9. tétel: Elsı- és másodfokú egyenlıtlenségek, pozitív számok nevezetes közepei, és ezek felhasználása szélsıérték-feladatok megoldásában
|
|
- Csenge Vass
- 5 évvel ezelőtt
- Látták:
Átírás
1 9. tétel: Elsı- és másodfoú egyelıtlesége, pozitív számo evezetes özepei, és eze felhaszálása szélsıérté-feladato megoldásáa Egyelıtleség: Két relációsjellel összeapcsolt ifejezés vagy függvéy. Az egyelıtleséget szoás olya speciális yitott modata (változó()tól függı állítás) is evezi, amelye alaphalmaza számhalmaz. Az egyelıtleség megoldása: Megeressü a ét ifejezés/függvéy özös értelmezési tartomáyáa alaphalmazáa azo elemeit, amelyere a ét ifejezés/függvéy helyettesítési értéei a megadott relációa vaa. Ezee halmaza az egyelıtleség megoldáshalmaza vagy más éve igazsághalmaza. Ha az egyelıtleség az alaphalmaz mide elemére teljesül, aor a megoldáshalmaz egyezi az alaphalmazzal, az egyelıtleség ilyeor azoosság. Ha a relációs jel ét oldalá a változóa csa algerai egész ifejezései vaa, aor algerai egyelıtlesége evezzü. Ee foszáma a ee szereplı legmagasa foszámú tag foszámával egyelı. Nem algeraia például az aszolút értées, a törtes, a gyöös, az epoeciális, a logaritmius, a trigoometrius egyelıtlesége. Egyelıtleség megoldásáál a egatív számmal való szorzás/osztás megfordítja a relációs jelet. Ezért például ismeretleel (elıjelvizsgálat élül) em lehet eszorozi. Elsıfoú egyelıtleség: Reduált alaja: m + > 0, m; R m 0. Megoldása m elıjelétıl függ: m> 0, aor >, ha m< 0, aor m < m Másodfoú egyelıtlesége: Reduált alaja: a + c> 0, ahol a; ;c R a 0. megoldás: a függvéygrafio értéeie leolvasása alapjá: A másodfoú függvéy épe egy paraola. A függvéye D-tıl függıe 0,, vagy metszéspotja va az tegellyel, amelyeet az egyelet megoldásával megaphatu. A függvéy 0-ál ise vagy agyo f() értéeihez tartozó -eet leolvashatju a függvéy grafiojáról.
2 I. eset: a> 0 D> 0 D= 0 D< 0 < vagy > R \ { } R II. eset: a< 0 D> 0 D= 0 D< 0 < < = II. megoldás: algerai úto Az egyelet gyöeie meghatározása utá felírható gyötéyezıs alaa: a ( ) ( ) > 0 alaa. Ezutá a szorzat téyezıie elıjelét vizsgálva megaphatju a megoldáshalmazt. Természetese az a + c 0 egyelıtleséget is hasolóa oldju meg. Pozitív számo evezetes özepei: Harmoius özép: d pozitív valós szám harmoius özepét megapju, ha -et elosztju a számo reciproösszegével. H=,,..., > Geometriai (mértai) özép: d pozitív valós szám mértai özepe a számo szorzatáa -edi gyöe. G=...,,..., 0
3 Számtai (aritmetiai) özép: d valós szám számtai özepe a számo összegée -ed része A=,,..., R Négyzetes (vadratius) özép: d pozitív szám égyzetes özepe a számo égyzetösszege -ed részée égyzetgyöe Q=,,..., 0 -adi hatváyözép: d pozitív szám -adi hatváyözepe a számo -adi hatváyösszege -ed részée -adi gyöe. Q = N és >,,..., 0 Pozitív számo özepei agyságredi sora állítható, ha,,..., > 0 és >, aor: mi ; ; K; H G A Q Q ma ; ; K; { } { } Bármely ettı özött az egyelıség aor és csa aor áll fe, ha = = =.... Két pozitív szám harmoius özepe ise vagy egyelı, mit geometriai özepü. Egyelıség aor és csa aor áll fe, ha a ét szám egyelı. Bizoyítás: a + a a a : a > 0 a ( ) > 0 a a 0 ( a ) 0 Ez pedig azoosa igaz, az egyelıség pedig valóa a= eseté áll fe. Evivales átalaításoat végeztü. a
4 Két pozitív szám geometriai özepe ise vagy egyelı, mit a számtai özepü. Egyelıség aor, és csa aor áll fe, ha a ét szám egyelı. Bizoyítás: a a 0 a ( a ) 0 Ez pedig azoosa igaz, az egyelıség pedig valóa a= eseté áll fe. Evivales átalaításoat végeztü, Két pozitív szám számtai özepe ise vagy egyelı, mit égyzetes özepü. Egyelıség aor és csa aor áll fe, ha a ét szám egyelı. Bizoyítás: a + a + a + a + a + 0 a a ( a ) ( ) hisze midét old. 0 a a 0 Ez pedig azoosa igaz, az egyelıség pedig valóa a= eseté áll fe. Evivales átalaításoat végeztü, Felhaszáláso:. Pozitív szám és reciproáa összege agyo vagy egyelı ettıél, de csa aor lehet egyelı, ha a szám. Azaz, ha > 0. Bizoyítás: haszálju a számtai és mértai özép összefüggését és -re Tehát: =, amiıl És az egyelıség csa aor teljesül, ha =, vagyis =, tehát =.. Adott erülető téglalapo özül a maimális területő a égyzet. Bizoyítás: haszálju a számtai és mértai özép özti összefüggést a téglalap oldalaira a, eírhatju a helyére a téglalap erületét és területét
5 K T, vagyis K K T 6 A terület legagyo értée lehet, és ezt a maimumot el is érheti, ha G=A, 6 azaz ha a=. Tehát a területe aor lesz maimális, ha a téglalap égyzet. 3. Keressü meg az f () = függvéy maimumát [ 0;] e! Mivel: f () = ( ), haszálju a számtai és mértai özép özti 0;, aor eze a számo emegatíva)! összefüggést -re és ( ) re (ha [ ] = ( ) eıl pedig f () = ( ) A függvéy mide értée [ 0;] e tehát ise vagy egyelı -él, de ezt el is érheti, ha A=G, vagyis maimuma =. Ez lehetséges, ha = -e va, értée pedig.. Keressü meg az f () Mivel f () ( ) = ( ) = 3 függvéy maimumát [ ;] e (pot ezért ellett a -es szorzó, hogy A ostas legye) =. Így a függvéy 0! =, haszálju a számtai és mértai özép összefüggését,, (-) re (eze emegatíva). ( ) 3 = eıl = ( ), és ezt a maimumot el is érheti, ha = = ( ) Ez pedig ( ) f () = -ál lehetséges. 3 Alalmazáso: Matematiá elül: - egyé, magasa foú, vagy em algerai egyelıtlesége visszavezethetı a másodfoú egyelıtleség megoldására - ifejezése értelmezési tartomáyáa vizsgálata - szélsıérté-feladato elemi úto törtéı megoldásához (lásd példa) - statisztiáa a mita jellemzése - özépértée, - szórás mit az eltérése égyzetes özepe - ai amat (mértai özép) - súlyozott számtai özép Egyé: - átlagseesség egyezı úto (harmoius özép)
Komplex számok. 6. fejezet. A komplex szám algebrai alakja. Feladatok. alábbi komplex számokat és helyvektorukat:
6 fejezet Komplex számo A omplex szám algebrai alaja D 61 Komplex száma evezü mide olya a+bi alaú ifejezést amelybe a és b valós szám i pedig az összes valós számtól ülöböz épzetes egysége evezett szimbólum
Részletesebben( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn
Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes
RészletesebbenHajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011
1 Molár-Sáska Gáboré: Hajós György Verseyre javasolt feladatok SZIE.YMÉTK 011 1. Írja fel a számokat 1-tıl 011-ig egymás utá! Határozza meg az így kapott agy szám 0-cal való osztási maradékát!. Az { }
RészletesebbenMőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK
Mőbiusz Nemzetözi Meghívásos Matematia Versey Maó, 0. március 6. MEGOLDÁSOK 5 700. Egy gép 5 óra alatt = 000 alatt 000 csavart. 000 csavart észít, így = gép észít el 5 óra 000. 5 + 6 = = 5 + 5 6 5 6 6.
RészletesebbenTuzson Zoltán A Sturm-módszer és alkalmazása
Tuzso Zoltá A turm-módszer és alalmazása zámtala szélsérté probléma megoldása, vag egeltleség bzoítása ago gara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölder-féle egeltleség, derválta
RészletesebbenKomplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0
Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások
RészletesebbenSzámelméleti alapfogalmak
Számelméleti alapfogalma A maradéos osztás tétele Legye a és b ét természetes szám, b, és a>b Aor egyértelme léteze q és r természetes számo, amelyere igaz: a b q r, r b Megevezés: a osztadó b osztó q
Részletesebben1. Komplex szám rendje
1. Komplex szám redje A hatváyo periódiusa ismétlőde. Tétel Legye 0 z C. Ha z egységgyö, aor hatváyai periódiusa ismétlőde. Ha z em egységgyö, aor bármely ét, egész itevőjű hatváya ülöböző. Tegyü föl,
Részletesebben( ) ; VI. FEJEZET. Polinomok és algebrai egyenletek. Polinomok és algebrai egyenletek 215. VI.2.7. Gyakorlatok és feladatok (241.
Poliomo és algebrai egyelete 5 VI FEJEZET Poliomo és algebrai egyelete VI7 Gyaorlato és feladato ( oldal) A övetező ifejezése özül melye moomo? Háy változósa, háyad foúa és meyi az együtthatóju? 7 XX X,,
Részletesebben1. tétel. Halmazok, halmazműveletek, halmazok számossága, halmazműveletek és logikai műveletek kapcsolata.
. tétel. Halmazo, halmazművelete, halmazo számossága, halmazművelete és logiai művelete apcsolata. Vázlat:.Halmazoal apcsolatos elevezése, alapfogalma pl.: halmaz, elem, adott egy halmaz, megadása, jelölése
Részletesebben10.M ALGEBRA < <
0.M ALGEBRA GYÖKÖS KIFEJEZÉSEK. Mutassuk meg, hogy < + +... + < + + 008 009 + 009 008 5. Mutassuk meg, hogy va olya pozitív egész szám, amelyre 99 < + + +... + < 995. Igazoljuk, hogy bármely pozitív egész
RészletesebbenXXVI. Erdélyi Magyar Matematikaverseny Zilah, február II.forduló -10. osztály
Miisterul Educaţiei Națioale și Cercetării Știițifice Subiecte petru Etapa aţioală a Cocursului de Matematică al Liceelor Maghiare di Româia XXVI. Erdélyi Magyar Matematikaversey Zilah, 016. február 11
RészletesebbenALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.
ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az
RészletesebbenNumerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása
Numerius módszere. Nemlieáris egyelee özelíő megoldása Egyelemegoldás iervallumelezéssel A Baach-ipo-ierációs módszer A Newo-módszer és válozaai Álaláosío Newo-módszer Egyelemegoldás iervallumelezéssel
RészletesebbenTanmenetjavaslat. az NT-11580 raktári számú Matematika 5. tankönyvhöz. Oktatáskutató és Fejlesztő Intézet, Budapest
Tameetjavaslat az NT-11580 ratári sú Matematia 5. taöyvhöz Otatásutató és Fejlesztő Itézet, Budapest A tameetjavaslat 144 órára lebotva dolgozza fel a taayagot. Ameyibe eél több idő áll a redelezésüre,
Részletesebbenmegoldásvázlatok Kalkulus gyakorlat Fizika BSc I/1, 1. feladatsor 1. Rajzoljuk le a számegyenesen az alábbi halmazokat!
megoldásvázlatok Fizika BSc I/,. feladatsor. Rajzoljuk le a számegyeese az alábbi halmazokat! a { R < 5}, b { R 4}, c { Z 4}, d { Q < 4 6}, e { N 3 }.. Igazak-e az alábbi állítások? Adjuk meg az állítások
RészletesebbenSorozatok, határérték fogalma. Függvények határértéke, folytonossága
Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt
Részletesebben24. tétel Kombinatorika. Gráfok.
Mgyr Eszter Emelt szitő érettségi tétele 4. tétel Komitori. Gráfo. Komitori: A mtemti zo elméleti területe, mely egy véges hlmz elemeie csoportosításávl, iválsztásávl vgy sorrederásávl fogllozi. Permutáció
RészletesebbenDiszkrét matematika II., 3. előadás. Komplex számok
1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,
RészletesebbenKutatói pályára felkészítı modul
Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI
RészletesebbenARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK
ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK 1. MŐVELETEK TERMÉSZETES SZÁMOKKAL ) Összedás: + = c és - összeddók, c - összeg A feldtok yivl gyo (tö). Az összedás tuljdosági: 1) kommuttív (felcserélhetı):
RészletesebbenNevezetes sorozat-határértékek
Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív
Részletesebben1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3
Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)
Részletesebben1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1
A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Ha N és h R, akkor + h + h Mikor va itt egyelőség? Léyeges-e a h feltétel? Számtai-mértai közép Bármely N és,, R, k 0 k =,, választással k
RészletesebbenIV.FEJEZET KOMPLEX SZÁMOK ÉS ALKALMAZÁSAIK
4 Komplex számo és alalmazásai IVFEJEZET KOMPLEX SZÁMOK ÉS ALKALMAZÁSAIK IV Gyaorlato (9 oldal) Végezd el a övetező műveleteet!,, +, a) ( ) ( ) ( ) ; b) (, ) (, ) ; c) (, ) (, ) ; d) (, ) + (, ) + (, )
Részletesebben2. gyakorlat - Hatványsorok és Taylor-sorok
. gyakorlat - Hatváysorok és Taylor-sorok 9. március 3.. Adjuk meg az itt szereplő sorok kovergeciasugarát és kovergeciaitervallumát! + a = + Azaz a hatváysor kovergeciasugara. Az biztos, hogy a (-,) yílt
Részletesebben2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...
. Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk
RészletesebbenDivergens sorok. Szakdolgozat
Diverges soro Szadolgozat Eötvös Lorád Tudomáyegyetem Természettudomáyi Kar Készítette: Szabó Szilárd Matematia Bsc., taári szairáy Témavezető: Gémes Margit Műszai gazdasági taár Aalízis taszé Budapest,
RészletesebbenKiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok
Kiegészítő részelőadás 2. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 204 205 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)
Részletesebben90 Folytonos függvények. IV. Folytonos függvények
9 Folytoos függvéye IV Folytoos függvéye Az előző fejezetbe adott f : D függvéy viseledését a D halmaz torlódási potjáa öryezetébe vizsgáltu Az pot em feltétleül tartozott a D halmazhoz ( D ) Ebbe a fejezetbe
Részletesebben24. Kombinatorika, a valószínűségszámítás elemei
4. Kombiatoria, a valószíűségszámítás elemei Kombiatoria A véges halmazoal foglalozó tudomáyterület. Idő hiáyába csa a evezetes összeszámolásoal foglalozu. a) Sorbaállításo (ermutáció) alafeladat: ülöböző
Részletesebben1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük:
1. A KOMPLEX SZÁMTEST A természetes, az egész, a raioális és a valós számok ismeretét feltételezzük: N = f1 ::: :::g Z = f::: 3 0 1 3 :::g p Q = j p q Z és q 6= 0 : q A valós szám értelmezése végtele tizedestörtkét
RészletesebbenNumerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása
umerius módszere. emlieáris egyelee özelíő megoldása Egyelemegoldás iervallumelezéssel Legye :[ a, b] R olyoos, a, b, és eressü az egyele egy [ a, b] -beli megoldásá. Bolzao éele: Legye olyoos a véges,
Részletesebben(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):
A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak
RészletesebbenSorozatok október 15. Határozza meg a következ sorozatok határértékeit!
Sorozatok 20. október 5. Határozza meg a következ sorozatok határértékeit!. Zh feladat:vizsgálja meg mootoitás és korlátosság szerit az alábbi sorozatot! a + ha ; 2; 5 Mootoitás eldötéséhez vizsgáljuk
Részletesebben3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.
3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.
Részletesebben5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI-
5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI- FÉLE RELATIVITÁSI ELV m, m,,m r, r,,r r, r,, r 6 db oordáta és sebességompoes 5.. Dama Mozgásegyelete: m r = F F, ahol F jelöl a
RészletesebbenStatisztikai adatok elemzése
Statszta adato elemzése Gazdaságstatszta A soaság jellemzése özépértéeel Eloszlásjellemző A soaság jellemzésée szempotja A soaság jellemzésée szempotja: A soaság tpus értéée meghatározása. Az adato ülöbözőségée
RészletesebbenEgy lehetséges tételsor megoldásokkal
Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe
RészletesebbenMATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)
O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei
RészletesebbenDiszkrét matematika KOMBINATORIKA KOMBINATORIKA
A ombiatoria véges elemszámú halmazoat vizsgál. A fő érdése: a halmaz elemeit háyféleéppe lehet sorbaredezi, iválasztai özülü éháyat vagy aár midet bizoyos feltétele mellett, stb. Ezért a ombiatoria alapját
Részletesebben3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló
. Számelmélet I. Feladatok 1. Háy égyzetszám osztója va a 7 5 5 7 számak?. Az pozitív egész számak potosa két pozitív osztója va, az + 1-ek pedig potosa három. Háy pozitív osztója va az + 01 számak? OKTV
RészletesebbenSzámsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.
Számsorozatok 2015. december 22. 1. Alapfeladatok 1. Feladat: Határozzuk meg az a 2 + 7 5 2 + 4 létezik. sorozat határértékét, ha Megoldás: Mivel egy tört határértéke a kérdés, ezért vizsgáljuk meg el
RészletesebbenA G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk:
Kocsis Júlia Egyelőtleségek 1. Feladat: Bizoytsuk be, hogy tetszőleges a, b, c pozitv valósakra a a b b c c (abc) a+b+c. Megoldás: Tekitsük a, b és c számok saját magukkal súlyozott harmoikus és mértai
RészletesebbenA figurális számokról (IV.)
A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe
Részletesebbenmin{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is:
. A szupréum elv. = H R felülr l körlátos H fels korlátai között va legkisebb, azaz A és B a A és K B : a K Ekkor ξ-re: mi{k R K fels korlátja H-ak} } a A : a ξ : ξ fels korlát A legkisebb fels korlát
Részletesebbenf (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben
Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,
RészletesebbenSZÁMHALMAZOK Halmazábrán ábrázolom a valós számok halmazát és részhalmazait (néhány példával). (C) pl. 1/4; 1/2. pl. 1;2;0;-1; N pl. 0. pl.
2. tétel Számhalmazo (a valós számo halmaza és részhalmazai), oszthatósággal apcsolatos problémá, számredszere. SZÁMHALMAZOK Halmazábrá ábrázolom a valós számo halmazát és részhalmazait (éháy példával).
RészletesebbenStatisztika 1. zárthelyi dolgozat március 21.
Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy
RészletesebbenVegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz. 2 dx = 1, cos nx dx = 2 π. sin nx dx = 2 π
Matematika Ac gyakorlat Vegyzméröki, Bioméröki, Köryezetméröki szakok, 7/8 ősz 4. feladatsor: Fourier-sorok megoldás. Legye fx = ha x, ], fx = ha x, π]. Írjuk fel f Fourier-sorát. Mely potokba állítja
RészletesebbenKalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév
Kalkulus szigorlati tételsor Számítástechika-techika szak, II. évfolyam,. félév Sorozatok: 1. A valós számoko értelmezett műveletek és reláció tulajdoságai. Számok abszolút értéke, itervallumok. Számhalmazok
Részletesebben44. HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, 2015 Szóbeli feladatok megoldásai. Megoldás: 6
9 évfolm HNCSÓK KÁLMÁN MEGYEI MTEMTIKVERSENY MEZŐKÖVESD 5 Szóbeli feldto megoldási ) dju meg zot z egész értéeet mele mellett z 6 6 Z 6 6 6 6 is egész szám! pot 6 6 6 pot mide egész -re pártl íg or lesz
RészletesebbenFüggvényhatárérték-számítás
Függvéyhatárérték-számítás I Függvéyek véges helye vett véges határértéke I itervallumo, ha va olya k valós szám, melyre az I itervallumo, ha va olya K valós szám, melyre I itervallumo, ha alulról és felülről
RészletesebbenV. Deriválható függvények
Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája
RészletesebbenÁltalános taggal megadott sorozatok összegzési képletei
Általáos taggal megadott sorozatok összegzési képletei Kéri Gerzso Ferec. Bevezetés A sorozatok éháy érdekes esetét tárgyaló el adást az alábbi botásba építem fel:. képletek,. alkalmazások, 3. bizoyítás
RészletesebbenA Cauchy függvényegyenlet és néhány rokon probléma
A Cauchy függvéyegyelet és éháy roko probléma Tuzso Zoltá, Székelyudvarhely A függvéyegyeletek egyik alapegyelete a Cauchy függvéyegyelet, amely a következő: Melyek azok az f : R R folytoos függvéyek,
RészletesebbenGyakorló feladatok II.
Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,
RészletesebbenA fogótétel alkalmazása sorozatok határértékének kiszámolására
A fogótétel alalmazása sorozato határértéée iszámolására Tuzso Zoltá, Széelyudvarhely Mide izoyal ics más olya matematiai tétel amelye olya so megevezése lee, mit az úgyevezett fogótétele, amelye gyaori
RészletesebbenI. rész. c) Az m valós paraméter értékétől függően hány megoldása van a valós számok halmazán az alábbi egyenletnek?
Fazakas Tüde, 05 ovember Emelt szitű érettségi feladatsorok és megoldásaik Összeállította: Fazakas Tüde; dátum: 05 ovember I rész feladat a) Egymillió forit összegű jelzálogkölcsöt veszük fel évre 5%-os
RészletesebbenSzabályozó szelepek (PN 16) VF 2-2 utú szelep, karima VF 3-3 járatú szelep, karima
Szabályozó szelepe (PN 16) VF 2-2 utú szelep, arima VF 3-3 járatú szelep, arima eírás Jellemző: ágytömítéses ostrució Gyorscsatlaozó az AMV(E) 335, AMV(E) 435 -hez 2- és 3 Alalmazás everő és osztó azelepét
RészletesebbenValószínőségszámítás
Vlószíőségszáítás 6. elıdás... Kovrc Defícó. Az és ovrcáj: cov,:[--] Kszáítás: cov, [-- ]- A últ ór végé látott állítás értelée cov,, h és függetlee. Megj.: Aól, hogy cov, e övetez, hogy függetlee: legye
RészletesebbenEgyenletek, egyenlőtlenségek, egyenletrendszerek I.
Egyenletek, egyenlőtlenségek, egyenletrendszerek I. DEFINÍCIÓ: (Nyitott mondat) Az olyan állítást, amelyben az alany helyén változó szerepel, nyitott mondatnak nevezzük. A nyitott mondatba írt változót
RészletesebbenII. ALGEBRA ÉS SZÁMELMÉLET
MATEMATIKA FELADATSOR 9. évolym Elézést tegezésért! I. HALMAZOK Számegyeesek, itervllumok. Töltsd ki táláztot! Mide sor egy-egy itervllum hároméle megdás szerepelje!. Add meg következő itervllumokt! A
RészletesebbenA k -adik leghosszabb rekord határeloszlása véletlen bolyongásokban
A -adi leghosszabb reord határeloszlása véletle bolyogásoba TDK dolgozat 204 Név: Neptu ód: Képzés: Témavezet : Szabó Réa I25ZNU alalmazott matematius MSc. Dr. Vet Bálit Tartalomjegyzé. Bevezetés 2. Korábbi
RészletesebbenDr. Tóth László, Kombinatorika (PTE TTK, 2007) nem vagyunk tekintettel a kiválasztott elemek sorrendjére. Mennyi a lehetőségek száma?
Dr Tóth László, Kombiatoria (PTE TTK, 7 5 Kombiáció 5 Feladat Az,, 3, 4 számo özül válasszu i ettőt (ét ülöbözőt és írju fel ezeet úgy, hogy em vagyu teitettel a iválasztott eleme sorredjére Meyi a lehetősége
Részletesebben1 h. 3. Hogyan szól a számtani és a mértani közép közötti összefüggést kifejező tétel?
1. Fogalmazza meg az R -beli háromszög-egyelőtleségeket!,y R (i) +y + y (ii) -y - y 2. Mit mod ki a Beroulli-egyelőtleség? (i) (1+h) 1+ h ( h>-1) ( N*) (ii) (1+h) 1+2 h 1 ( N*) h 2 3. Hogya szól a számtai
RészletesebbenTaylor-sorok alkalmazása numerikus sorok vizsgálatára
Eötvös Lorád Tudomáyegyetem Természettudomáyi Kar Alkalmazott Aalízis és Számításmatematikai Taszék Taylor-sorok alkalmazása umerikus sorok vizsgálatára Szakdolgozat Készítette: Témavezet : Walter Petra
RészletesebbenNumerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag
VIK, Műszaki Iformatika ANALÍZIS Numerikus sorok Oktatási segédayag A Villamosméröki és Iformatikai Kar műszaki iformatikus hallgatóiak tartott előadásai alapjá összeállította: Fritz Józsefé dr. Kóya Iloa
Részletesebbenó ó ú ú ó ó ó ü ó ü Á Á ü É ó ü ü ü ú ü ó ó ü ó ü ó ó ú ú ú ü Ü ú ú ó ó ü ó ü ü Ü ü ú ó Ü ü ű ű ü ó ü ű ü ó ú ó ú ú ú ó ú ü ü ű ó ú ó ó ü ó ó ó ó ú ó ü ó ó ü ü ó ü ü Ü ü ó ü ü ü ó Ü ó ű ü ó ü ü ü ú ó ü
RészletesebbenÜ Ö Á Á Á Á Á É ű Ü Ú ű ű Á É ű Ú Ü ű Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Ü Ü Ü Ö Ö Ú Ö Ü Ö ű ű ű ű ű Á ű Ú ű ű ű ű ű É Á Ö Ö Ö ű ű ű Á ű ű ű ű ű ű ű ű ű ű Ü Ü Ü Ü ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű ű ű ű Ü Ö Ü Ó Ö ű ű ű
RészletesebbenÖ Ó ú É ű É Ö Ö Ö Ü Ó Ú É ú É Ü Ú ú Ü ű ú Ü Ö Ö ú ű Ú ű ű ú Ö Ö Ö Ö É ú ú Ő Ö ú Ü Ó ú Ú Ü Ö ű ű ű Ö ű ú Ó ű Ö Ü ű ú ú ú ú É ú Ö ú ú Ü ú Ó ú ú ú ú ú ú ű ű ú ű ú ú ű Ö ú ú ú ű Ö ú ű ú ű Ü Ö Ü ű Ü Ö ú ú Ü
Részletesebbenú Ú Ö É ú ü í í ü í í í í ü Ú í ű í ú ü ü í í ü ü í ü ü ú Í í ű í ü ü Ü í í ü í ú ű ú ú í í ü ú í ü É ü Ö í í ü ú ű í í ü í ű í í Í Ö í í ü Ö ú É Í í í í ü ű ü ű ü ü ü ü í í í í ú í ü í ú É ü ü ü ü í ü
RészletesebbenÁ Á Ó É ö ó ó ó ő ő ó ö ő ő ű ó ú ö ó ó ő ó ü ó ó ő ó ó ő ó ü ó ő ő ő ó ő ő ö ó ó ó ö ö ü ö Á Á Ó ü ó ö ó ő ó ő ő Á É Á Ó ű ü ö ó ő ó ú ÉÉ ó ú ő ö ó ó ó ó ó ö ö ő ü ó ö ö ü ó ű ö ó ó ó ó ú ó ü ó ó ö ó
RészletesebbenÉ É É ü É ó ó É ű ó ÉÉ ó É ó É É ó É ü ó ó Ó ű ó ó ó ó ü É ü ű ó É É É É ü ü ó ó ó ü É ó É ó É ó ó ó ü ü ü ü ó ü ü ü ü ó ű ű É Í Ó Ü Ö ó ó ó Ó ó ü ü ü ű ó ü ü ű ü ü ó ü ű ü ó ü ó ó ó ó ó ó ó ü ó ó ó ű
RészletesebbenÁ ű ő ö Í é é ő Ö Ö é ő Ö ő ö é é Ö ü é ó Ő é é ó é ó é é é é Ö ó ó ő é Ü é ó ö ó ö é é Ő ú é é é é ő Ú é ó Ő ö Ő é é é é ű ö é Ö é é ó ű ö é ő é é é é é é é é é Ö é Ö ü é é é é ö ü é ó é ó ó é ü ó é é
Részletesebben:.::-r:,: DlMENZI0l szoc!0toolnl ránsnnat0m A HELYI,:.:l:. * [:inln.itri lú.6lrl ri:rnl:iilki t*kill[mnt.ml Kilírirlrln K!.,,o,.r*,u, é é é ő é é é ő é ő ő ú í í é é é ő é í é ű é é ő ő é ü é é é í é ő
RészletesebbenÜ Éü É ü í í Í ö Ü Ú ú Ó í ő í Ö ű ö Ó ú Ű ü í Ó ö Ó Ü Ó Ó í í ú í Ü Ü ő Ú Ó Ó í ú É ÉÉ É Á Ü Ü Ü Ú ő í Ő Ó Ü ő ö ü ő ü ö ú ő ő ő ü ö ő ű ö ő ü ő ő ü ú ü ő ü ü Í ü Í Á Ö Í É Ú ö Í Á Ö í É ö í ő ő í ö ü
Részletesebbenű Ő ű Ü Ü Ü ű ű Ú ű ű ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű Ú Ü Ő ű Ö ű Ü ű Ö ű Ú ű ű Ű É É ű ű ű ű ű ű ű Ü ű ű ű ű ű ű ű Ú ű ű ű É Ű É Ü Ü Ú É É ű ű ű Ü ű É É Ű É ű ű ű ű ű ű ű Ö Ó ű ű ű ű ű ű Ö É Ó É É É Ü
RészletesebbenV. Az egyváltozós valós függvények analízisének elemei
Az egyváltozós valós függvéyek aalíziséek elemei Soozat hatáétéke egye a, és b egye a -, és b - Ige egye a -, és b - Nem egye a -, és b - 6 Nem egye a -, és b - 7 Nem egye a _- i, és b 8 Ige egye a _-
Részletesebben1. Gyökvonás komplex számból
1. Gyökvoás komplex számból Gyökvoás komplex számból Ismétlés: Ha r,s > 0 valós, akkor r(cosα+isiα) = s(cosβ+isiβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete: ( s(cosβ+isiβ)
RészletesebbenMatematika B4 I. gyakorlat
Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a
RészletesebbenA statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük.
Statisztikai módszerek. BMEGEVGAT01 Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudomáyi Egyetem Gépészméröki Kar Hidrodiamikai Redszerek Taszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Részletesebbendr. CONSTANTIN NĂSTĂSESCU egyetemi tanár a Román Akadémia levelező tagja dr. CONSTANTIN NIŢĂ egyetemi tanár
dr. CONSTANTIN NĂSTĂSESCU egyetemi taár a Romá Akadémia levelező tagja dr. CONSTANTIN NIŢĂ egyetemi taár I. VALÓS SZÁMOK. VALÓS GYÖKÖKKEL RENDELKEZŐ MÁSODFOKÚ EGYENLETEK II. A MATEMATIKAI LOGIKA ELEMEI.
RészletesebbenXL. Felvidéki Magyar Matematikaverseny Oláh György Emlékverseny Galánta 2016 Megoldások 1. évfolyam. + x = x x 12
XL. Felvidéi Magyar Matematiaverseny Oláh György Emléverseny Galánta 016 Megoldáso 1. évfolyam 1. Oldju meg az egész számo halmazán az egyenletet. x 005 11 + x 004 1 = x 11 005 + x 1 004 Az egyenlet mindét
Részletesebben6. Számsorozat fogalma és tulajdonságai
6. Számsorozat fogalma és tulajdoságai Taulási cél: A számsorozat fogalmáak és elemi tulajdoságaiak megismerése. A mootoitás, korlátosság vizsgálatáak elsajátítása. Nevezetes sorozatok határértékéek megismerése.
RészletesebbenOlimpiai szakkör, Dobos Sándor 2008/2009
Olimpii ször, Dobos Sádor 008/009 008 szeptember 9 Eze szörö Cev és Meelosz tételt eleveítettü fel, több gyorló feldttl, éháy lehetséges áltláosítássl További feldto: = 6 (=,, ) Htározzu meg z összes oly
RészletesebbenJegyzetek a Matematika A2H tárgyhoz
Jegyzete a Matematia A2H tárgyhoz Kreedits Sádor és Révész Szilárd György Tartalomjegyzé. Végtele umerius soro 2.. Sorozato - rövid ismétlés............................ 2.2. Végtele umerius soro............................
RészletesebbenBizonyítások. 1) a) Értelmezzük a valós számok halmazán az f függvényt az képlettel! (A k paraméter valós számot jelöl).
) a) Értelmezzük a valós számok halmazá az f függvéyt az f x = x + kx + 9x képlettel! (A k paraméter valós számot jelöl) ( ) Számítsa ki, hogy k mely értéke eseté lesz x = a függvéyek lokális szélsőértékhelye
RészletesebbenSOROK Feladatok és megoldások 1. Numerikus sorok
SOROK Feladatok és megoldások. Numerikus sorok I. Határozza meg az alábbi, mértai sorra visszavezethető sorok esetébe az S -edik részletösszeget és a sor S összegét! )...... k 5 5 5 5 )...... 5 5 5 5 )......
RészletesebbenI. Egyenlet fogalma, algebrai megoldása
11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel
Részletesebben= λ valós megoldása van.
Másodredű álladó együtthatós lieáris differeciálegyelet. Általáos alakja: y + a y + by= q Ha q = 0 Ha q 0 akkor homogé lieárisak evezzük. akkor ihomogé lieárisak evezzük. A jobb oldalo lévő q függvéyt
RészletesebbenKiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok
Kiegészítő részelőadás. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 04 05 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)
Részletesebben1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!
Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós
RészletesebbenMatematikai játékok. Svetoslav Bilchev, Emiliya Velikova
Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok
Részletesebben1. A radioaktivitás statisztikus jellege
A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a
RészletesebbenMinta JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 2. FELADATSORHOZ
JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által haszált szíűtől eltérő szíű tollal kell javítai, és a taári gyakorlatak megfelelőe
RészletesebbenA paramétereket kísérletileg meghatározott yi értékekre támaszkodva becsülik. Ha n darab kisérletet (megfigyelést, mérést) végeznek, n darab
öbbváltozós regresszók Paraméterbecslés-. A paraméterbecslés.. A probléma megfogalmazása A paramétereket kísérletleg meghatározott y értékekre támaszkodva becsülk. Ha darab ksérletet (megfgyelést, mérést
RészletesebbenA természetes számok halmaza (N)
A természetes számo halmaza (N) A természetes számoat étféleéppe vezethetjü be: ) A Peao-féle axiómaredszerrel ) Evivalecia osztályo segítségével ) A természetes számo axiomatius értelmezése. A Peao-axiómá
RészletesebbenEmelt szintő érettségi tételek. 10. tétel Számsorozatok
Mgyr Eszter Emelt szitő érettségi tétele 0. tétel zámsorozto orozt: Oly függvéy, melye értelmezési trtomáy pozitív egész számo hlmz. zámsorozt éphlmz vlós számo hlmz. f : N R f () jelöli sorozt -ei tgját.
Részletesebben