Kétváltozós függvények

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Kétváltozós függvények"

Átírás

1 Kétváltozós üggvéek Tartalomjegzék Többváltozós üggvéek... Kétváltozós üggvéek... Nevezetes elületek... 3 Forgáselületek... 3 Kétváltozós üggvé határértéke... 4 Foltoos kétváltozós üggvéek... 6 A parciális deriváltak... 7 A parciális deriváltak geometriai jeletése... 7 Parciális derivált üggvé... 8 Kétváltozós üggvé deriváltja (gradies vektor)... 8 A gradies vektor létezéséek elégséges eltétele... A diereciálhatóság geometriai jeletése... Kétváltozós üggvé irámeti deriváltja... Veges másodredű parciális deriváltak egelősége... A kétváltozós üggvé lokális szélsőértéke... 3 A szélsőérték létezéséek szükséges eltétele... 3 A szélsőérték létezéséek elégséges eltétele... 3 A szélsőérték jellege... 4 A kétváltozós üggvé tartomái szélsőértéke... 7

2 Többváltozós üggvéek Lege D eg dimeziós pothalmaz, és egértelmű hozzáredelés, mel mide D dimeziós pothoz eg valós u számot redel.,,... Jelölése: u,,..., a üggvé az értelmezési tartomáa D. Ha D kétdimeziós, akkor kétváltozós, a szokásos jelölés z,, ha D három dimeziós akkor három változós, a szokásos jelölés u,, z Ezekkel a speciális esetekkel oglalkozuk. Kétváltozós üggvéek Geometriai iterpretáció A z, üggvé geometriai iterpretációját, hasolóa az egváltozós üggvéek graikojához, a háromdimeziós Descartes koordiátaredszerbe úg kapjuk, hog az, síkba az (,) koordiátájú potokhoz az által hozzáredelt z értéket mérjük el merőlegese. Az,, (, ) megelelője. Ha (, ) oltoos (lásd később) akkor ezt elületek modjuk. potok által meghatározott alakzat a üggvé geometriai Szitvoalak Sokszor a elületet ehéz elképzeli. Ebbe segíteek a koordiáta síkokkal való metszetgörbék és a szitvoalak. Deiíció: A z C, síkkal párhuzamos síkak és a elületek a egeletű, metszésvoalát szitvoalak evezzük. Segíteek a üggvét elképzeli. Ha a szitvoalakat az, síkra vetítjük, akkor két dimezióba is ábrázolhatjuk a elületet mit a domborzati térképe szokás.

3 Nevezetes elületek Forgásparaboloid, az z, és a z, koordiátasíkkal való metszetei parabolák, szitvoalai kocetrikus körök, Egelete: Hiperbolikus paraboloid, Ha az Egelete: egeletű, z koordiátasíkkal metszük el a elületet, akkor a metszetgörbe egelete z, ha az z, koordiátasíkkal egeletű metszük el a elületet, akkor a metszetgörbe egelete z, Ha az Ha z egeletű síkkel metszük el a elületet, akkor a metszetgörbe egelete z, síkkal párhuzamos egeletű hiperbola Forgáselületek Ha az síkbeli z ( u) orgáselület egelete z Nevezetes orgáselületek egeletű görbét a z-tegel körül megorgatjuk, a kapott Félgömb Egelete: z R Forgási hiperboloid (két köpeű) Egelete: z Forgási hiperboloid (eg köpeű) Egelete: Kúp Egelete: z z 3

4 Ábrázoljuk a z z elületet és határozzuk meg a 75 síkkal való metszésvoalát. (szitvoal) Határozzuk meg az, értelmezési tartomáát : Az (, ) értelmezési tartomáa az a tartomá, ahol Kétváltozós üggvé határértéke Az egváltozós üggvéek határértékére voatkozó lehetséges deiíciók közül a következőt általáosítjuk: lim A, akkor és csak akkor, ha mide potsorozatra Általáosítva: (, ) (, ) lim,, A A, akkor és csak akkor, ha mide (, ) (, ) A potsorozatra A deiíció közvetle következméei Függvéek kostas-szorosáak, összegéek, szorzatáak, háadosáak (ha a evező em ulla), racioális kitevős hatvááak a határértéke a határértékek kostas-szorosa, összege, szorzata, háadosa, racioális kitevős hatváa. 4

5 Létezik-e a következő üggvé határértéke a (-,3) potba és ha ige mei? 3 (, ) 45,ahol a evező em ulla, ott a létezik határértéke és 3 ( ) 33 5 lim 4 5 4( ) (, ) (,3). Létezik-e ugaeek a üggvéek a határértéke a (,) potba, és ha ige mei? 3 Az 45 üggvéek ics határértéke (,) potba, mert létezik két külöböző potsorozat (rövide út), mel meté közelítve az origóba külöböző határértéket kapuk. Pl. az - tegele közelítve az origóba, azaz (,) (,) 3 eseté 4 5 az - tegele közelítve az origóba, azaz (, ) (,) 3 eseté , Létezik-e határértéke az origóba az üggvéek Nem létezik, mert az tegel meté a határértéke, hisze lim lim, egees meté lim lim (,) (,) (,) (,) de az (, ) (,) (, ) (,) 3. Létezik-e határértéke az origóba az, Láthatjuk, hog mid a tegelek meté, mid az üggvéek azt sejtjük, hog va határértéke. Ezt a következőképpe láthatjuk be: egees meté a határértéke, 5

6 Eg tetszőleges segítségével: melek a Azaz, hoz tartó, potsorozatot elírható polár-koordiáták r cos, és r si, -hoz tartásához elegedő az r eltétel a sorozattól üggetleül. 3 r cos r si r cos si r (, ) (,) cos si r r r r r r lim lim lim lim cos si Jó taács: ha ugaezt a módszert megpróbáljuk alkalmazi az előző példáál, akkor r cos r si r cos r si r cos si (, ) (,) r r r r lim lim lim lim cos si mert a határérték, ha 4 cos si si, akkor pedig, stb ügg a sorozattól. Ha akkor a limes Foltoos kétváltozós üggvéek Ha a z, potba és a kettő egelő, akkor ott a üggvé oltoos,, üggvéek létezik helettesítési értéke és határértéke eg azaz ha lim,, (, ) (, ). Foltoos-e a következő üggvé:, ha (, ) (,) ha (, ) (,) potba. : Nem oltoos, hisze ics határértéke az origóba (lásd:5. oldal. példa) Foltoos-e a következő üggvé:, ha (, ) (,) ha (, ) (,) : Ige, oltoos, mert a üggvéek va határértéke (lásd:5. oldal 3. példa) és az megegezik a helettesítési értékével. 6

7 A parciális deriváltak Az szeriti parciális derivált deiíciója: Az szeriti parciális derivált deiíciója:,, h, (, ) lim, h h,, h, lim h h (, ) Vagis a kétváltozós üggvé egik változóját kostasak tekitve a másik változója szerit deriváljuk. A parciális deriváltak geometriai jeletése Az, üggvé, geometriai jeletése a z, ( z, potbeli változó szeriti parciális deriváltjáak a elület és az egeletű sík metszésvoala görbe) éritőjéek a meredeksége. Az, üggvé, geometriai jeletése a z, ( z, potbeli változó szeriti parciális deriváltjáak a elület és az egeletű sík metszésvoala görbe) éritőjéek a meredeksége. 7

8 Parciális derivált üggvé Ha tetszőleges (, ) potba képezzük a z, változó szeriti parciális deriváltját, akkor az változó szeriti parciális derivált üggvét kapjuk (ahol létezik) ( h, ),, lim, szokásos jelölés még h h Ha tetszőleges (, ) potba képezzük a z z, vag z, változó szeriti parciális deriváltját, akkor az változó szeriti a parciális derivált üggvét kapjuk (ahol létezik) (, h),, lim, szokásos jelölés még h h, z vag z Határozzuk meg a z si, z si üggvé és szeriti parciális derivált üggvéeit! z cos Határozzuk meg a z si üggvé és szeriti parciális derivált üggvéeit! z cos, z cos Határozzuk meg a z üggvé és szeriti parciális derivált üggvéeit! z l, mert szerit hatváüggvé, z, mert szerit epoeciális üggvé Határozzuk meg a z cos ( si( )) z cos üggvé és szeriti parciális derivált üggvéeit!, mert szerit szorzatüggvé, z ( si( )), mert szerit em szorzat üggvé, hisze kostas. Kétváltozós üggvé deriváltja (gradies vektor) Deiíció: 8

9 A üggvé z, koordiátákból alkotott vektor: grad Deiíció: gradiese eg adott potba a parciális deriváltakból, mit (, ), (, ) Az, kétváltozós üggvé diereciálható az, létezik a gradies vektora. Azaz,, ( ),( ) grad, potba (totálisa), ha a közelítőleg egelő itt azt jeleti, hog a két oldal eltérése a megváltozás hosszával osztva ullához tart. Tétel Ha eg kétváltozós üggvé diereciálható eg potba, akkor ott oltoos. Bizoítás vázlat,, ( ),( ), mert ( ),( ), grad, a jobboldal ullához tart ha (, ) (, ) amiből azoal következik a oltoosság. Megjegzés, miatt a baloldal is tart ullához, Abból, hog eg üggvéek létezek a parciális deriváltjai, em következik, hog diereciálható. Például, a következő üggvéek az origóba létezik mid mid szerit a parciális deriváltja és midkettő, de em diereciálható, hisze még csak határértéke sics az origóba. Ez a üggvé léegébe z, vagis az, meté em, haem a üggvé értéke. sík csak az -tegel és az -tegel 9

10 A gradies vektor létezéséek elégséges eltétele Tétel (bizoítás élkül): A gradies vektor létezéséek elégséges eltétele, ha az adott potba a parciális derivált üggvéek oltoosak. A diereciálhatóság geometriai jeletése Ha az, kétváltozós üggvé diereciálható az, a z, elületek létezik éritő síkja, melek egelete zz (, )( ) (, )( ) Tehát: Az, üggvé P,,, (, ), (, ), Bizoítás vázlat potba (totálisa), akkor potbeli éritősíkjáak a ormál vektora Ha a üggvé diereciálható, akkor a üggvé megváltozása közel lieáris, azaz,, ( ),( ) grad, másképpe írva z z (, )( ) (, )( ), ahol az éritősík egelete: zz (, )( ) (, )( ) Adjuk meg az, 9 egeletét! üggvé, potjába az éritősík Az éritősík ormálvektora: (, ), (, ),,,, 4, eg potja P, (,),,, (,,4), tehát az éritősík egelete:

11 z 4 4, azaz 4 z 4 Kétváltozós üggvé irámeti deriváltja Deiíció: Az, üggvé e irába vett irámeti deriváltjáak evezzük a következő határértéket: Azaz az ( eh, eh),, lim h h e potból eg előre rögzített egségvektor e e, e, ézzük a üggvéérték megváltozását és íg képezzük a ( e ) iráába ( e h, e h), külöbségi háadost, majd eek vesszük a határértékét midő a megváltozás ullához tart. h Szokásos jelölés még: e Tétel Ha létezik a üggvé gradiese, akkor az irámeti derivált a gardies vektor és a megadott irába mutató egségvektor skaláris szorzata:, Határozzuk meg az deriváltját a P, potba! e = grad e üggvé v ( 3,4) iráába eső irámeti Az irámeti deriválthoz szükséges a gradies vektor az adott potba és eg egség hosszú vektor mel a keresett irába mutat. grad,, grad 4,4 (,) Tekitve, hog v ( 3) 4 ) 5, az iráába mutató egségvektor 3 4 e, 5 5 Tehát grad e e ,4, e , azaz

12 Határozzuk meg az, irámeti deriváltját a 5, 3 P potba! üggvé 3 5 egees iráába eső Az irámeti deriválthoz szükséges a gradies (ha létezik) az adott potba és eg egség hosszú vektor mel a keresett irába mutat (,) 4 5, Az egees egeletéek átalakításával, (,) látható, 3 3, grad 4,8 3 hog az egees meredeksége m= és az egees iráába mutató vektor v ( 3,), 3 a szükséges egségvektor az irámeti derivált tehát : v 3 e, v, grad e 4,8, e Tétel A gradies a üggvé legagobb övekedéséek iráába mutat. Ez azt jeleti, hog az irámeti derivált a gardies vektor iráába a legagobb! Ekkor az irámeti derivált értéke a gardies vektor hosszával egelő. Bizoítás grad e e, grad e grad e cos, ahol a vektorok szöge. A skaláris szorzat akkor a legagobb, ha a két vektor által bezárt szög, hisze ekkor a szög kosziusza. Ekkor tehát grad e grad e grad Veges másodredű parciális deriváltak egelősége

13 Tétel: (Youg tétele) : Ha a z, üggvéei az A a, b pot A totálisa diereciálhatók, akkor a, b a b kétváltozós üggvé elsőredű parciális derivált I körezetébe létezek és a üggvé az A potba., Megjegzés. A parciális deriváltak oltoossága elégséges eltétele a üggvé totális diereciálhatóságáak. Tehát az is igaz, hog ha a másodredű parciális derivált üggvéek oltoosak, akkor a veges másodredű deriváltak egelők, azaz értékük em ügg a deriválás sorredjétől, vagis (, ), A kétváltozós üggvé lokális szélsőértéke Deiíció A z, üggvéek az, potak ola körezete, melbe az z,, potba lokális maimuma va, ha létezik az A z, üggvéek az, potak ola körezete, melbe az z,, a legagobb érték, potba lokális miimuma va, ha létezik az a legkisebb érték, A szélsőérték létezéséek szükséges eltétele A lokális szélsőérték (maimum vag miimum) létezéséek szükséges eltétele: (, ), (, ), grad Idoklás Ha a üggvéek lokális szélsőértéke va,, A parciális deriváltak geometriai jeletéséből következik, hog ha a üggvé diereciálható, azaz létezik ott az éritősíkja, akkor abba a potba (, ), (, ), -ba, akkor mide elületi görbéek is. grad, azaz az éritősík vízszites, ormálvektora párhuzamos a z-tegellel, mivel (, ), (, ), () Mide potba a gradies merőleges a poto áthaladó szitvoalra. A szélsőérték létezéséek elégséges eltétele A lokális szélsőérték (maimum vag miimum) létezéséek elégséges eltétele:,,,, 3

14 Ha em teljesül, akkor ics szélső értéke a üggvéek, akkor eregpotja va. Bizoítás élkül A szélsőérték jellege A szélsőérték jellegét (maimum vag miimum) az, állapíthatjuk meg. ( determiás D>) és előjele alapjá előjele midig megegezik abba a potba ahol eti Ha, akkor a üggvéek miimuma va, ha maimuma va. Megjegzés:,, hisze akkor D lee., akkor Hol va lokális szélsőértéke a következő üggvéek? (, ) 4 e 8 4 e e e 8 8 e e e e e, e , vag, e 4 4, vag A megoldásokra:.. 3. és, és 4 4 4,, és 4 4, 4

15 A megoldások:,,,,,,,,, Tehát sorra kell vei ezeket a potokat és ki kell számoli D determiás értékét. Megézi, hog D= teljesül-e. Ha em, akkor ics szélső értéke a üggvéek, akkor eregpotja va. e e e e 8 4 e e e e e e e e e e e ( ) ( ) e e e e e e Az deriváltat már eleslegese számoltuk ki, mert a Youg tétele szerit megegezik -vel. Vizsgáljuk meg a D értékét azokba a potokba ahol a parciális deriváltak ullák.. (,) 4, (,) e , (,) e ,, e 6 4 Tehát D= üggvéek.. (,),,,, 8 6,, vagis va lokális szélsőértéke a 5

16 (,) e 8 4 e 8 4 6e 4, (, ) e e 8 6e 4, 3 3,, e 6 4 Tehát D=,,,, 6e 6e,, vagis va lokális szélsőértéke a üggvéek az (,) potba. Tekitettel arra, hog (,), ezért itt a üggvéek lokális maimuma va. 3. (,) (,) e 4 6e (,) e 4 4e,, Tehát D=,,,, 6e 4e üggvéek az (,) potba., vagis ics lokális szélsőértéke a 4. (,) (,) e 8 4 6e (,) 6 e Tehát D=,,,,,, 6e 6e, vagis va lokális szélsőértéke a üggvéek az (-,) potba. Tekitettel arra, hog (,), ezért itt a üggvéek lokális maimuma va. 5. (, ) (, ) e 4 6e (, ) 4 e 6

17 Tehát D=,,,,, potba.,,, 6e 4e, vagis ics lokális szélsőértéke a üggvéek a Azt kaptuk, hog a és az, potokba va lokális maimum, a, potba pedig lokális miimum. A maimum értéket megkapjuk, ha behelettesítük a üggvébe. (,) 4 e,4764 (,) 4 (,) e,4764 A kétváltozós üggvé tartomái szélsőértéke Deiíció A z, üggvéek az, z, potba tartomái maimuma va, ha a legagobb érték az egész tartomába, A z, üggvéek az, z, potba tartomái maimuma va, ha a legkisebb érték az egész tartomába. A tartomái szélsőértéket a üggvé vag a tartomá belsejébe vag a határá veszi el. Ha a tartomá belsejébe veszi el, akkor ott lokális szélsőértéke is va. Határozzuk meg a következő üggvé tartomábeli legagobb és legkisebb értékét (másképpe tartomái vag globális szélsőértékeit) a T= égzete. (, ) 4 e 7

18 Két eset lehetséges:. A szélsőértéket a tartomá belsejébe veszi el.. A szélsőértéket a tartomá határá veszi el. Ha a globális szélsőértéke a tartomá belsejébe va, akkor ott lokális szélsőértéke is va a üggvéek. Praktikus megjegzés: Azt azoba em kell vizsgáli, hog télegese va-e ott szélsőértéke, mert ha ics akkor aál kisebb vag agobb értéket a határo vesz el.. Vagis meg kell ézi a üggvé értékét azoko a heleke ahol = és. Ezeket az értékeket kell összehasolítai a határo elvett értékekkel. Ezek közül a legagobb a globális maimum, a legkisebb a globális miimum. A parciális deriváltak ullák a,,,,,,,,, potokba. (,) (,) 4e,4764, (,) Ezek közül a legkisebb a és a legagobb a a legagobb és a legkisebb értéket. A tartomá határai., (,) (, ) e, =. 4e. A tartomá határá is meghatározzuk egees. Eze a üggvé (, ) 6 hog eek hol va a maimuma és a miimuma a,, - határozzuk meg az egváltozós üggvé szélsőértékét (, ) e 6 e e 5 Ahol ez a derivált ulla, ott lehet szélsőértéke. tartomába a Hasolóa az 4 e 4, pot esik. Itt a üggvé értéke (, ) 6 e egees meté a lehetséges szélsőérték 4 6 (, ) 6 e, e 4 egeese (,) 4 4e, Az kérdés, zárt itervallumo. Először vag 5. Ezek közül a 6, e (,) 8 e e 4 4 8e 8 e Ez csak a, potba ulla, a üggvé értéke itt Az egeese (, ) értéke itt (, ) 4 4 e 8 4 e,746 4 Végül meg kell ézi a égzet csúcspotjaiba (, ) e, mel csak a, 8 (, ) (, ) (, ) (, ) 6 4e, e 4 e 4 e,746 4 potba ulla, a üggvé az íg kapott üggvéértékek közül kell kiválasztai a legkisebbet és a legagobbat. A legagobb üggvéérték a, és, potokba va 4e,4764, a legkisebb az origóba va. 8

Kétváltozós függvények

Kétváltozós függvények Kétváltozós függvéek Tartalomjegzék Többváltozós függvéek... Kétváltozós függvéek... Nevezetes felületek... 3 Forgásfelületek... 3 Kétváltozós függvé határértéke... 4 Foltoos kétváltozós függvéek... 6

Részletesebben

forgási hiperboloid (két köpenyű) Határérték: Definíció (1): Az f ( x, y) függvénynek az ( x, y ) pontban a határértéke, ha minden

forgási hiperboloid (két köpenyű) Határérték: Definíció (1): Az f ( x, y) függvénynek az ( x, y ) pontban a határértéke, ha minden Kétváltozós függvéek Defiíció: f: R R vag z f(,) Szeléltetés:,,z koordiátaredszerbe felülettel Pl z + forgási paraboloid z R ( + ) félgöb z + + forgási iperboloid (két köpeű) z + forgási iperboloid (eg

Részletesebben

GEOMETRIAI OPTIKA - ÓRAI JEGYZET

GEOMETRIAI OPTIKA - ÓRAI JEGYZET ε ε hullámegelet: Mérökizikus szak, Optika modul, III. évolam /. élév, Optika I. tárg GEOMETRIAI OPTIKA - ÓRAI JEGYZET (Erdei Gábor, Ph.D., 6. AJÁNLOTT SZAKIRODALOM: ELMÉLETI ALAPOK Maxwell egeletek E(

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév Kalkulus szigorlati tételsor Számítástechika-techika szak, II. évfolyam,. félév Sorozatok: 1. A valós számoko értelmezett műveletek és reláció tulajdoságai. Számok abszolút értéke, itervallumok. Számhalmazok

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

Bodó Bea, Somonné Szabó Klára Matematika 2. közgazdászoknak

Bodó Bea, Somonné Szabó Klára Matematika 2. közgazdászoknak ábra: Ábra Bodó Bea, Somonné Szabó Klára Matematika. közgazdászoknak III. modul: Többváltozós üggvének 5. lecke: Többváltozós üggvének, parciális deriválás Tanulási cél: Megismerkedni a többváltozós üggvének

Részletesebben

Kétváltozós függvények ábrázolása síkmetszetek képzése által

Kétváltozós függvények ábrázolása síkmetszetek képzése által Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az

Részletesebben

Példa: 5 = = negatív egész kitevő esete: x =, ha x 0

Példa: 5 = = negatív egész kitevő esete: x =, ha x 0 Ha mást em moduk, szám alatt az alábbiakba, midig alós számot értük. Műeletek összeadás: Példa: ++5 tagok: amiket összeaduk, az előző éldába a, az és az 5 szorzás: Példa: 5 téezők: amiket összeszorzuk,

Részletesebben

3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 3. Sztereó kamera Kató Zoltá Képfeldolgozás és Számítógépes Grafika taszék SZTE (http://www.if.u-szeged.hu/~kato/teachig/) Sztereó kamerák Az emberi látást utáozza 3 Sztereó kamera pár Két, ugaazo 3D látvát

Részletesebben

NÉMETH LÁSZLÓ VÁROSI MATEMATIKA VERSENY 2013 HÓDMEZŐVÁSÁRHELY OSZTÁLY ÁPRILIS 8.

NÉMETH LÁSZLÓ VÁROSI MATEMATIKA VERSENY 2013 HÓDMEZŐVÁSÁRHELY OSZTÁLY ÁPRILIS 8. . feladat: Eg 5 fős osztálba va fiú és 4 lá. z iskolai bálo (fiú-lá) pár fog tácoli. Háféleképpe tehetik ezt meg? párok sorredje em számít, viszot az, hog ki kivel tácol, az már ige. (0 pot) Válasszuk

Részletesebben

Többváltozós analízis gyakorlat, megoldások

Többváltozós analízis gyakorlat, megoldások Többváltozós analízis gakorlat, megoldások Általános iskolai matematikatanár szak 7/8. őszi félév. Differenciál- és integrálszámítás alkalmazásai. Határozzuk meg az alábbi differenciálegenletek összes,

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

III. FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK

III. FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK Függvéek és tulajdoságaik 69 III FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK 6 Gakorlatok és feladatok ( oldal) Írd egszerűbb alakba: a) tg( arctg ) ; c) b) cos( arccos ) ; d) Megoldás a) Bármel f : A B cos ar

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

Lengyelné Dr. Szilágyi Szilvia április 7.

Lengyelné Dr. Szilágyi Szilvia április 7. ME, Anaĺızis Tanszék 2010. április 7. , alapfogalmak 2.1. Definíció A H 1, H 2,..., H n R (ahol n 2 egész szám) nemüres valós számhalmazok H 1 H 2... H n Descartes-szorzatán a következő halmazt értjük:

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

Alkalmazzuk az egyváltozós esetben a legkisebb négyzetek módszerét. Legyen a mérések száma n, y (n 0). n 2

Alkalmazzuk az egyváltozós esetben a legkisebb négyzetek módszerét. Legyen a mérések száma n, y (n 0). n 2 . elődás 5 Alklmzzuk z egváltozós esetbe legksebb égzetek módszerét. Lege mérések szám ( ). F ( ( ) )! ( ( ) )!?? A két krtérum ekvvles egmássl hsze h z F üggvéek z prmétervektor hele mmum v kkor hele

Részletesebben

Többváltozós, valós értékű függvények

Többváltozós, valós értékű függvények TÖ Többváltozós, valós értékű függvények TÖ Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza, n változós függvényeknek nevezzük. TÖ Példák:.

Részletesebben

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő. 3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.

Részletesebben

Függvények határértéke és folytonossága. pontban van határértéke és ez A, ha bármely 0 küszöbszám, hogy ha. lim

Függvények határértéke és folytonossága. pontban van határértéke és ez A, ha bármely 0 küszöbszám, hogy ha. lim Függvének határértéke és oltonossága Deiníció: Az -hoz megadható olan üggvénnek az A. pontban van határértéke és ez A ha bármel küszöbszám hog ha A akkor. Jele: a) Függvén határértékének ogalma visszavezethető

Részletesebben

Emlékeztető: az n-dimenziós sokaság görbültségét kifejező mennyiség a Riemann-tenzor (Riemann, 1854): " ' #$ * $ ( ' $* " ' #µ

Emlékeztető: az n-dimenziós sokaság görbültségét kifejező mennyiség a Riemann-tenzor (Riemann, 1854):  ' #$ * $ ( ' $*  ' #µ Emlékeztető: az -dimeziós sokaság görbültségét kifejező meyiség a Riema-tezor (Riema, 1854: ' ( ' $ ' #µ $ µ# ahol a ú. koexiós koefficiesek (vagy Christoffel-szimbólumok a metrikus tezor g # x $ kompoeseiből

Részletesebben

Koordinátageometria összefoglalás. d x x y y

Koordinátageometria összefoglalás. d x x y y Koordiátageometria összefoglalás Vektorok A helyvektor hossza Két pot távolsága r x y d x x y y AB A két potot összekötő vektort megkapjuk, ha a végpot koordiátáiból kivojuk a kezdőpot koordiátáit. Vektor

Részletesebben

Többváltozós, valós értékű függvények

Többváltozós, valós értékű függvények Többváltozós függvények Többváltozós, valós értékű függvények Többváltozós függvények Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza,

Részletesebben

1) Adja meg a következő függvények legbővebb értelmezési tartományát! 2) Határozzuk meg a következő függvény értelmezési tartományát!

1) Adja meg a következő függvények legbővebb értelmezési tartományát! 2) Határozzuk meg a következő függvény értelmezési tartományát! Függvének Feladatok Értelmezési tartomán ) Adja meg a következő függvének legbővebb értelmezési tartománát! a) 5 b) + + c) d) lg tg e) ln + ln ( ) Megoldás: a) 5 b) + + = R c) és sosem teljesül. d) tg

Részletesebben

7. Kétváltozós függvények

7. Kétváltozós függvények Matematika segédanag 7. Kétváltozós függvének 7.. Alapfogalmak Az A és B halmazok A B-vel jelölt Descartes-szorzatán azt a halmazt értjük, melnek elemei mindazon a, b) rendezett párok, amelekre a A és

Részletesebben

Kétváltozós függvények differenciálszámítása

Kétváltozós függvények differenciálszámítása Kétváltozós függvények differenciálszámítása 13. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kétváltozós függvények p. 1/1 Definíció, szemléltetés Definíció. Az f : R R R függvényt

Részletesebben

A hatványozás első inverz művelete, az n-edik gyökvonás.

A hatványozás első inverz művelete, az n-edik gyökvonás. Ismétlés: Htváozás egész kitevő eseté A htváozás iverz műveletei. (Htvá, gök, logritmus) De.: :... Ol téezős szorzt, melek mide téezője. : htvál : kitevő : htváérték A htváozás zoossági egész kitevő eseté:

Részletesebben

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és 2015.09.28. és 2015.09.30. 2015.09.28. és 2015.09.30. 1 / Tartalom 1 A valós függvén fogalma 2 A határérték fogalma a végtelenben véges pontban Végtelen határértékek 3 A határértékek kiszámítása A rend

Részletesebben

Egyváltozós függvények differenciálszámítása II.

Egyváltozós függvények differenciálszámítása II. Egváltozós függvének differenciálszámítása II.. 2. 3. 4. 5. 6. 7. 8. Végezzen teljes függvénvizsgálatot! A függvénvizsgálat szokásos menete:. Értelmezési tartomán, tengelmetszetek 2. Szimmetriatulajdonságok:

Részletesebben

Tartalomjegyzék Feltétel nélküli szélsőérték számítás

Tartalomjegyzék Feltétel nélküli szélsőérték számítás Dr. Vincze Szilvia Példa Egy adott talajtípuson az átlagosnak megelelő időjárási viszonyok között a búza hozamát hektáronként a elhasznált nitrogén és oszor hatóanyag erősen beolyásolja. A hektáronként

Részletesebben

10.3. A MÁSODFOKÚ EGYENLET

10.3. A MÁSODFOKÚ EGYENLET .. A MÁSODFOKÚ EGYENLET A másodfokú egenlet és függvén megoldások w9 a) ( ) + ; b) ( ) + ; c) ( + ) ; d) ( 6) ; e) ( + 8) 6; f) ( ) 9; g) (,),; h) ( +,),; i) ( ) + ; j) ( ) ; k) ( + ) + 7; l) ( ) + 9.

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Második zárthelyi dolgozat megoldásai biomatematikából * A verzió

Második zárthelyi dolgozat megoldásai biomatematikából * A verzió Második zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mit értünk eponenciális üggvényen? Adjon példát alulról korlátos szigorúan monoton csökkenő eponenciális üggvényre.

Részletesebben

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai Tárcsák számítása A felületszerkezetek A felületszerkezetek típusa A tartószerkezeteket geometra méretek alapjá osztálozzuk Az eddg taulmáakba szereplı rúdszerkezetek rúdjara az a jellemzı hog a hosszuk

Részletesebben

Írja át a következő komplex számokat trigonometrikus alakba: 1+i, 2i, -1-i, -2, 3 Végezze el a műveletet: = 2. gyakorlat Sajátérték - sajátvektor 13 6

Írja át a következő komplex számokat trigonometrikus alakba: 1+i, 2i, -1-i, -2, 3 Végezze el a műveletet: = 2. gyakorlat Sajátérték - sajátvektor 13 6 Építész Kar Gakorló feladatok gakorlat Számítsa ki az alábbi komple számok összegét, különbségét, szorzatát, hánadosát: a/ z = i z = i b/ z = i z = - 7i c/ z = i z = i d/ z = i z = i e/ z = i z = i Írja

Részletesebben

l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA

l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA A kétváltozós függvének két vlós számhoz rendelnek hozzá eg hrmdik vlós számot, másként foglmzv számpárokhoz rendelnek hozzá eg hrmdik számot.

Részletesebben

10. tétel Függvények lokális és globális tulajdonságai. A differenciálszámítás alkalmazása

10. tétel Függvények lokális és globális tulajdonságai. A differenciálszámítás alkalmazása . tétel Függvények lokális és globális tulajdonságai. A dierenciálszámítás alkalmazása FÜGGVÉNY De: A üggvény egyértelmű hozzárendelés két halmaz elemei között. A halmaz minden eleméhez B halmaz legeljebb

Részletesebben

megoldásvázlatok Kalkulus gyakorlat Fizika BSc I/1, 1. feladatsor 1. Rajzoljuk le a számegyenesen az alábbi halmazokat!

megoldásvázlatok Kalkulus gyakorlat Fizika BSc I/1, 1. feladatsor 1. Rajzoljuk le a számegyenesen az alábbi halmazokat! megoldásvázlatok Fizika BSc I/,. feladatsor. Rajzoljuk le a számegyeese az alábbi halmazokat! a { R < 5}, b { R 4}, c { Z 4}, d { Q < 4 6}, e { N 3 }.. Igazak-e az alábbi állítások? Adjuk meg az állítások

Részletesebben

Teljes függvényvizsgálat példafeladatok

Teljes függvényvizsgálat példafeladatok Teljes függvénvizsgálat példafeladatok Végezz teljes függvénvizsgálatot az alábbi függvéneken! Az esetenként vázlatos megoldásokat a következő oldalakon találod, de javaslom, hog először önállóan láss

Részletesebben

GEOMETRIAI OPTIKA - ÓRAI JEGYZET

GEOMETRIAI OPTIKA - ÓRAI JEGYZET FIZIKA BSc, III. évolam /. élév, Optika tárg GEOMETRIAI OPTIKA - ÓRAI JEGYZET (Erdei Gábor, Ph.D., 8.) AJÁNLOTT SZAKIRODALOM: ELMÉLETI ALAPOK Maxwell egeletek hullámegelet: E( r, t) E ( r, t) µ µ rε ε

Részletesebben

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis 1. Írásbeli beugró kérdések Készítette: Szátó Ádám 2011. Tavaszi félév 1. Írja le a Dedekid-axiómát! Legyeek A R, B R. Ekkor ha a A és b B : a b, akkor

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy

Részletesebben

Függvény differenciálás összefoglalás

Függvény differenciálás összefoglalás Függvény differenciálás összefoglalás Differenciálszámítás: Def: Differenciahányados: f() f(a + ) f(a) függvényérték változása független változó megváltozása Ha egyre kisebb, vagyis tart -hoz, akkor a

Részletesebben

Függvényhatárérték-számítás

Függvényhatárérték-számítás Függvéyhatárérték-számítás I Függvéyek véges helye vett véges határértéke I itervallumo, ha va olya k valós szám, melyre az I itervallumo, ha va olya K valós szám, melyre I itervallumo, ha alulról és felülről

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k.

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k. 8. KIS REZGÉSEK STABIL EGYENSÚLYI HELYZET KÖRÜL 8.. A rezgések szétcsatolása harmoikus közelítésbe. Normálrezgések Egyesúlyi helyzet: olya helyzet, amelybe belehelyezve a redszert (ulla kezdősebességgel),

Részletesebben

(arcsin x) (arccos x) ( x

(arcsin x) (arccos x) ( x ALAPDERIVÁLTAK ( c ) (si ) cos ( ) (cos ) si ( ) ( ) ( tg) cos ( e ) e ( ctg ) si ( a ) a l a ( sh) ch (l ) ( ch) sh (log a ) ( th) l a ch (arcsi ) (arccos ) ( arctg ) DERIVÁLÁSI SZABÁLYOK. ( c ) c. c

Részletesebben

Felületek differenciálgeometriai vizsgálata

Felületek differenciálgeometriai vizsgálata Felületek differenciálgeometriai vizsgálata Felületek differenciálgeometriai értelemben Felület: Olyan alakzat, amely előállítható az (u,v) sík egy összefüggő tartományán értelmezett r(u,v) kétparaméteres

Részletesebben

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx = Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!

Részletesebben

Az f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény.

Az f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény. Tartalomjegyzék Kétváltozós függvény integrálszámítása... Primitívfüggvény... Kettősintegrál... A kettősintegrál téglalap tartományon... A kettősintegrál létezésének szükséges feltétele... 3 Illusztráció...

Részletesebben

Tuzson Zoltán A Sturm-módszer és alkalmazása

Tuzson Zoltán A Sturm-módszer és alkalmazása Tuzso Zoltá A turm-módszer és alalmazása zámtala szélsérté probléma megoldása, vag egeltleség bzoítása ago gara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölder-féle egeltleség, derválta

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

Diszkrét matematika II., 3. előadás. Komplex számok

Diszkrét matematika II., 3. előadás. Komplex számok 1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,

Részletesebben

Minta JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 2. FELADATSORHOZ

Minta JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 2. FELADATSORHOZ JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által haszált szíűtől eltérő szíű tollal kell javítai, és a taári gyakorlatak megfelelőe

Részletesebben

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2 Tartalomjegyzék Tartalomjegyzék... Valós változós valós értékű függvények... Hatványfüggvények:... Páratlan gyökfüggvények:... Páros gyökfüggvények... Törtkitevős függvények (gyökfüggvények hatványai)...

Részletesebben

Matematika I. Vektorok, egyenesek, síkok

Matematika I. Vektorok, egyenesek, síkok Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk

Részletesebben

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;

Részletesebben

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan! Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén

Részletesebben

Kalkulus gyakorlat - Megoldásvázlatok

Kalkulus gyakorlat - Megoldásvázlatok Kalkulus gyakorlat - Megoldásvázlatok Fizika BSc I/. gyakorlat. Tétel Newto Leibiz. Ha f folytoos az a, b] itervallumo és F primitív függvéye f-ek, akkor b a f F b F a.. Számítsuk ki az alábbi racioális

Részletesebben

A primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be,

A primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be, 6 A primitív üggvéy létezése A primitív üggvéy létezése Kitűzött eladatok. Határozd meg az a és b valós paraméterek értékét úgy hogy az : R ae + b üggvéyek létezze primitív üggvéye! >. Az : [ + [ + olytoos

Részletesebben

Statisztika 1. zárthelyi dolgozat március 21.

Statisztika 1. zárthelyi dolgozat március 21. Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes

Részletesebben

Matematikai analízis II.

Matematikai analízis II. Matematikai analízis II. Feladatgyűjtemény GEMAN6-B Gazdaságinformatikus, Programtervező informatikus és Mérnökinformatikus hallgatók részére Lengyelné Dr. Szilágyi Szilvia 6 . feladatlap Implicit függvények

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

Líneáris függvények. Definíció: Az f(x) = mx + b alakú függvényeket, ahol m 0, m, b R elsfokú függvényeknek nevezzük.

Líneáris függvények. Definíció: Az f(x) = mx + b alakú függvényeket, ahol m 0, m, b R elsfokú függvényeknek nevezzük. Líneáris függvének Definíció: Az f() = m + b alakú függvéneket, ahol m, m, b R elsfokú függvéneknek nevezzük. Az f() = m + b képletben - a b megmutatja, hog a függvén hol metszi az tengelt, majd - az m

Részletesebben

Figyelem, próbálja önállóan megoldani, csak ellenőrzésre használja a következő oldalak megoldásait!

Figyelem, próbálja önállóan megoldani, csak ellenőrzésre használja a következő oldalak megoldásait! Elméleti kérdések: Második zárthelyi dolgozat biomatematikából * (Minta, megoldásokkal) E. Mit értünk hatványfüggvényen? Adjon példát nem invertálható hatványfüggvényre. Adjon példát mindenütt konkáv hatványfüggvényre.

Részletesebben

823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825.

823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825. Egész kitevôjû htváok 7 8 A helese kitöltött keresztrejtvé: 8 ár 8 A rímek összege: + + 9 8 ) $ $ 8 ) $ $ 9$ $ 7 $ $ 0 c) $ ( + ) ( + ) 8 ) $ $ k ( - ) - - - ) r s - 7 m k l ( + ) 7 8 ( - ) 8 ( + ) 7 (

Részletesebben

A fontosabb definíciók

A fontosabb definíciók A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,

Részletesebben

9. HAMILTON-FÉLE MECHANIKA

9. HAMILTON-FÉLE MECHANIKA 9. HAMILTON-FÉLE MECHANIKA 9.. Legedre-éle traszormáció x x h x, p= p x x Milye x-él maximális? pl.= x alulról kovex h x =0: d p= dx x=x p a példába: p=x ; h= p x x Mekkora a maximuma? g p= p x p x p g=

Részletesebben

Kalkulus II., harmadik házi feladat

Kalkulus II., harmadik házi feladat Név: Neptun: Web: http://mawell.sze.hu/~ungert Kalkulus II., harmadik házi feladat.,5 pont) Határozzuk meg a következ határértékeket: ahol a) A =, ), b) A =, ), c) A =, ).,) A Az egszer bb kezelhet ség

Részletesebben

Sorozatok A.: Sorozatok általában

Sorozatok A.: Sorozatok általában 200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,

Részletesebben

Egy lehetséges tételsor megoldásokkal

Egy lehetséges tételsor megoldásokkal Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe

Részletesebben

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből

Részletesebben

1. Lineáris transzformáció

1. Lineáris transzformáció Lineáris transzformáció Lineáris transzformáció mátrixának felírása eg adott bázisban: Emlékeztető: Legen B = {u,, u n } eg tetszőleges bázisa az R n -nek, Eg tetszőleges v R n vektor egértelműen felírható

Részletesebben

A differenciálegyenlet általános megoldása az összes megoldást tartalmazó halmaz.

A differenciálegyenlet általános megoldása az összes megoldást tartalmazó halmaz. Differenciálegenletek Bevezetés Differenciálegenletnek olan egenletet nevezünk, amelben az ismeretlen eg függvén és az egenlet tartalmazza az ismeretlen függvén (valahánad rendű) deriváltját. Például:

Részletesebben

Matematika B4 I. gyakorlat

Matematika B4 I. gyakorlat Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a

Részletesebben

1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n.

1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n. 1. Többváltozós függvények 1. Bevezetés Ennek a fejezetnek a célja a kétváltozós függvények vizsgálata, ami során a 3-dimenziós felületeket szeretnénénk megérteni. 1. definíció. Legyen D R n. Ekkor az

Részletesebben

MATEMATIKA 2. dolgozat megoldása (A csoport)

MATEMATIKA 2. dolgozat megoldása (A csoport) MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f

Részletesebben

SOROK Feladatok és megoldások 1. Numerikus sorok

SOROK Feladatok és megoldások 1. Numerikus sorok SOROK Feladatok és megoldások. Numerikus sorok I. Határozza meg az alábbi, mértai sorra visszavezethető sorok esetébe az S -edik részletösszeget és a sor S összegét! )...... k 5 5 5 5 )...... 5 5 5 5 )......

Részletesebben

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11 Bodó Beáta ISMÉTLÉS. ch(6 d.. 4.. 6. 7. 8. 9..... 4.. e (8 d ch (9 + 7 d ( + 4 6 d 7 8 + d sin (4 + d cos sin d 7 ( 6 + 9 4 d INTEGRÁLSZÁMÍTÁS 7 6 sh(6 + c 8 e(8 + c 9 th(9 + 7 + c 6 ( + 4 7 + c = 7 4

Részletesebben

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +... . Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk

Részletesebben

Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1

Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1 Differenciálszámítás 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Differenciálszámítás p. 1/1 Egyenes meredeksége Egyenes meredekségén az egyenes és az X-tengely pozitív iránya

Részletesebben

Többváltozós függvények Feladatok

Többváltozós függvények Feladatok Többváltozós függvények Feladatok 2. szeptember 3. Határozzuk meg az alábbi sorozatok határértékét illetve torlódási pontjait!. ( n n2 + n n 3 2. ( n + n n5 n2 +2n+ 5 n n+ 3. ( sin(nπ/2 n n! Határozzuk

Részletesebben

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Legye N, x k R k =,, és tegyük fel, hogy vagy x k 0 k =,, vagy pedig x k 0 k =,, Ekkor + x k + x k Speciális Beroulli-egyelőtleség Ha N és

Részletesebben

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0 Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások

Részletesebben

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény Palácz Béla - Soft Computig - 11-1. Adatok közelítése 1. Adatok közelítése Bevezetés A természettudomáyos feladatok megoldásához, a vizsgált jeleségek, folyamatok főbb jellemzői közötti összefüggések ismeretére,

Részletesebben

Függvények vizsgálata

Függvények vizsgálata Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =

Részletesebben

ANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2

ANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2 ANALÍZIS. I. VIZSGA. jauár. Mérök iformatikus szak α-variás Mukaidő: perc. feladat pot) Adja meg az z 4 i)z i egyelet összes megoldását. i + i) + 4i + 4 i +, vagyis z p i p cos 3 + i si ) 3 vagy z p i

Részletesebben

Többváltozós függvények Riemann integrálja

Többváltozós függvények Riemann integrálja Többváltozós üggvének Riemann integrálja Többváltozós üggvének Riemann integrálja Többváltozós üggvének Riemann integrálja Az integrál konstrukciója tetszőleges változószám esetén Deiníció: n dimenziós

Részletesebben

Matematika II. Feladatgyűjtemény GEMAN012B. Anyagmérnök BSc szakos hallgatók részére

Matematika II. Feladatgyűjtemény GEMAN012B. Anyagmérnök BSc szakos hallgatók részére Matematika II. Feladatgyűjtemény GEMANB Anyagmérnök BSc szakos hallgatók részére Lengyelné Dr. Szilágyi Szilvia 6 . gyakorlat Matematika II.. Az alábbi f függvényeknél adja meg f -t! f() = + 5; (b) f()

Részletesebben

1. Gyökvonás komplex számból

1. Gyökvonás komplex számból 1. Gyökvoás komplex számból Gyökvoás komplex számból. Ismétlés: Ha r, s > 0 valós, akkor rcos α + i siα) = scos β + i siβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete scos β+i

Részletesebben

1. Sajátérték és sajátvektor

1. Sajátérték és sajátvektor 1. Sajátérték és sajátvektor Leképezés diagoális mátrixa. Kérdés Mely bázisba lesz egy traszformáció mátrixa diagoális? A Hom(V) és b 1,...,b ilye bázis. Ha [A] b,b főátlójába λ 1,...,λ áll, akkor A(b

Részletesebben

2014. november Dr. Vincze Szilvia

2014. november Dr. Vincze Szilvia 24. november 2-4. Dr. Vincze Szilvia Tartalomjegyzék. Meredekség, szelő, szelő meredeksége 2. Differencia-hányados fogalma 3. Differenciál-hányados fogalma 5. Folytonosság és differenciálhatóság kapcsolata

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011 1 Molár-Sáska Gáboré: Hajós György Verseyre javasolt feladatok SZIE.YMÉTK 011 1. Írja fel a számokat 1-tıl 011-ig egymás utá! Határozza meg az így kapott agy szám 0-cal való osztási maradékát!. Az { }

Részletesebben

Kétváltozós függvény szélsőértéke

Kétváltozós függvény szélsőértéke Kétváltozós függvény szélsőértéke Sütő Andrea Kétváltozós függvény szélsőértéke Legyen adott f ( xy, ) kétváltozós függvény és ez legyen folytonosan totálisan differenciálható, azaz létezzenek az elsőrendű

Részletesebben

Integrálás sokaságokon

Integrálás sokaságokon Itegrálás sokaságoko I. Riema-itegrál R -e Jorda-mérték haszálható ehhez: A R eseté c(a)=0, ha 0 eseté létezek C 1,,C s kockák hogy A C1 Cs és s i 1 c C i defiíció: D ullmértékű R itegrálási tartomáy,

Részletesebben