECHANIKA
9. HAMILTON-FÉLE MECHANIKA 9.. Legedre-éle traszormáció x x h x, p= p x x Milye x-él maximális? pl.= x alulról kovex h x =0: d p= dx x=x p a példába: p=x ; h= p x x Mekkora a maximuma? g p= p x p x p g=
RészletesebbenA pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata
6. év OTKA zárójeletés: Vezető kutató:kalszky Sádor OTKA ylvátartás szám T 4993 A pályázat címe: Rugalmas-képlékey tartószerkezetek topológa optmalzálásáak éháy külöleges feladata (Részletes jeletés) Az
Részletesebben8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k.
8. KIS REZGÉSEK STABIL EGYENSÚLYI HELYZET KÖRÜL 8.. A rezgések szétcsatolása harmoikus közelítésbe. Normálrezgések Egyesúlyi helyzet: olya helyzet, amelybe belehelyezve a redszert (ulla kezdősebességgel),
Részletesebben5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI-
5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI- FÉLE RELATIVITÁSI ELV m, m,,m r, r,,r r, r,, r 6 db oordáta és sebességompoes 5.. Dama Mozgásegyelete: m r = F F, ahol F jelöl a
RészletesebbenFüggvénygörbe alatti terület a határozott integrál
Függvéygörbe alatt terület a határozott tegrál Tektsük az üggvéyt a ; tervallumo. Adjuk becslést a görbe az tegely és az egyees között síkdom területére! Jelöljük ezt a területet I-vel! A becslést legegyszerűbbe
Részletesebben(1) Milyen esetben beszélünk tartós nyugalomról? Abban az esetben, ha a (vizsgált) test a helyzetét hosszabb időn át nem változtatja meg.
SZÉCHENYI ISTVÁN EGYETEM MECHNIK - STTIK LKLMZTT MECHNIK TNSZÉK Elmélet kérdések és válaszok egetem alapképzésbe (Sc képzésbe) résztvevő mérökhallgatók számára () Mle esetbe beszélük tartós ugalomról?
RészletesebbenJárattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat:
JÁRATTERVEZÉS Kapcsolatok szert: Sugaras, gaárat: Járattípusok Voalárat: Körárat: Targocás árattervezés egyszerű modelle Feltételek: az ayagáram determsztkus, a beszállítás és kszállítás dőpot em kötött
Részletesebben2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya
II RÉZ 2 EJEZE 2 Az együttműködő vllamoseerga-redszer teljesítméy-egyesúlya 2 A frekveca és a hatásos teljesítméy között összefüggés A fogyasztó alredszerbe a fogyasztók hatásos wattos teljesítméyt lletve
RészletesebbenA primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be,
6 A primitív üggvéy létezése A primitív üggvéy létezése Kitűzött eladatok. Határozd meg az a és b valós paraméterek értékét úgy hogy az : R ae + b üggvéyek létezze primitív üggvéye! >. Az : [ + [ + olytoos
RészletesebbenTartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése
3 4 Tartalomegyzék. BEVEZETÉS 5. A MÉRÉS 8. A mérés mt folyamat, fogalmak 8. Fotosabb mérés- és műszertechka fogalmak 4.3 Mérés hbák 8.3. Mérés hbák csoportosítása eredetük szert 8.3. A hbák megeleítés
RészletesebbenV. Deriválható függvények
Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája
RészletesebbenA paramétereket kísérletileg meghatározott yi értékekre támaszkodva becsülik. Ha n darab kisérletet (megfigyelést, mérést) végeznek, n darab
öbbváltozós regresszók Paraméterbecslés-. A paraméterbecslés.. A probléma megfogalmazása A paramétereket kísérletleg meghatározott y értékekre támaszkodva becsülk. Ha darab ksérletet (megfgyelést, mérést
RészletesebbenVASBETON ÉPÜLETEK MEREVÍTÉSE
BUDAPET MŰZAK É GAZDAÁGTUDOMÁY EGYETEM Építőmérök Kar Hdak és zerkezetek Taszéke VABETO ÉPÜLETEK MEREVÍTÉE Oktatás segédlet v. Összeállította: Dr. Bód stvá - Dr. Farkas György Dr. Kors Kálmá Budapest,.
RészletesebbenV. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL
86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )
RészletesebbenAzonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága
Azoos évleges értékű, htelesített súlyokból alkotott csoportok együttes mérés bzoytalasága Zeleka Zoltá* Több mérés feladatál alkalmazak súlyokat. Sokszor ezek em egyekét, haem külöböző társításba kombácókba
Részletesebben13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai
Tárcsák számítása A felületszerkezetek A felületszerkezetek típusa A tartószerkezeteket geometra méretek alapjá osztálozzuk Az eddg taulmáakba szereplı rúdszerkezetek rúdjara az a jellemzı hog a hosszuk
RészletesebbenFourier sorok FO 1. Trigonometrikus. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
Fourier sorok FO Trigoometrikus Fourier sorok FO Trigoometrikus redszer Defiíció: trigoometrikus redszer Az {, cos x, si x, cos x, si x, cos 3x, si 3x, } függvéyekből álló (végtele sok függvéyt tartalmazó)
RészletesebbenA Sturm-módszer és alkalmazása
A turm-módszer és alalmazása Tuzso Zoltá, zéelyudvarhely zámtala szélsőérté probléma megoldása, vagy egyelőtleség bzoyítása agyo gyara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölderféle
Részletesebben= λ valós megoldása van.
Másodredű álladó együtthatós lieáris differeciálegyelet. Általáos alakja: y + a y + by= q Ha q = 0 Ha q 0 akkor homogé lieárisak evezzük. akkor ihomogé lieárisak evezzük. A jobb oldalo lévő q függvéyt
RészletesebbenVII. A határozatlan esetek kiküszöbölése
A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely
RészletesebbenMolekulák elektronszerkezete - kv2n1p07/1 vázlat
Molekulák elektroszerkezete - kvp07/ vázlat Szalay Péter Eötvös Lorád Tudomáyegyetem, Kéma Itézet 0. szeptember 8. Tematka A Bor-Oppehemer közelítés. Az elektro-hullámfüggvéy közelítése; az eerga kfeezése
Részletesebben2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések
. REZGÉSEK.1. Harmonikus rezgések: Harmonikus erő: F = D x D m ẍ= D x (ezt a mechanikai rendszert lineáris harmonikus oszcillátornak nevezik) (Oszcillátor körfrekvenciája) ẍ x= Másodrendű konstansegyütthatós
RészletesebbenDebreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet
Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak
Részletesebbenképzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal
5. Komplex számok 5.1. Bevezetés Taulmáyaik sorá többször volt szükség az addig haszált számfogalom kiterjesztésére. Először csak természetes számokat ismertük, később haszáli kezdtük a törteket, illetve
RészletesebbenLaboratóriumi mérések
Laboratórum mérések. Bevezetı Bármlye mérés ayt jelet, mt meghatároz, háyszor va meg a méredı meységbe egy másk, a méredıvel egyemő, ökéyese egységek választott meység. Egy mérés eredméyét tehát két adat
RészletesebbenEGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a Z
Az érettségi vizsgára előkészülő taulók figyelmébe! EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z HALMAZON a x + b y c 5. Az egyeletredszer megoldása a Z halmazo (3. rész) a x + b y c A hivatkozások köyítése
RészletesebbenTömegpont-rendszer mozgása
TÓTH A: Mechaka/5 (kbővített óraválat) Tömegpot-redser mogása Boyolultságba a tömegpot utá követkeő és gyakorlat sempotból s ge fotos eset amkor több tömegpotból álló redsert ú külső tömegpot-redsert (rövdebbe:
Részletesebben2.10. Az elegyek termodinamikája
Kéma termodamka.1. z elegyek termodamkája fzka kéma több féle elegyekkel foglakozk, kezdve az deáls elegyektől a reáls elegyekg. Ha az deáls elegyek esetébe az alkotók közt kölcsöhatásokat elhayagoljuk,
RészletesebbenFeladatok és megoldások a 11. heti gyakorlathoz
Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.
Részletesebbenalapmátrix azon alapuló számítását. Az összefüggés igényli az L( A 1 esetére megadja a Wei-Norman egyenletet és a Φ (t) ) Lie-algebra A
Bíráló véleméy SzabóZoltá: A Geometrc Approach or the Cotrol o Swtched ad LPV Systems (Kapcsolt és LPV redszerek ráyítása geometra megközelítésbe) c. MTA doktor (DSc) értekezésről Az értekezés az ráyíthatóság,
RészletesebbenEmlékeztető: az n-dimenziós sokaság görbültségét kifejező mennyiség a Riemann-tenzor (Riemann, 1854): " ' #$ * $ ( ' $* " ' #µ
Emlékeztető: az -dimeziós sokaság görbültségét kifejező meyiség a Riema-tezor (Riema, 1854: ' ( ' $ ' #µ $ µ# ahol a ú. koexiós koefficiesek (vagy Christoffel-szimbólumok a metrikus tezor g # x $ kompoeseiből
Részletesebben(2) Határozzuk meg a következő területi integrálokat a megadott halmazokon: x sin y dx dy, ahol T : 0 x 1, 2 y 3.
. feladatsor () Határozzuk meg a következő területi itegrálokat a megadott téglalapoko: ( (x + y) dx dy, ahol T : x, y 3. ( T T x si y dx dy, ahol T : x, 2 y 3. (2) Határozzuk meg a következő területi
Részletesebbeni 0 egyébként ábra. Negyedfokú és ötödfokú Bernstein polinomok a [0,1] intervallumon.
3. Bézer görbék 3.1. A Berste polomok 3.1. Defícó. Legye emegatív egész, tetszőleges egész. A ( ) B (u) = u (1 u) polomot Berste polomak evezzük, ahol ( ) = {!!( )! 0, 0 egyébkét. A defícóból közvetleül
RészletesebbenEGY FÁZISÚ TÖBBKOMPONENS RENDSZEREK: AZ ELEGYEK KÉPZDÉSE
EG FÁZISÚ ÖBBOMPONENS RENDSZERE: AZ ELEGE ÉPZDÉSE AZ ELEGÉPZDÉS ERMODINAMIÁJA: GÁZO Általáos megfotolások ülöböz kéma mség komoesek keveredésekor változás törték a molekulárs kölcsöhatásokba és a molekulák
RészletesebbenSíkbeli csuklós szerkezetek kiegyensúlyozásának néhány kérdése
íbel culó zeezete egyeúlyozáá éáy édée íbel culó zeezete egyeúlyozáá éáy édée DR BENKŐJÁNO gátudoáy Egyete Gödöllő Mg Gépt Itézet gyoozgáú gépzeezete tevezéée foto lépée z egyelete, ezgéete üzeet bztoító
RészletesebbenOptika. sin. A beeső fénysugár, a beesési merőleges és a visszavert, illetve a megtört fénysugár egy síkban van.
Optika Mi a féy? Látható elektromágeses sugárzás. Geometriai optika (modell) Féysugár: ige vékoy párhuzamos féyyaláb Ezt a modellt haszálva az optikai jeleségek széles köréek magyarázata egyszerű geometriai
Részletesebben10.M ALGEBRA < <
0.M ALGEBRA GYÖKÖS KIFEJEZÉSEK. Mutassuk meg, hogy < + +... + < + + 008 009 + 009 008 5. Mutassuk meg, hogy va olya pozitív egész szám, amelyre 99 < + + +... + < 995. Igazoljuk, hogy bármely pozitív egész
Részletesebben1. Gyökvonás komplex számból
1. Gyökvoás komplex számból Gyökvoás komplex számból Ismétlés: Ha r,s > 0 valós, akkor r(cosα+isiα) = s(cosβ+isiβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete: ( s(cosβ+isiβ)
RészletesebbenMÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011
MÉRÉSTECHNIKA DR. HUBA ANTAL c. egy. taár BME Mechatroka, Optka és Gépészet Iformatka Taszék 0 Rövde a tárgyprogramról Előadások tematkája: Metrológa és műszertechka alapok Mérés adatok kértékelése Időbe
Részletesebben18. Differenciálszámítás
8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke
RészletesebbenGAZDASÁGI MATEMATIKA 1. ANALÍZIS
SZENT ISTVÁN EGYETEM GAZDASÁGI, AGRÁR- ÉS EGÉSZSÉGTUDOMÁNYI KAR Dr. Szakács Attila GAZDASÁGI MATEMATIKA. ANALÍZIS Segédlet öálló mukához. átdolgozott, bővített kiadás Békéscsaba, Lektorálták: DR. PATAY
RészletesebbenGEOMETRIAI OPTIKA - ÓRAI JEGYZET
ε ε hullámegelet: Mérökizikus szak, Optika modul, III. évolam /. élév, Optika I. tárg GEOMETRIAI OPTIKA - ÓRAI JEGYZET (Erdei Gábor, Ph.D., 6. AJÁNLOTT SZAKIRODALOM: ELMÉLETI ALAPOK Maxwell egeletek E(
RészletesebbenA FUNDAMENTÁLIS EGYENLET KÉT REPREZENTÁCIÓBAN. A függvény teljes differenciálja, a differenciális fundamentális egyenlet: U V S U + dn 1
A FUNDAMENÁLIS EGYENLE KÉ REPREZENÁCIÓBAN A differeciális fudametális egyelet A fudametális egyelet a belső eergiára: UU (S V K ) A függvéy teljes differeciálja a differeciális fudametális egyelet: U S
Részletesebben9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA
9. LINÁRIS TRANSZFORMÁCIÓK NORMÁLALAKA Az 5. fejezetbe már megmeredtü a leár trazformácóal mt a leár leépezée egy ülölege típuával a 6. fejezetbe pedg megvzgáltu a leár trazformácó mátr-reprezetácóját.
Részletesebben3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.
3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.
RészletesebbenHidrogén színképének vizsgálata rácsos spektrométerrel
Bevezetés Hidrogé szíképéek vizsgálata rácsos spektrométerrel Már régóta ismert jeleség, hogy külöéle ayagokat magas hőmérsékletű lágba helyezve a lág szíébe az adott ayagra jellemző elváltozás tapasztalható.
RészletesebbenKoordinátageometria összefoglalás. d x x y y
Koordiátageometria összefoglalás Vektorok A helyvektor hossza Két pot távolsága r x y d x x y y AB A két potot összekötő vektort megkapjuk, ha a végpot koordiátáiból kivojuk a kezdőpot koordiátáit. Vektor
Részletesebben1.2. Ütközés Ütközési modell, alapfeltevések Ütközés 3
.2. Ütközés 3 alkalmazásához azoba szükséges a kiematika ismerete, a kietikus és poteciális eergia megfelelő kifejezése és a tehetetleségi yomaték számítása, valamit helyese kell alkalmazi a differeciálási
Részletesebben1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója
Poliomok és egyeletek Jaroslav Zhouf Első rész Lieáris egyeletek A lieáris egyelet defiíciója A következő formájú egyeleteket: ahol a, b valós számok és a + b 0, a 0, lieáris egyeletek hívjuk, az ismeretle
RészletesebbenEUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei
Eukldes tér, metrkus tér, ormált tér, magasabb dmeós terek vektoraak söge, eek követkemée Metrkus tér Defícó. A H halmat metrkus térek eveük, ha va ola, metrkáak eveett m: H H R {0} függvé, amelre a követkeők
RészletesebbenMegjegyzés: Amint már előbb is említettük, a komplex számok
1 Komplex sámok 1 A komplex sámok algeba alakja 11 Defícó: A komplex sám algeba alakja: em más, mt x y, ahol x, y R és 1 A x -et soktuk a komplex sám valós éséek eve, míg y -t a komplex sám képetes (vagy
RészletesebbenORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet
RészletesebbenXXVI. Erdélyi Magyar Matematikaverseny Zilah, február
Miisterul Educaţiei Națioale și Cercetării Știițifice Subiecte petru Etapa aţioală a Cocursului de Matematică al Liceelor Maghiare di Româia XXVI. Erdélyi Magyar Matematikaversey Zilah, 06. február 4..
Részletesebben1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3
Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)
RészletesebbenDiszkrét matematika II., 3. előadás. Komplex számok
1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,
RészletesebbenValós függvénytan. rendezett pár, ( x, valós számok leképezése az csoportra. függvény mint előírás, pl. y x azt jelenti, hogy x
II. Valós függvéyta Alapvetőe ebbe a fejezetbe s elem matematka smeretekről lesz szó, de az smeretek alapos, készségsztű begyakorlása (mely esetleg túlmegy az tt közölt feladatok megoldásá) elegedhetetleek
RészletesebbenStatisztika. Eloszlásjellemzők
Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az
RészletesebbenKétváltozós függvények
Kétváltozós üggvéek Tartalomjegzék Többváltozós üggvéek... Kétváltozós üggvéek... Nevezetes elületek... 3 Forgáselületek... 3 Kétváltozós üggvé határértéke... 4 Foltoos kétváltozós üggvéek... 6 A parciális
RészletesebbenHajtástechnika \ Hajtásautomatizálás \ Rendszerintegráció \ Szolgáltatások MOVITRAC B. Üzemeltetési utasítás. Kiadás: 2009. 05.
Hajtástechka \ Hajtásautomatzálás \ Redszertegrácó \ Szolgáltatások MOVITRAC B Kadás: 2009. 05. 16810961 / HU Üzemeltetés utasítás SEW-EURODRIVE Drvg the world Tartalomjegyzék 1 Fotos tudvalók... 5 1.1
Részletesebben3D számítógépes geometria és alakzatrekonstrukció
3D számítógépes geometra és alakzatrekostrukcó b Háromszöghálók - algortmusok http://cgtbmehu/portal/ode/3 https://wwwvkbmehu/kepzes/targyak/viiima0 Dr Várady Tamás, Dr Salv Péter BME, Vllamosmérök és
RészletesebbenGyakorló feladatok II.
Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,
RészletesebbenValószínűségszámítás összefoglaló
Vlószíűségszámítás összefoglló I. Feezet ombtor ermutácó Ismétlés élül ülöböző elem lehetséges sorrede! b Ismétléses em feltétleül ülöböző elem összes ülöböző sorrede!... hol z zoos eleme gyorság!!...!
Részletesebben(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1
. Bevezető. Oldja meg az alábbi egyeleteket: (a cos x + si x + cos x si x = (b π si x = x π 4 x 3π 4 cos x (c cos x + si x = si x (d x 6 3x = 0 (e x + x = x (f x + 5 + x = 8 (g x + + x + + x + x + =..
RészletesebbenA függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,
l.ch FÜGGVÉNYSOROZATOK, FÜGGVÉNYSOROK, HATVÁNYSOROK Itt egy függvéysorozat: f( A függvéysorozatok olyaok, mit a valós számsorozatok, csak éppe a tagjai em valós számok, 5 haem függvéyek, f ( ; f ( ; f
Részletesebben(arcsin x) (arccos x) ( x
ALAPDERIVÁLTAK ( c ) (si ) cos ( ) (cos ) si ( ) ( ) ( tg) cos ( e ) e ( ctg ) si ( a ) a l a ( sh) ch (l ) ( ch) sh (log a ) ( th) l a ch (arcsi ) (arccos ) ( arctg ) DERIVÁLÁSI SZABÁLYOK. ( c ) c. c
RészletesebbenSzoldatics József, Dunakeszi
Kstérség tehetséggodozás Rekurzív soroztok Szoldtcs József, Dukesz Npjkb egyre több verseye jelek meg rekurzív sorozt. Ezek megoldásához d ötleteket ez z elődás, A feldtok csoportosítv vk megoldás módszerek
RészletesebbenA Hamilton-Jacobi-egyenlet
A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P
Részletesebben10 A TRANSZPORTFOLYAMATOK ÁLTALÁNOS JELLEMZÉSE
0 A TRANSZPORTFOLYAMATOK ÁLTALÁNOS JLLMZÉS gy termodamka redszer állapota lehet dőbe álladó, vagy változó. Az dőbe álladó redszereket két agy csoportra oszthatuk: egyesúlyba lévő redszerekre és stacoárus
RészletesebbenMérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1
Mérés adatok feldolgozása 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel
Részletesebben( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) FELADATOK Taylor- (Maclaurin-) sorok, hibabecslés
FELADATOK Taylor- (Maclauri- soro, hibabecslés Határozzu meg az e üggvéy -örüli Taylor-sorát! Adju meg a hatváysor overgecia sugarát, ill. overgecia halmazát! Számítsu i a deriváltaat a -helye: e, e, e,
RészletesebbenA G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk:
Kocsis Júlia Egyelőtleségek 1. Feladat: Bizoytsuk be, hogy tetszőleges a, b, c pozitv valósakra a a b b c c (abc) a+b+c. Megoldás: Tekitsük a, b és c számok saját magukkal súlyozott harmoikus és mértai
RészletesebbenSzámsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.
Számsorozatok 2015. december 22. 1. Alapfeladatok 1. Feladat: Határozzuk meg az a 2 + 7 5 2 + 4 létezik. sorozat határértékét, ha Megoldás: Mivel egy tört határértéke a kérdés, ezért vizsgáljuk meg el
RészletesebbenKomplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0
Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások
RészletesebbenPÉLDÁK ERŐTÖRVÉNYEKRE
PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,
RészletesebbenMatematika B4 I. gyakorlat
Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a
RészletesebbenMegoldás a, A sebességből és a hullámhosszból számított periódusidőket T a táblázat
Fzka feladatok: F.1. Cuam A cuam hullám formájáak változása, ahogy a sekélyebb víz felé mozog (OAA) (https://www.wdowsuverse.org/?page=/earth/tsuam1.html) Az ábra, táblázat a cuam egyes jellemzőt tartalmazza.
RészletesebbenHajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011
1 Molár-Sáska Gáboré: Hajós György Verseyre javasolt feladatok SZIE.YMÉTK 011 1. Írja fel a számokat 1-tıl 011-ig egymás utá! Határozza meg az így kapott agy szám 0-cal való osztási maradékát!. Az { }
RészletesebbenPályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.
Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika
RészletesebbenSorozatok, határérték fogalma. Függvények határértéke, folytonossága
Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt
RészletesebbenValószínűségszámítás. Ketskeméty László
Valószíűségszámítás Ketskeméty László Budapest, 996 Tartalomjegyzék I. fejezet VALÓSZÍNŰSÉGSZÁMÍTÁS 3. Kombatorka alapfogalmak 4 Elleőrző kérdések és gyakorló feladatok 6. A valószíűségszámítás alapfogalma
RészletesebbenSzéki Hírek A Magyarszékért Egyesület kiadványa
Szék Hírek A Magyarszékért Egyesület kadáya X. éfolyam, 1. szám Karácsoy a árakozással tel szeretet üepe December 17-é fatalok adtak hagerseyt a templomba. K kegyetleül süöltött a hdeg szél, míg be melegséggel
RészletesebbenStabilitás Irányítástechnika PE MI_BSc 1
Stabilitás 2008.03.4. Stabilitás egyszerűsített szemlélet példa zavarás utá a magára hagyott redszer visszatér a yugalmi állapotába kvázistacioárius állapotba kerül végtelebe tart alapjelváltás Stabilitás/2
RészletesebbenMINŐSÉGIRÁNYÍTÁSI ELJÁRÁS SZERVEZETI EGYSÉGEKEN BELÜLI DÖNTÉSI FOLYAMATOK SZABÁLYOZÁSA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS SZERVEZETI EGYSÉGEKEN BELÜLI DÖNTÉSI FOLYAMATOK SZABÁLYOZÁSA ÁR-01 OLDAL: 1. 1. AZ ELJÁRÁS CÉLJA Szabályoz, hogy a szervezete belül kk, hol és mlye dötéseket hozak meg. Beazoosíta,
RészletesebbenS ( ) függvényre. . Az 1), 3) feltételekbõl a feltételek száma : ( l + 1) n ( l 1)
INE o egye [ ] IR I [ ] ( : és < < < z tervllum egy elosztás Deíó: Az :[ ] IR üggvéyt l eoú sple- evezzü C ( l I l Iterpoláós sple- evezzü egy ( : [ ] IR üggvéyre ( ( egjegyzés: Cs terpoláós sple-l ogu
RészletesebbenAz anyagáramlás intenzitása
Az ayagáramlás teztása Az ayagáramlás teztása () alatt meghatározott dőegység (dőtervallum) alatt (t) mozgatott ayagmeységet (M) értü. M (g, t, E, db, stb./ dőegység) t Szaaszos műödésű ayagmozgató redszere
RészletesebbenHegedős Csaba NUMERIKUS ANALÍZIS
Hegedős Csaba NUMERIKUS ANALÍZIS Jegyzet ELE, Iformata Kar Hegedős: Numerus Aalízs ARALOM Gép szám, hbá 3 Normá, egyelıtlesége 9 3 A umerus leárs algebra egyszerő traszformácó 6 4 Mátro LU-felbotása, Gauss-Jorda
RészletesebbenLineáris programozás
Lieáris progrmozás Lieáris progrmozás Lieáris progrmozás 2 Péld Egy üzembe 4 féle terméket állítk elő 3 féle erőforrás felhszálásávl. Ismert z erőforrásokból redelkezésre álló meyiség (kpcitás), termékek
Részletesebben11. MEREV TESTEK MECHANIKÁJA
. MEREV TESTEK MECHANIKÁJA.. Merev test defiíciój Oly test, melyek bármely két potj közti távolság mozgás folymá álldó. Modell: Merev potredszer: m,, m, r,, r A tömegpotokt kössük össze súlytl merev rudkkl.
Részletesebben2. ALGEBRA ÉS SZÁMELMÉLET
Szkközépiskol 9. osztály Felkészülési jvslt jvítóvizsgár Véges, végtele, üres hlmz oglm Két hlmz egyelősége Részhlmz, vlódi részhlmz oglm Uiverzum, komplemeterhlmz Hlmzműveletek (uió, metszet, külöbség)
RészletesebbenKvantum párhuzamosság Deutsch algoritmus Deutsch-Jozsa algoritmus
LOGO Kvatum párhuzamosság Deutsch algoritmus Deutsch-Jozsa algoritmus Gyögyösi László BME Villamosméröki és Iormatikai Kar Bevezető Kvatum párhuzamosság Bármilye biáris üggvéyre, ahol { } { } : 0, 0,,
Részletesebben1. Gyors folyamatok szabályozása
. Gyor olyamatok zabályozáa Gyor zabályozá redzerekrl akkor bezélük, ha az ráyított olyamat dálladó máoder, agy az alatt agyágredek. gyor olyamatok eetébe a holtd általába az ráyítá algortmu megalóítááál
RészletesebbenBizonyítások. 1) a) Értelmezzük a valós számok halmazán az f függvényt az képlettel! (A k paraméter valós számot jelöl).
) a) Értelmezzük a valós számok halmazá az f függvéyt az f x = x + kx + 9x képlettel! (A k paraméter valós számot jelöl) ( ) Számítsa ki, hogy k mely értéke eseté lesz x = a függvéyek lokális szélsőértékhelye
RészletesebbenSorozatok A.: Sorozatok általában
200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,
RészletesebbenFolytonos idejű rendszerek stabilitása
Folytoos idejű redszerek stabilitása Összeállította: dr. Gerzso Miklós egyetemi doces PTE MIK Műszaki Iformatika Taszék 205.2.06. Itelliges redszerek I. PTE MIK Mérök iformatikus BSc szak Stabilitás egyszerűsített
RészletesebbenRegresszió számítás. Mérnöki létesítmények ellenőrzése, terveknek megfelelése. Geodéziai mérések pontok helyzete, pontszerű információ
Regresszó számítás Mérök létesítméek elleőrzése, terekek megfelelése Deformácózsgálat Geodéza mérések potok helzete, potszerű formácó Leárs regresszó Regresszós sík Regresszós göre Legkse égzetek módszere
RészletesebbenGeometriai vagy kinematikai természetű feltételek: kötések vagy. kényszerek. 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső
Kényszerek Geometriai vagy kinematikai természetű feltételek: kötések vagy kényszerek. Példák: 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső felületén mozog. Kényszerek Geometriai vagy
RészletesebbenALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.
ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az
Részletesebben1. Írd fel hatványalakban a következõ szorzatokat!
Számok és mûveletek Hatváyozás aaaa a a darab téyezõ a a 0 0 a,ha a 0. Írd fel hatváyalakba a következõ szorzatokat! a) b),,,, c) (0,6) (0,6) d) () () () e) f) g) b b b b b b b b h) (y) (y) (y) (y) (y)
RészletesebbenBacktrack módszer (1.49)
Backtrack módszer A backtrack módszer kombatorkus programozás eljárás, mely emleárs függvéy mmumát keres feltételek mellett, szsztematkus kereséssel. A módszer előye, hogy csak dszkrét változókat kezel,
RészletesebbenProgramozási tételek felsorolókra
Progrozás tételek elsorolókr Összegzés Feldt: Adott egy E-bel eleeket elsoroló t obektu és egy :E H üggvéy. A H hlzo értelezzük z összedás sszoctív bloldl ullelees űveletét. Htározzuk eg üggvéyek t eleehez
Részletesebben