( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn
|
|
- Virág Somogyi
- 8 évvel ezelőtt
- Látták:
Átírás
1 Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes közép közötti egyelőtleség.. A kéttagú szmk felhaszálásával köye igazolható midkettő. Egyelőség akkor és csak akkor áll fe ha a=b=c.. Alkalmazzuk a kéttagú szmk-t az egyes tagokra alábbi módo! y z ( y)( z) y z Ezt midhárom tagra felírva, majd a kapott egyelőtleségeket összeadva köye jö az állítás. Egyelőség potosa akkor áll fe, ha =y=z.. Alkalmazzuk a kéttagú szmk-t az egyes tagokra alábbi módo! ( a b)( c d) ab cd abcd Egyelőség akkor és csak akkor áll fe ha a=b=c=d.. A háromtagú égyzetes-harmoikus közép egyelőtlesége alapjá köye jö. Egyelőség akkor és csak akkor áll fe ha a=b=c. 5. Alkalmazzuk a tíztagú szmk-t. Egyelőség akkor és csak akkor áll fe ha a=b=c=d=. 6. Ez a feladat állatorvosi ló, több megoldást is aduk rá.. megoldás Adjuk hozzá az egyelőtleség midkét oldalához -at, majd hozzuk az alábbi alakra! y z y z z y y z y z z y y z y z y z y z z y 9 ( y) ( y z) ( z ) 9 y z z y Eze utóbbi egyelőtleség pedig köye bizoyítható a háromtagú szhk alapjá. Egyelőség akkor és csak akkor áll fe, ha =y=z. /8
2 . megoldás: y z y z Legye +y+z=d! Ekkor. Legye a, b, c, így a+b+c=. d d d d d d Ez alapjá y z y z d d d. y z z y y z z y b c c a b a d d d d d d Tehát már az elejé feltehetjük az általáosság megszorítása élkül, hogy +y+z=. Ezt evezik ormalizálásak. Alkalmazzuk az, y, z súlyokkal súlyozott szhk-t, majd ( y z) haszáljuk fel azt a közismert téyt, hogy y yz z. y z y z z y ( y z) y( z ) z( y ) y yz z y z. megoldás: a c b b a c b c a Legye a=+y, b=y+z, c=z+, ekkor, y, z. Így a bizoyítadó egyelőtleség y z a c b b c a y z z y b c a a c a b b c alakot ölti, ami ekvivales az 6 egyelőtleséggel, ami egy b c a pozitív szám és reciprokáak összegére voatkozó becslés alapjá köye igazolható. Ezt a helyettesítést a továbbiakba háromszög-helyettesítések evezzük, mert ilye jellegű kifejezések jeleek meg ha a beírt kör éritési potjai és a csúcsok közötti szakaszokat kifejezzük a háromszög oldalaival.. megoldás: Haszáljuk a. megoldásba szereplő ormalizálást! Ez alapjá a baloldal átírható y z y z y z z y y z alakba. Az : 0; ; f /8
3 függvéy szigorúa kove az értelmezési tartomáyá, így alkalmazhatjuk a Jese- egyelőtleséget. y z f ( ) f ( y) f ( z) f f. 7. Midhárom esetbe alkalmazzuk a háromszög helyettesítést, azaz legye =s-a, y=s-b, z=s-c! Ezutá az a) a kéttagú szk-val, a b) a háromtagú szhk-val, a c) pedig a háromtagú szk-val megoldható. Egyelőség akkor és csak akkor áll fe, ha a=b=c. 8. a) Osszuk végig az egyelőtleséget a+b+c-vel, ekkor az eredetivel ekvivales egyelőtleséghez jutuk. Ekkor a baloldalo az,, kifejezések a, b, c b c c a b a súlyokkal súlyozott számtai közepe jeleik meg. Ezutá alkalmazzuk a súlyozott szhk-t! b) Emeljük midkét oldalt -edikre, majd szorozzuk be kettővel és az így kapott, eredetivel ekvivales egyelőtleségél alkalmazzuk a jobboldalra a súlyozott szmk-t és haszáljuk fel, hogy ( ) ab bc ca! c) Alkalmazzuk a súlyozott szmk-t ab, bc, ca súlyokkal, és haszáljuk fel, hogy ab bc ca, valamit az epoeciális függvéy -él agyobb alap eseté szigorúa mooto övekvő! 9. a) Nézzük külö-külö a baloldali tagokat, alkalmazzuk a háromtagú szmk-t! a b a b b c b c c a c a a b b c c a A három egyelőtleséget összeadva megkapjuk a bizoyítadó állítást. Egyelőség akkor és csak akkor áll fe ha a=b=c. b) Hasoló az előzőhöz. c) Beszorzás és redezés utá visszavezethető az a) és b) részre. 0. Az előző feladat c) része alapjá köye megoldható.. Alkalmazzuk a kéttagú szmk-t a jobboldalra, majd a 9. feladat a) és b) részét!. a) A 9. feladatba látott módszert alkalmazhatjuk. /8
4 a bc b c a c ab c a b b c a c a b A három egyelőtleséget összeadva megkapjuk a bizoyítadó állítást. Egyelőség akkor és csak akkor áll fe ha a=b=c. b), c) Az a) részhez hasolóa bizoyítható.. a) Az előző feladatba látott godolatmeetet általáosítjuk. A súlyozott szmk-t alkalmazzuk és meghatározzuk a súlyokat. Első egyelőtleség. Legyeek a súlyok a, b, c pozitív valós számok, melyek összege és botsuk három részre az egyelőtleséget! a c b a c b a y b y z c z y z yz Az egyelőség alapjá felírhatjuk az alábbi egyeletredszert. a c b a c b Eek megoldásai 9 a, b, c. Így y y z z yz y y z z yz y y z z y z. A kapott egyelőtleségeket összeadva megkapjuk a bizoyítadó egyelőtleséget. Egyelőség akkor és csak akkor áll fe, ha =y=z. A többi egyelőtleség hasolóa bizoyítható. A b) feladat az a)-hoz hasolóa oldható meg. /8
5 . Beszorzás utá alkalmazzuk az előző feladatokba látott módszert! a b c. 5. Mivel abc=, ezért abc. Így azt kell beláti, hogy Ezt pedig az előző feladatokhoz hasolóa bizoyíthatjuk, ugyais A többi tagra hasoló összefüggéseket felírva és azokat összeadva megkapjuk a bizoyítadó állítást. Egyelőség akkor és csak akkor áll fe, ha a=b=c. 6. a) Mivel a baloldal értéke függetle a változók előjelétől, jobboldalé pedig em csökke ha a számokat pozitívra változtatjuk, így elég azt az esetet megézi, mikor a számok pozitívak. A háromtagú szk miatt, másrészt, ezért. b) Visszavezethető teljes égyzetek összegére. c) Az a) részhez hasolóa oldható meg csak egyedredű hatváyközép és számtai közép közötti egyelőtleség felhaszálásával. 7. Tudjuk, hogy ekvivales azzal, hogy ( ab bc ca) ( ). Így az egyelőtleség Alkalmazzuk a háromtagú szmk-t! ( ) ( ) 9. ( ) a a b b c c 9 Egyelőség akkor és csak akkor áll fe ha a=b=c=. 8. Az szk alapjá a a b b c c a ( a) b ( b) c ( c) a a b b b b 5/8
6 9. Mivel a, b, c ]0;[, ezért abc abc és a b c a b c. A háromtagú szmk alapjá abc abc a b c a b c a b c, ezeket összeadva kapjuk az bizoyítadó egyelőtleséget. 0. A szhk alapjá a c b a c b c c. Alkalmazzuk ezt a baloldal három tagjára! ab bc ca ab bc ac b c a c a b a c b c a b a c a b b c Egyelőség akkor és csak akkor áll fe, ha a=b=c.. Beszorzás és redezés utá a ekvivales az eredetivel. y z y z y z yz egyelőtleséget kapjuk., ami Szorozzuk midkét oldalt -mal, majd alkalmazzuk a szmk-t az alábbi módo! y z y y z z y z y z y z z y yz yz yz. -tagú közepek közötti egyelőtleség. Az -tagú szmk mellett alkalmazzuk az első db pozitív egész szám, égyzetszám, köbszám összegére voatkozó képletet!. Nézzük csak az első egyelőtleséget, a második ahhoz hasolóa bizoyítható be. Adjuk hozzá midkét oldalhoz -et, majd osszuk el az így kapott egyelőtleséget -el. Ekkor az eredetivel ekvivales egyelőtleséghez jutuk.... Ezt a jobboldal átalakításával, majd a szmk felhaszálásával igazolhatjuk. 6/8
7 Írjuk az egyelőtleséget az eredetivel ekvivales alakba! Gyökteleítsük a baloldalt és alkalmazzuk az -tagú szk-t A., 5., 6., 7., 8. feladat megoldása megtalálható Pitér Lajos Aalízis I. című köyvébe. 9. Azt kell beláti, hogy c egyelőtleség az eredetivel ekvivales c, ha >. Ha beírjuk a megfelelő tagokat, akkor az Alkalmazzuk -tagú szmk-t az alábbi módo!.... Eze utóbbi kifejezésről kell beláti, hogy kisebb, mit. 7/8
8 0 Szélsőérték feladatok közepekkel. Nézzük pl. a b) feladatot, a többi hasolóa oldható meg. b) g : \ 0, g( ) módo! 6 Alkalmazzuk a háromtagú szmk-t az alábbi 6 g( ) Egyelőség akkor és csak akkor áll fe, ha 6.. Nézzük meg pl. a b) feladatot! b) g : 0;, g( ) Alkalmazzuk a égytagú szmk-t az alábbi módo! g( ) ( ) 7 6 Egyelőség akkor és csak akkor áll fe, ha +=-, azaz =0,5. A.,., 5., 6., 7., 8. feladatba a szöveg alapjá meg kell adi a vizsgált függvéyeket és az előző két feladatba látott módszer valamelyikét alkalmazhatjuk! 8/8
A G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk:
Kocsis Júlia Egyelőtleségek 1. Feladat: Bizoytsuk be, hogy tetszőleges a, b, c pozitv valósakra a a b b c c (abc) a+b+c. Megoldás: Tekitsük a, b és c számok saját magukkal súlyozott harmoikus és mértai
Algebrai egyenlőtlenségek versenyeken Dr. Kiss Géza, Budapest
Magas szitű matematikai tehetséggodozás Algebrai egyelőtleségek verseyeke Dr Kiss Géza, Budapest Néháy helyettesítési módszer és a Cauchy-Schwarz-egyelőtleség speciális esetéek alkalmazása bizoyítási feladatokba
3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.
3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.
VII. A határozatlan esetek kiküszöbölése
A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely
MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)
O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei
(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):
A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak
2. fejezet. Számsorozatok, számsorok
. fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk
Sorozatok, határérték fogalma. Függvények határértéke, folytonossága
Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt
A figurális számokról (IV.)
A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe
XXVI. Erdélyi Magyar Matematikaverseny Zilah, február II.forduló -10. osztály
Miisterul Educaţiei Națioale și Cercetării Știițifice Subiecte petru Etapa aţioală a Cocursului de Matematică al Liceelor Maghiare di Româia XXVI. Erdélyi Magyar Matematikaversey Zilah, 016. február 11
Nevezetes sorozat-határértékek
Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív
Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8
Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,
ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.
ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az
ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA
ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA Szerkesztette: Balogh Tamás 202. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add
Sorozatok október 15. Határozza meg a következ sorozatok határértékeit!
Sorozatok 20. október 5. Határozza meg a következ sorozatok határértékeit!. Zh feladat:vizsgálja meg mootoitás és korlátosság szerit az alábbi sorozatot! a + ha ; 2; 5 Mootoitás eldötéséhez vizsgáljuk
2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...
. Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk
I. rész. c) Az m valós paraméter értékétől függően hány megoldása van a valós számok halmazán az alábbi egyenletnek?
Fazakas Tüde, 05 ovember Emelt szitű érettségi feladatsorok és megoldásaik Összeállította: Fazakas Tüde; dátum: 05 ovember I rész feladat a) Egymillió forit összegű jelzálogkölcsöt veszük fel évre 5%-os
XXVI. Erdélyi Magyar Matematikaverseny Zilah, február osztály -- I. forduló
Miisterul Educaţiei Națioale și Cercetării Știițifice Subiecte petru Etapa aţioală a Cocursului de Matematică al Liceelor Maghiare di Româia XXVI. Erdélyi Magyar Matematikaversey Zilah, 06. február 4..
Lajkó Károly Kalkulus I. példatár mobidiák könyvtár
Lajkó Károly Kalkulus I. példatár mobidiák köyvtár Lajkó Károly Kalkulus I. példatár mobidiák köyvtár SOROZATSZERKESZTŐ Fazekas Istvá Lajkó Károly Kalkulus I. példatár programozó és programtervező matematikus
9. tétel: Elsı- és másodfokú egyenlıtlenségek, pozitív számok nevezetes közepei, és ezek felhasználása szélsıérték-feladatok megoldásában
9. tétel: Elsı- és másodfoú egyelıtlesége, pozitív számo evezetes özepei, és eze felhaszálása szélsıérté-feladato megoldásáa Egyelıtleség: Két relációsjellel összeapcsolt ifejezés vagy függvéy. Az egyelıtleséget
Gyakorló feladatok II.
Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,
Függvényhatárérték-számítás
Függvéyhatárérték-számítás I Függvéyek véges helye vett véges határértéke I itervallumo, ha va olya k valós szám, melyre az I itervallumo, ha va olya K valós szám, melyre I itervallumo, ha alulról és felülről
Matematika I. 9. előadás
Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája
NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.
NUMERIKUS SOROK II. Ebbe a részbe kizárólag a kovergecia vizsgálatával foglalkozuk. SZÜKSÉGES FELTÉTEL Ha pozitív (vagy em egatív) tagú umerikus sor, akkor a kovergecia szükséges feltétele, hogy lim a
(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1
. Bevezető. Oldja meg az alábbi egyeleteket: (a cos x + si x + cos x si x = (b π si x = x π 4 x 3π 4 cos x (c cos x + si x = si x (d x 6 3x = 0 (e x + x = x (f x + 5 + x = 8 (g x + + x + + x + x + =..
3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló
. Számelmélet I. Feladatok 1. Háy égyzetszám osztója va a 7 5 5 7 számak?. Az pozitív egész számak potosa két pozitív osztója va, az + 1-ek pedig potosa három. Háy pozitív osztója va az + 01 számak? OKTV
INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK
Megoldott feladatok Ijektivitás és egyéb tulajdoságok 59 ) INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Határozd meg azt az f:r R függvéyt, amelyre f ( f ( ) x R és a g:r R g ( = x f ( függvéy
Minta JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 2. FELADATSORHOZ
JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által haszált szíűtől eltérő szíű tollal kell javítai, és a taári gyakorlatak megfelelőe
SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo
SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő
= 1, azaz kijött, hogy 1 > 1, azaz ellentmondásra jutottunk. Így nem lehet, hogy nem igaz
Egyenlőtlenség : Tegyük fel, hogy valamilyen A,B,C számokra nem teljesül, azaz a bal oldal nagyobb. Mivel ABC =, ha az első szorzótényezőt B-vel, a másodikat C-vel, a harmadikat A-val szorozzuk, azaz az
Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.
Számsorozatok 2015. december 22. 1. Alapfeladatok 1. Feladat: Határozzuk meg az a 2 + 7 5 2 + 4 létezik. sorozat határértékét, ha Megoldás: Mivel egy tört határértéke a kérdés, ezért vizsgáljuk meg el
2.1. A sorozat fogalma, megadása és ábrázolása
59. Számsorozatok.. A sorozat fogalma, megadása és ábrázolása.. Defiíció. Azokat az f : N R valós függvéyeket, melyek mide természetes számhoz egy a valós számot redelek hozzá, végtele számsorozatokak,
EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a
Az érettségi vizsgára előkészülő taulók figyelmébe! 4. Az EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z HALMAZON a1 x + b1 y = c1 egyeletredszer megoldása a a x + b y = c Z halmazo (. rész) Ebbe a részbe
Matematika B4 I. gyakorlat
Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a
2. gyakorlat - Hatványsorok és Taylor-sorok
. gyakorlat - Hatváysorok és Taylor-sorok 9. március 3.. Adjuk meg az itt szereplő sorok kovergeciasugarát és kovergeciaitervallumát! + a = + Azaz a hatváysor kovergeciasugara. Az biztos, hogy a (-,) yílt
I. rész. Valós számok
I. rész Valós számok Feladatok 3 4 Teljes idukció Igazolja a teljes idukcióval a következ állítások helyességét!.. k 2 = k= ( + )(2 + ). 6.2. 4 + 2 7 + + (3 + ) = ( + ) 2..3. a) b) ( + ) = +. k ( ) =
Algebra gyakorlat, 3. feladatsor, megoldásvázlatok
Algebra gyakorlat, 3. feladatsor, megoldásvázlatok 1. a) Z(G), mert az egységelem yilvá felcserélhet mide G-beli elemmel. Továbbá Z(G) zárt a szorzásra, mert ha a, b Z(G), akkor tetsz leges g G-re (ab)g
10.M ALGEBRA < <
0.M ALGEBRA GYÖKÖS KIFEJEZÉSEK. Mutassuk meg, hogy < + +... + < + + 008 009 + 009 008 5. Mutassuk meg, hogy va olya pozitív egész szám, amelyre 99 < + + +... + < 995. Igazoljuk, hogy bármely pozitív egész
Bizonyítások. 1) a) Értelmezzük a valós számok halmazán az f függvényt az képlettel! (A k paraméter valós számot jelöl).
) a) Értelmezzük a valós számok halmazá az f függvéyt az f x = x + kx + 9x képlettel! (A k paraméter valós számot jelöl) ( ) Számítsa ki, hogy k mely értéke eseté lesz x = a függvéyek lokális szélsőértékhelye
Analízis I. gyakorlat
Aalízis I. gyakorlat Kocsis Albert Tihamér, Németh Adriá 06. március 4. Tartalomjegyzék Előszó.................................................... Sorozatok és sorok.............................................
f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben
Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,
Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli tételek. Készítette: Szántó Ádám Tavaszi félév
Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis. Írásbeli tételek Készítette: Szátó Ádám 20. Tavaszi félév . Archimedes tétele. Tétel: a > 0 és b R : N : b < a. Bizoyítás: Idirekt úto tegyük fel, hogy
Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag
VIK, Műszaki Iformatika ANALÍZIS Numerikus sorok Oktatási segédayag A Villamosméröki és Iformatikai Kar műszaki iformatikus hallgatóiak tartott előadásai alapjá összeállította: Fritz Józsefé dr. Kóya Iloa
Kalkulus II., második házi feladat
Uger Tamás Istvá FTDYJ Név: Uger Tamás Istvá Neptu: FTDYJ Web: http://maxwellszehu/~ugert Kalkulus II, második házi feladat pot) Koverges? Abszolút koverges? ) l A feladat teljese yilvávalóa arra kívácsi,
Egy lehetséges tételsor megoldásokkal
Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe
Diszkrét matematika II., 3. előadás. Komplex számok
1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,
XXVI. Erdélyi Magyar Matematikaverseny Zilah, február
Miisterul Educaţiei Națioale și Cercetării Știițifice Subiecte petru Etapa aţioală a Cocursului de Matematică al Liceelor Maghiare di Româia XXVI. Erdélyi Magyar Matematikaversey Zilah, 06. február 4..
1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója
Poliomok és egyeletek Jaroslav Zhouf Első rész Lieáris egyeletek A lieáris egyelet defiíciója A következő formájú egyeleteket: ahol a, b valós számok és a + b 0, a 0, lieáris egyeletek hívjuk, az ismeretle
1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3
Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)
Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged
Magas szintű matematikai tehetséggondozás Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Ahhoz, hogy egy diák kimagasló eredményeket érhessen el matematika versenyeken, elengedhetetlenül
Véges matematika 1. feladatsor megoldások
Véges matematika 1 feladatsor megoldások 1 Háy olya hosszúságú kockadobás-sorozat va, melybe a csak 1-es és 2-es va; Egymástól függetleül döthetük a külöböző dobások eredméyéről, így a taultak szerit a
Végtelen sorok konvergencia kritériumai
Eötvös Lorád Tudomáyegyetem Természettudomáyi Kar Végtele sorok kovergecia kritériumai BSc Szakdolgozat Készítette: Gyebár Tüde Matematika BSc, Matematikai elemző szakiráy Témavezető: Bátkai Adrás Alkalmazott
BSc Analízis I. előadásjegyzet
BSc Aalízis I. előadásjegyzet 2009/200. őszi félév Sikolya Eszter ELTE TTK Alkalmazott Aalízis és Számításmatematikai Taszék 200. április 30. ii Tartalomjegyzék Előszó v. Bevezetés.. Logikai állítások,
ANALÍZIS I. DEFINÍCIÓK, TÉTELEK
ANALÍZIS I. DEFINÍCIÓK, TÉTELEK Szerkesztette: Balogh Tamás 2012. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add el! - Így add
III. FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK
Függvéek és tulajdoságaik 69 III FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK 6 Gakorlatok és feladatok ( oldal) Írd egszerűbb alakba: a) tg( arctg ) ; c) b) cos( arccos ) ; d) Megoldás a) Bármel f : A B cos ar
Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok
Valós számok 5 I Valós számok I Természetes, egész és racioális számok I Feladatok (8 oldal) Fogalmazz meg és bizoyíts be egy-egy oszthatósági kritériumot a -vel, -mal, 5-tel, 7-tel, 9-cel, -gyel való
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szit 1611 ÉRETTSÉGI VIZSGA 017. május 9. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fotos tudivalók Formai előírások: 1. Kérjük,
megoldásvázlatok Kalkulus gyakorlat Fizika BSc I/1, 1. feladatsor 1. Rajzoljuk le a számegyenesen az alábbi halmazokat!
megoldásvázlatok Fizika BSc I/,. feladatsor. Rajzoljuk le a számegyeese az alábbi halmazokat! a { R < 5}, b { R 4}, c { Z 4}, d { Q < 4 6}, e { N 3 }.. Igazak-e az alábbi állítások? Adjuk meg az állítások
1. feladatlap megoldása. Analízis II. 1. Vizsgálja meg az alábbi sorokat konvergencia szempontjából! a) n 2 n = 1 1X 1
. feladatlap megoldása Aalízis II.. Vizsgálja meg az alábbi sorokat kovergecia szempotjából! a) X Alkalmazva a gyökkritériumot ("egyszer½usített változatát"): Azaz a sor koverges. b) p a!! p < : X 000
Feladatok megoldása. Diszkrét matematika I. Beadandó feladatok. Bujtás Ferenc (CZU7KZ) December 14, feladat: (A B A A \ C = B)
Diszkrét matematika I. Beadadó feladatok Bujtás Ferec (CZU7KZ) December 14 014 Feladatok megoldása 1..1-6. feladat: (A B A A \ C = B) A B A = A \ C = B igazolása: A B A = B \A = Ø = B = A B (Mivel a B-ek
A Cauchy függvényegyenlet és néhány rokon probléma
A Cauchy függvéyegyelet és éháy roko probléma Tuzso Zoltá, Székelyudvarhely A függvéyegyeletek egyik alapegyelete a Cauchy függvéyegyelet, amely a következő: Melyek azok az f : R R folytoos függvéyek,
Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0
Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások
2. Algebrai átalakítások
I. Nulladik ZH-ban láttuk: 2. Algebrai átalakítások 1. Mi az alábbi kifejezés legegyszerűbb alakja a változó lehetséges értékei esetén? (A) x + 1 x 1 (x 1)(x 2 + 3x + 2) (1 x 2 )(x + 2) (B) 1 (C) 2 (D)
Megoldás: Először alakítsuk át az a k kifejezést: Ez alapján az a 2 a n szorzat átírható a következő alakra
. Adott z =, =,3, + 3 soozt. Számíts ki lim 3 htáétéket. Megoldás: Előszö lkítsuk át z k kifejezést: k = + k 3 = k3 k 3 + = (k (k + k + (k + (k k + = k k + k + k + k k +, k =,3, Ez lpjá z szozt átíhtó
1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1
A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Ha N és h R, akkor + h + h Mikor va itt egyelőség? Léyeges-e a h feltétel? Számtai-mértai közép Bármely N és,, R, k 0 k =,, választással k
1. gyakorlat - Végtelen sorok
. gyakorlat - Végtele sorok 06. március.. Határozza meg az alábbi végtele sorok összegét! a) e e e 3 = e e = e e e e = e e = e e b) c) 4 = 4 + 5 6 + = 6 ) 4 + 6 6 + ) = lim N ) 5 = 6 6 + 5 6 = 7 6 N )
VÉLETLENÍTETT ALGORITMUSOK. 1.ea.
VÉLETLENÍTETT ALGORITMUSOK 1.ea. 1. Bevezetés - (Mire jók a véletleített algoritmusok, alap techikák) 1.1. Gyorsredezés Vegyük egy ismert példát, a redezések témaköréből, méghozzá a gyorsredezés algoritmusát.
Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova
Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok
EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a Z
Az érettségi vizsgára előkészülő taulók figyelmébe! EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z HALMAZON a x + b y c 5. Az egyeletredszer megoldása a Z halmazo (3. rész) a x + b y c A hivatkozások köyítése
18. Differenciálszámítás
8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke
Eseme nyalgebra e s kombinatorika feladatok, megolda sok
Eseme yalgebra e s kombiatorika feladatok, megolda sok Szűk elméleti áttekitő Kombiatorika quick-guide: - db. elemből db. sorredjeire vagyuk kívácsiak: permutáció - db. elemből m < db. háyféleképp rakható
(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0.
Földtudomáy lpszk 006/07 félév Mtemtik I gykorlt IV Megoldások A bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, >N eseté A < ε A 0 bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, > N
A matematikai statisztika elemei
A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................
Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós
Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.
A figurális számokról (II.)
A figurális számokról (II.) Tuzso Zoltá, Székelyudvarhely A figurális számok jelölése em egységes, ugyais mide yelve más-más féle képpe jelölik, legtöbb esetbe a megevez szó els betjével. A továbbiakba
Meghökkentő és hihetetlen barangolás a matematikai végtelen birodalmában (Végtelen sorokról) július 6.
Meghökkető és hihetetle baragolás a matematikai végtele birodalmába (Végtele sorokról) 59. Rátz László vádorgyűlés (spec.mat. szekció) Gödöllő 09. július 6. Dr. Németh József c. egyetemi taár SZTE TTIK
min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is:
. A szupréum elv. = H R felülr l körlátos H fels korlátai között va legkisebb, azaz A és B a A és K B : a K Ekkor ξ-re: mi{k R K fels korlátja H-ak} } a A : a ξ : ξ fels korlát A legkisebb fels korlát
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szit 5 ÉRETTSÉGI VIZSGA 05. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika emelt szit Fotos tudivalók
V. Deriválható függvények
Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája
Eötvös Loránd Tudományegyetem Természettudományi Kar
Eötvös Lorád Tudomáyegyetem Természettudomáyi Kar Végtele sorokkal kapcsolatos tételek és ellepéldák Szakdolgozat Készítette: Csala Mátyás Matematika Bsc Matematikai elemző szakiráy Témavezető: Gémes Margit
Variációk egy egyenlőtlenség kapcsán
Variációk egy egyelőtleség kapcsá Tuzso Zoltá, Székelyudvarhely Mit a régebbi, mit az újabb alteratív taköyvekbe valamit számos feladatgyűjteméybe, a matematikai idukció taítása fejezetbe megtalálható
Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK
Mőbiusz Nemzetözi Meghívásos Matematia Versey Maó, 0. március 6. MEGOLDÁSOK 5 700. Egy gép 5 óra alatt = 000 alatt 000 csavart. 000 csavart észít, így = gép észít el 5 óra 000. 5 + 6 = = 5 + 5 6 5 6 6.
SOROK Feladatok és megoldások 1. Numerikus sorok
SOROK Feladatok és megoldások. Numerikus sorok I. Határozza meg az alábbi, mértai sorra visszavezethető sorok esetébe az S -edik részletösszeget és a sor S összegét! )...... k 5 5 5 5 )...... 5 5 5 5 )......
Általános taggal megadott sorozatok összegzési képletei
Általáos taggal megadott sorozatok összegzési képletei Kéri Gerzso Ferec. Bevezetés A sorozatok éháy érdekes esetét tárgyaló el adást az alábbi botásba építem fel:. képletek,. alkalmazások, 3. bizoyítás
Kombinatorika. Variáció, permutáció, kombináció. Binomiális tétel, szita formula.
Kombiatorika Variáció, permutáció, kombiáció Biomiális tétel, szita formula 1 Kombiatorikai alapfeladatok A kombiatorikai alapfeladatok léyege az, hogy bizoyos elemeket sorba redezük, vagy éháyat kiválasztuk
1. Gyökvonás komplex számból
1. Gyökvoás komplex számból Gyökvoás komplex számból Ismétlés: Ha r,s > 0 valós, akkor r(cosα+isiα) = s(cosβ+isiβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete: ( s(cosβ+isiβ)
MATEMATIKA ÉRETTSÉGI május 5. EMELT SZINT I.
MATEMATIKA ÉRETTSÉGI 05. május 5. EMELT SZINT I. ) Oldja meg a valós számok halmazá az alábbi egyeleteket! a) si x cos x (6 pot) b) x x x (7 pot) a) cos x si x helyettesítése. Nullára redezve: si x si
dr. CONSTANTIN NĂSTĂSESCU egyetemi tanár a Román Akadémia levelező tagja dr. CONSTANTIN NIŢĂ egyetemi tanár
dr. CONSTANTIN NĂSTĂSESCU egyetemi taár a Romá Akadémia levelező tagja dr. CONSTANTIN NIŢĂ egyetemi taár I. VALÓS SZÁMOK. VALÓS GYÖKÖKKEL RENDELKEZŐ MÁSODFOKÚ EGYENLETEK II. A MATEMATIKAI LOGIKA ELEMEI.
Sorozatok A.: Sorozatok általában
200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szit 1011 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fotos tudivalók
Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha
. Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,
4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!!
4. Test feletti egyhatározatlaú poliomok Klasszikus algebra előadás Waldhauser Tamás 2013 április 11. Eddig a poliomokkal mit formális kifejezésekkel számoltuk, em éltük azzal a lehetőséggel, hogy x helyébe
PRÓBAÉRETTSÉGI VIZSGA február 10.
PRÓBAÉRETTSÉGI VIZSGA 08. február 0. STUDIUM GENERALE MATEMATIKA SZEKCIÓ MATEMATIKA EMELT SZINTŰ PRÓBAÉRETTSÉGI VIZSGA Javítási útmutató 08. február 0. STUDIUM GENERALE MATEMATIKA SZEKCIÓ Matematika Írásbeli
Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév
Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis 1. Írásbeli beugró kérdések Készítette: Szátó Ádám 2011. Tavaszi félév 1. Írja le a Dedekid-axiómát! Legyeek A R, B R. Ekkor ha a A és b B : a b, akkor
Analízis feladatgy jtemény II.
Oktatási segédayag a Programtervez matematikus szak Aalízis I. tatárgyához (003004. taév szi félév) Aalízis feladatgy jteméy II. Összeállította Szili László 003 Tartalomjegyzék I. Feladatok 3. Valós sorozatok.......................................
Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz. 2 dx = 1, cos nx dx = 2 π. sin nx dx = 2 π
Matematika Ac gyakorlat Vegyzméröki, Bioméröki, Köryezetméröki szakok, 7/8 ősz 4. feladatsor: Fourier-sorok megoldás. Legye fx = ha x, ], fx = ha x, π]. Írjuk fel f Fourier-sorát. Mely potokba állítja
3. MINTAFELADATSOR EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Oktatáskutató és Fejlesztő Itézet TÁMOP-3.1.1-11/1-01-0001 XXI. századi közoktatás (fejlesztés, koordiáció) II. szakasz MATEMATIKA 3. MINTAFELADATSOR EMELT SZINT 015 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatáskutató
Ábrahám Gábor: A Jensen-egyenlőtlenség. Megoldások. Megoldások, megoldás ötletek (Jensen-egyenlőtlenség)
Megoldások, megoldás ötletek (Jensen-egyenlőtlenség) I. Geometriai egyenlőtlenségek, szélsőérték feladatok 1. Mivel az [ ] f :0; π ; xa sin xfolytonos az értelmezési tartományán, ezért elég azt belátni,
Bevezető analízis II. példatár
Bevezető aalízis II. példatár Gémes Margit, Szetmiklóssy Zoltá Eötvös Lorád Tudomáyegyetem Természettudomáyi Kar Matematikai Itézet 06. ovember 3. Tartalomjegyzék. Bizoyítási módszerek, valós számok 3..
XXVI. Erdélyi Magyar Matematikaverseny Zilah, február
I. forduló 9. osztály. feladat: Mikor áll fe az egyelőség? a) Igazold, hogy + b) Igazold, hogy. feladat: Az..., bármely > 0 és eseté! +, bármely * eseté! sorozatot a következőképpe értelmezzük: és, bármely