Valószínőségszámítás
|
|
- Benjámin Magyar
- 6 évvel ezelőtt
- Látták:
Átírás
1 Vlószíőségszáítás 6. elıdás... Kovrc Defícó. Az és ovrcáj: cov,:[--] Kszáítás: cov, [-- ]- A últ ór végé látott állítás értelée cov,, h és függetlee. Megj.: Aól, hogy cov, e övetez, hogy függetlee: legye szetrus r l. -/3 és. or cov, 3 - -, hsze 3. A ovrc szetrus: cov, cov, cov, D
2 Összeg szóráségyzete D D D cov, Secáls: D D D, h és függetlee elég, hogy cov,. tgú összegre: D... D < j cov, Sec.: D D D D, h tgo ároét függetlee. j A szórás Szóráségyzet értéegysége z eredet értéegységée égyzete zz l. uszo övetés dıözéél égyzeterc. z e tesz egyszerővé terretácóját. Szórás: D szóráségyzet oztív égyzetgyöe. z ár egfelelı értéegységő, D D.
3 Korrelácós együtthtó A ovrc sálfüggı: cov, cov, A változó özött leárs csolt erısségét érı eység orrelácós együtthtó: cov, R, D D Tuljdoság: R,, h és függetlee ez se fordíthtó eg z ljá defícó szert legye R,, h vgy elfjult eloszlású. R,, h >, ert cov,d. A orrelácó tuljdoság R, és R or és cs or, h vlószíőséggel, R. hhez:, D D stdrdzált változó. **, D*D*. R,**. *±* * ±*** ± **, tehát R,. ıl: R or és cs or, h *-*, zz ** vlószíőséggel. or, >. R- or és cs or, h **, zz *-* vlószíőséggel. or, <. 3
4 éldá A oloáls eloszlás oordátá özött orrelácó: -re. Állítás: ez ugyz de -re.,,, D -, D -. ıl R, D D Sec.: :, eseté R- /-. özelítése függvéyével Gyor eset, hogy e serjü száur érdees eység otos értéét l. hol részvéyárfoly, vízállás, dıjárás. V vszot forácó hozzá csolódó eységrıl, értée. Feldt: oly f egtlálás, elyre f lehetı legjo özelítése -. Mtetlg: f egoldás f szélsıérté-roléá legse égyzetes ecslés. H z együttes eloszlás sert e teljese reáls, de egfgyelése ljá özelíthetı, or egoldhtó feldt. f 4
5 A várhtó érté otutuljdoság Állítás. A feldt egoldás. Bzoyítás. - - szert derválv dód, hogy vló uhely. A u értée D. Ugyígy: tetszıleges értée eseté x dj uot. éld F Ay érével dotu újr, ey fejet tu érével dov. Cs zt tudju, hogy háy fejet tu ásod doásál. Közelítsü ee segítségével z elsı doás eredéyét. éldául F esetre:, F F F F Az eredéye: F, F4/3, F/3. 5
6 6 Otu leárs függvéye örée gyszerőe egoldhtó Ne ell z együttes eloszlás A egoldás derválássl:, ] [ ] [ ] [ ] [
7 Az egyees tuljdoság z legse égyzetes eltérést dó leárs függvéye özött fet egoldás vló u levezés: regresszós egyees Átegy z, oto éld: Kocávl dou, jd h z eredéy, z,, cédulá özül húzu egyet. Ne tudju húzás eredéyét, cs ocdoásét. Hogy teljü húzott szár legse égyzetes eltérést dó ecslést eressü? h K/ z uverzáls legjo özelítés, tehát legjo leárs özelítés s. z eltér z eltér x x z eltér.58 z - - eltér x x 7
8 8 Kovolúcó Függetle vlószíőség változó összegée eloszlás Most: eegtív, egész értéő esetre. éldá:, függetlee, oáls eloszlású,, ll., rétereel. or, éldá Azz s oáls, rétereel. Sec.:, hol réterő dátorváltozó, tgo függetlee s. ıl s jö, hogy, D -. éld :, függetlee, osso eloszlású, ll. rétereel. or s osso, réterrel. e e e e
9 Negtív oáls eloszlás Legye r, hol réterő scl eloszlású változó, függetlee. or eloszlás: r r r h r ülöe. levezés: r-ed redő, réterő egtív oáls eloszlás. z ée ísérlete sorszá, hol z r-ed seres jö. z zoyítj s élet helyességét foráls s eg lehet ovolúcós életıl ducóvl. Néháy szulácó A egtív oáls eloszlás osso eloszlás gyeletes eloszlás 9
Matematikai statisztika elıadás III. éves elemzı szakosoknak. Zempléni András 9. elıadásból (részlet)
Matematka statsztka elıadás III. éves elemzı szakosokak Zemplé Adrás 9. elıadásból részlet Y közelítése függvéyével Gyakor eset, hogy em smerjük a számukra érdekes meység Y potos értékét pl. holap részvéy-árfolyam,
= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05
Folytoos vlószíűségi változók Értékkészletük számegyees egy folytoos (véges vgy végtele) itervllum. Vlmeyi lehetséges érték vlószíűségű, pozitív vlószíűségek csk értéktrtomáyokhoz trtozk. Az eloszlás em
A peremeloszlások. Valószínőségszámítás elıadás III. alk. matematikus szak. Példa. Valószínőségi vektorváltozók eloszlásfüggvénye.
y Valószíőségszámítás elıaás III. alk. matematkus szak 4. elıaás, szeptember 30 A peremeloszlások (X,Y) eloszlásából (elevezés: együttes eloszlás) következtethetük az egyes változók eloszlására: P(X)P(X,Y0)+P(X,Y)+P(X,Y2)
Lineáris egyenletrendszerek. Összeállította: dr. Leitold Adrien egyetemi docens
Lieáris egyeletredszerek Összeállított: dr. Leitold Adrie egyetei doces Li. egyeletredszerek /2 Lieáris egyeletredszerek áltláos lkj Áltláos (részletes) lk: egyelet iseretle:,, Jelölések: 2 2 2,, 2 2 2,,
Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)
Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I. 5-6. o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls)
1. Hibaszámítás Hibaforrások A gépi számok
Hiszámítás Hiforráso feldto megoldás sorá ülöféle hiforrásol tlálozu Modellhi mior vlóság egy özelítését hszálju feldt mtemtii ljá felírásához Pl egy fizii törvéyeel leírt modellt Mérési vgy örölött hi
24. tétel Kombinatorika. Gráfok.
Mgyr Eszter Emelt szitő érettségi tétele 4. tétel Komitori. Gráfo. Komitori: A mtemti zo elméleti területe, mely egy véges hlmz elemeie csoportosításávl, iválsztásávl vgy sorrederásávl fogllozi. Permutáció
) ( s 2 2. ^t = (n x 1)s n (s x+s y ) x +(n y 1)s y n x+n y. +n y 2 n x. n y df = n x + n y 2. n x. s x. + s 2. df = d kritikus.
Kétmtás t-próba ^t ȳ ( s +( s + + df + vag ha, aor ^t ȳ (s +s Welch-próba ^d ȳ s + s ( s + s df ( s ( s + d rtus t s (α, +t s (α, s + s Kofdecatervallum ét mta átlagáa ülöbségére SE s ( + s ( ±t (α,df
Síkbeli csuklós szerkezetek kiegyensúlyozásának néhány kérdése
íbel culó zeezete egyeúlyozáá éáy édée íbel culó zeezete egyeúlyozáá éáy édée DR BENKŐJÁNO gátudoáy Egyete Gödöllő Mg Gépt Itézet gyoozgáú gépzeezete tevezéée foto lépée z egyelete, ezgéete üzeet bztoító
Ő é Í é ľ ŁłŁ Ěš í é ő ü ú ľ ľ ú é ĺ Ż Ż É ĘŠ šť Í ú é ő ü é Ł ó í ľó ć ő ĺż ú ľ ó í Ť ĺ ś ľ ł ĺ ö ó é é é é ő é é é é Ż ü í é í ő ľ ó é ö ö ö é ľ é ü é é é é é ö é ź é ő é í ö ű ľ é é É ĺé É í ö é í é
9. tétel: Elsı- és másodfokú egyenlıtlenségek, pozitív számok nevezetes közepei, és ezek felhasználása szélsıérték-feladatok megoldásában
9. tétel: Elsı- és másodfoú egyelıtlesége, pozitív számo evezetes özepei, és eze felhaszálása szélsıérté-feladato megoldásáa Egyelıtleség: Két relációsjellel összeapcsolt ifejezés vagy függvéy. Az egyelıtleséget
11. KVADRATIKUS FORMÁK
. KVDRTIKUS FORMÁK bleás leépezéseel ogllozó előző ejezet észítette elő vdtus omá vgy más elevezéssel vdtus lo vzsgáltát. vdtus omá mtemt számos teületé yee llmzást. geometáb például vdtus omá másodedű
Valószínűségszámítás összefoglaló
Vlószíűségszámítás összefoglló I. Feezet ombtor ermutácó Ismétlés élül ülöböző elem lehetséges sorrede! b Ismétléses em feltétleül ülöböző elem összes ülöböző sorrede!... hol z zoos eleme gyorság!!...!
ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június
ÖKONOMETIA Készült a TÁMOP-4.1.-08//A/KM-009-0041pályázat projet eretébe Tartalomfejlesztés az ELTE TáTK Közgazdaságtudomáy Taszéé az ELTE Közgazdaságtudomáy Taszé az MTA Közgazdaságtudomáy Itézet és a
A Secretary problem. Optimális választás megtalálása.
A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra
Öĺ ú Ö ö ú ö ö Í ö ö ń ĺ ú đ ö ú ö ö ę ö ö ö Í ö Í ö ö ö ę ĺ ű ĺż ĺ ĺ ú ö ú Ĺ ö ę Ĺ ö źł ĺ ú Ö ł Í ö ö ú ö ö ö ö Í Í ĺ ú ö ĺ ú ł ö ú ö ĺ ń ö ź ö ö ń ł Í ą Á ú Š ĺ ö ö ź ú ĺ ú Ö ö ĺ ĺ ń ĺ ö ĺ ę ł ł ĺ ł
Ú Ö ö ľ ľ ć ľ ľ ú ľ Ö ľ Ĺ ľ ö ľ ľ ö ľ ę ľ ö ľ Í ö ľ ć ľ ú ľ ä Ź Ú Í ć Ö ľ ľ ľ ú Ď ľ ľ ö ć ö ľ ú Ĺ ö Ú ö ź ľ ú Í öľ ú Ú ő ľ ť ľ ť ť ě ú ť ľ ő ľ ŕ ľ ľ Ĺ Ú ö ö ö ö ő ľ ľ ö ľ ű ö ö ľ ő ľ Ö ľ Ĺ Í ľ Í ö ľ ľ
Á ű ő ö Í é é ő Ö Ö é ő Ö ő ö é é Ö ü é ó Ő é é ó é ó é é é é Ö ó ó ő é Ü é ó ö ó ö é é Ő ú é é é é ő Ú é ó Ő ö Ő é é é é ű ö é Ö é é ó ű ö é ő é é é é é é é é é Ö é Ö ü é é é é ö ü é ó é ó ó é ü ó é é
ű Ő ű Ü Ü Ü ű ű Ú ű ű ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű Ú Ü Ő ű Ö ű Ü ű Ö ű Ú ű ű Ű É É ű ű ű ű ű ű ű Ü ű ű ű ű ű ű ű Ú ű ű ű É Ű É Ü Ü Ú É É ű ű ű Ü ű É É Ű É ű ű ű ű ű ű ű Ö Ó ű ű ű ű ű ű Ö É Ó É É É Ü
ú Ú Ö É ú ü í í ü í í í í ü Ú í ű í ú ü ü í í ü ü í ü ü ú Í í ű í ü ü Ü í í ü í ú ű ú ú í í ü ú í ü É ü Ö í í ü ú ű í í ü í ű í í Í Ö í í ü Ö ú É Í í í í ü ű ü ű ü ü ü ü í í í í ú í ü í ú É ü ü ü ü í ü
ó ó ú ú ó ó ó ü ó ü Á Á ü É ó ü ü ü ú ü ó ó ü ó ü ó ó ú ú ú ü Ü ú ú ó ó ü ó ü ü Ü ü ú ó Ü ü ű ű ü ó ü ű ü ó ú ó ú ú ú ó ú ü ü ű ó ú ó ó ü ó ó ó ó ú ó ü ó ó ü ü ó ü ü Ü ü ó ü ü ü ó Ü ó ű ü ó ü ü ü ú ó ü
Ü Ö Á Á Á Á Á É ű Ü Ú ű ű Á É ű Ú Ü ű Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Ü Ü Ü Ö Ö Ú Ö Ü Ö ű ű ű ű ű Á ű Ú ű ű ű ű ű É Á Ö Ö Ö ű ű ű Á ű ű ű ű ű ű ű ű ű ű Ü Ü Ü Ü ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű ű ű ű Ü Ö Ü Ó Ö ű ű ű
Ü Éü É ü í í Í ö Ü Ú ú Ó í ő í Ö ű ö Ó ú Ű ü í Ó ö Ó Ü Ó Ó í í ú í Ü Ü ő Ú Ó Ó í ú É ÉÉ É Á Ü Ü Ü Ú ő í Ő Ó Ü ő ö ü ő ü ö ú ő ő ő ü ö ő ű ö ő ü ő ő ü ú ü ő ü ü Í ü Í Á Ö Í É Ú ö Í Á Ö í É ö í ő ő í ö ü
Ö Ó ú É ű É Ö Ö Ö Ü Ó Ú É ú É Ü Ú ú Ü ű ú Ü Ö Ö ú ű Ú ű ű ú Ö Ö Ö Ö É ú ú Ő Ö ú Ü Ó ú Ú Ü Ö ű ű ű Ö ű ú Ó ű Ö Ü ű ú ú ú ú É ú Ö ú ú Ü ú Ó ú ú ú ú ú ú ű ű ú ű ú ú ű Ö ú ú ú ű Ö ú ű ú ű Ü Ö Ü ű Ü Ö ú ú Ü
Á Á Ó É ö ó ó ó ő ő ó ö ő ő ű ó ú ö ó ó ő ó ü ó ó ő ó ó ő ó ü ó ő ő ő ó ő ő ö ó ó ó ö ö ü ö Á Á Ó ü ó ö ó ő ó ő ő Á É Á Ó ű ü ö ó ő ó ú ÉÉ ó ú ő ö ó ó ó ó ó ö ö ő ü ó ö ö ü ó ű ö ó ó ó ó ú ó ü ó ó ö ó
É É É ü É ó ó É ű ó ÉÉ ó É ó É É ó É ü ó ó Ó ű ó ó ó ó ü É ü ű ó É É É É ü ü ó ó ó ü É ó É ó É ó ó ó ü ü ü ü ó ü ü ü ü ó ű ű É Í Ó Ü Ö ó ó ó Ó ó ü ü ü ű ó ü ü ű ü ü ó ü ű ü ó ü ó ó ó ó ó ó ó ü ó ó ó ű
:.::-r:,: DlMENZI0l szoc!0toolnl ránsnnat0m A HELYI,:.:l:. * [:inln.itri lú.6lrl ri:rnl:iilki t*kill[mnt.ml Kilírirlrln K!.,,o,.r*,u, é é é ő é é é ő é ő ő ú í í é é é ő é í é ű é é ő ő é ü é é é í é ő
ő ü ó ľ ő ľ Ü Ő ľ ü ü ľ ľ ľ ő ź ő Ĺ ę ö ö ľ ľ ő ó ľ ľ ö Ĺ źýź ü ź ő ö ö ü ő ő ó ö ü źů ü ő ö ö ö ü ů ö ö ö Ĺ ő ü ö ö ü ů ź ó ý ű ö ę ő Ö ź ű ü ü ő ý ę ő ü ó ę ó ó ö ü ö ó ę ę Ü ö ü ź ü ń ľ ö ő ű ö ü ó
FEJEZETEK A HOMOGÉN FEJSOROZATOKRÓL
FEJEZETEK A HOMOGÉN FEJSOROZATOKRÓL SZAKDOLGOZAT Készítette: Kovács Blázs Mtet BSc, tár szrá Tévezető: dr Wtsche Gergel, djutus ELTE TTK, Mtettítás és Módszert Közot Eötvös Lorád Tudoáegete Terészettudoá
Statisztika 1. zárthelyi dolgozat március 21.
Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy
Ĺ ó Ĺ đ É ľ ľ ü ľ ľ ó ľ ź ľ ó Ü ö ö ü ľ ö ľ ľ Ĺ ó ü ľ ö ú ľ ä ę ó ö ö ó ö ű ľ óľ ö ú Ú ó ö ű ó ľ ó ö ä ó ę ľü ü ö ę ó ó ľ ó ü ą ę ü ó ó ź ó ö ó ű ľ ľ ŕ ö ö ľ ü ű ú öľ ľ ü ó ó ö ö ľ ó ö ęí ö ü ö ú ľ ľ ó
KEZELÉSE ÉS ÉRTÉKELÉSE
MÉRÉSI ADATOK KEZELÉSE ÉS ÉRTÉKELÉSE Köryezettudomáy alapo taöyvsorozat A öryezetta alapja A öryezetvédelem alapja Köryezetfza Köryezet áramláso Köryezet ásváyta Köryezet mtavételezés Köryezetéma Köryezettudomáy
A matematikai statisztika elemei
A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................
Olimpiai szakkör, Dobos Sándor 2008/2009
Olimpii ször, Dobos Sádor 008/009 008 szeptember 9 Eze szörö Cev és Meelosz tételt eleveítettü fel, több gyorló feldttl, éháy lehetséges áltláosítássl További feldto: = 6 (=,, ) Htározzu meg z összes oly
ú ő ü ő ę ő ő ę ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ü ú ő ü ü ö Í ü ő ü Í ő ő ł Ü łł ü ő ő ź ő ö ö Í ő ź ő ö ő ü ő ő ő ő ú ü ő ő ź ě ü ő Ť Á Ě ö ő ő ř ő ę ő ö ü ő Ú ő ö ö Ĺ ö ö Ĺ ő ä ä š őł ř őł ü ł ý ü
Ł ĺ ő Á Ü ó Á öľ Á ł Áľ ĺ Éľ Í Á É ľľá ó ó Á É É Ü Á É ľé Íĺó Áľ ú Áľ ľ ó ľá Á ö É Á Á ľ Á ó ö É Á Á ó ő ő ü ó ü ö í ó í ö ő ó í ő ó Éľ Ĺ ľ ĺ ó ö ó í ó ő í ó ö ĺ ö ó ő ó ő ő ő ő í ó ó ó ö í ő í í ő ő ő
ę ó ĺ ü ĺ íĺ ĺ ü ý ź ĺ ö ĺĺ ö É Í É É ó ł Á Á Ü Á Á É Í Ü É ć É ĺ Ü É Ľ Á ą Ü ĺ É Ą ĺ É Á ł Á ł ü ź ź ĺ ű ź ö ö ó ö ű ĺ ó ó í ź đö ö ó ö ö ö źń í ź ó ó źú ź ó ü ö Í Á ó ó í Ü ĺ ú ó í ó ĺĺ ö ĺĺ ö ó ó ö
ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk,
A deceber -i gyakorlat téája A hipotézisvizsgálat fotos probléája a következő két kérdés vizsgálata. a) Egy véletle eyiség várható értékéek agyságáról va bízoyos feltevésük. Elleőrizi akarjuk e feltevés
ó ľ ĺ ľ ĺ ľ ĺ ľ ü ľ ľ ľ ľ ľ í ó ü ę ĺ í ü ľ ĺ ź ľ ĺ í ę É Í ľľ É É ľáľ ĺ É É Íľ Ü ĺľé ľáľ Éľ Ü Éľ ĺ Éľĺ Á ľ É É É ĺ É Á ĺ ĺ ĺ ľ ü ĺ ź ü ó ĺ ó źĺ í ó ľ ĺ ľ ź ľ í ľ ľ ü ľ í ľü ó ľ ĺ ö ö Ü ľó ó ó ö ú ó ľ
ú ú Ż Ż ą ô Í ú Ö ő í ü ĺ í Ż Ż ü ĺ ü ĺ ú í ő ĺő ĺź ü ł ö ĺ ű ő ö ö Í í ő ĺ Í Í ő ő ü í ő ő ö ĺ ő ő ĺ Í ĺ ĺ ť ő ĺ ĺő ő ü í í Ĺĺ ę Ĺ Ĺ ő ö ú ĺ Ö ö ő ö ö ü ö ő Ą Ś ö ő ü ö ő ĺ ĺ É ĺ Á Á Ó É ź Á Ü É Ü Ä ú
S ( ) függvényre. . Az 1), 3) feltételekbõl a feltételek száma : ( l + 1) n ( l 1)
INE o egye [ ] IR I [ ] ( : és < < < z tervllum egy elosztás Deíó: Az :[ ] IR üggvéyt l eoú sple- evezzü C ( l I l Iterpoláós sple- evezzü egy ( : [ ] IR üggvéyre ( ( egjegyzés: Cs terpoláós sple-l ogu
n természetes szám esetén. Kovács Béla, Szatmárnémeti
osztály Igzolju, hogy 3 < ármely természetes szám eseté Kovács Bél, Sztmárémeti Az összeg egy tetszőleges tgj: Ezt ővítjü és lítju úgy, hogy felothssu ét tört összegére ) )( ( ) ( ) )( ( ) )( ( ) )( (
II. FEJEZET SZÁMLÁLÁSI FELADATOK. A KOMBINATORIKA ELEMEI II.1. Valószínűségszámítási feladatok
6 Szálálási feldto. A oitori eleei II. FEJEZET SZÁMLÁLÁSI FELADATOK. A KOMBINATORIKA ELEMEI II.. Vlószíűségszáítási feldto A lsszius vlószíűségszáítás éháy lpfoglát ár VI. osztály tultáto. Eszerit, h K
Tapasztalati eloszlás. Kumulált gyakorisági sorok. Példa. Értékösszegsor. Grafikus ábrázolás
Matemata statszta elıadás III. éves elemzı szaosoa 009/00. élév. elıadás Tapasztalat eloszlás Mde meggyeléshez (,,, ) / súlyt redel. Valószíőségeloszlás! Mtaátlag éppe ee az eloszlása a várható értée.
ú ú Ż ő ú ő ü ú ü ö í ó ó ó ö ü őł Ü ö ó ó ó ö ö ü ü ö í ó ő ő ö Á ö í ö ü ó í ó ó ó Ż ö ó í ó ó ó ö ő ü ö í ü ĺ ő í ü ö ő ö í í í ü ű í ę ö ó ó ű í ü ö ő í ü ó í í ő í ü ö ő ő ö ő ä ő ő ó ó ő ö ű í ő
ú ú Ż ę ęĺ ą ł ő ú Ö ő ü ü ö ó ö ź ő ö ő ó ó ö Á ó ó í ö í ö ó ó ő í ö ü ö ö ü ö ö ú ő Ĺ ö ó í ö ú í ü ö ü ö ó ó ő Ą ö ő í ó ó ü ó ő Ź ö í Í ő í í ö ű ö őł ü í ö ö ő ó ő ő ó ö ö ö ö ő ü ö í í ű ó ó í í
í ő ľ ü ó ľ ľ ő ľ ü Ü Ü Ł ľ ü ľ ü ľ ö ľü íľ ő ő ź ő í ó ü ľ ö ü ü ó ő ö ľĺ ó ľó ő ő ö ź í ö ő źą ö í ő ü ö ö ü ő í ľ ó ó ó ü ó ó ó ő ö í ó í ü ö í ő ę í ö ü ą í ľ ó ő í ú í ó ő ö ó ó ő ü í ó ľ í ľź ľ ú
ő ľ ü ó ő ü ý ő ľ ő ź ü ú ü ó ó ľ ú őľ ó ó ľ í ő ľ ő ó ő í ü ľ ö ü źů ü ý ľ ľ ľ ó ľ ý ű ő ý ő ü ý ű ź Í őľ ó ó ő ő ö ö ó ő đ ő ź ľ ý í ő ľ ę ü ę ľ í í ę ę ő ľü í ľ ö ę ö ľ ú đ đ ó ü ó ő ľó ľ ę ő ó í Ĺ
ľľ ľ ľ ö ľ ľ ę ľ ü ľ ľ ü ú Ö ĺ ľ ľ ľ ľ ü ľ ü ú ź ö ľ ź ü ý É ö ö ö ö ü ý ü ü ö ü ę ü ü ö ö ü ö ľ ű ľ ĺ ú ú ľ Í ľ ö ö ü ö ľ ú Ö ü ö ö ü ö ü Í ö ö ľ ľ ü ú ü ľ ľ Ą ĄĄ ö Í ľ ľ đ ű ý ľ ú ú ľ ü ľ ľ ľ ö ĺ ľ ú
ł ĺ Í Ĺ ü ú ü ö Ú ü ű Í ę Ĺ ü É Í É É Á Á Ü Á É Í Ü É É Ü É É ł É ĺ ą ĺá í ü ń ń Ó ü ü ű ö ö ü ú ü ü ö ú ô ú ö ö ĺ ü ü ü ö ű öđ ü ü É ĺ ĺ ä Ź Ú ĺ ö ü ę í ű ú ü ú í ĺíĺ ä í ü Ö ĺ ĺ ĺ ü í ü ü ö ú í ü íĺ
ó ó ü ľ ó ü ó ľ ü ń ó ó ó ö ę ź ź ö ö ö ö ę ę ö ó ľ ó ę ź ó ö ó ź Ĺ ź ó ť ú ü ű ö ó ź ó ö ó ö ľ ö ľ ń ó ľ ź ű ö ń ó ź ź ť ľ ó ľ ź ü ť ź ó ü ť ö ó źů ý ťü ľ ú ó ď ľ ľ ľ ľ ó ó ľ ń ľ ľ ö ó ľ ó ľ ö ź ó ľ ľ
ú ľ ú ŻŻ ő ó ľó í ó ł ó ĺ ľó ĺ ü ĺ ĺĺ ĺ ő ĺ ü ĺ ľ ő ü Í ó ľ Í ĺ őí ó ó ľ í ó í ő ó í ö í íľ í í ľü ó öľ í ľ ö ľü ó í ľ ő őľ ü ö ö Ó í Ż ľ ó í ő ü ő Ĺ ľ ó ö ę ę ó í ĺ ö í ö ü ó ź ľ ú ő ĺ ó ü ĺ í í ü í í
Mérés és jelfeldolgozás
Vázlt érés és elfeldolgozás Dr Pdul Zoltá érés hbá sttszt szemotból Alo Sőrőségfüggvé Eloszlásfüggvé Várhtó érté Szórás Sttszt mt Átlg tuldoság ormáls eloszlás Budest ősz és Gzdságtudomá Egetem Géészmérö
ő ü ö ő ú Í Ó Ż ú ő ü ü ů ő í ů Í ú ő ö ó í ő ő í ú ű ő ö ö ő ź ő Ż ő ú ó í ő ő ő ő í Í ő í ő ú í ü ö ő ő ő ő ő ú ö ó ö ő ő ő ü ó ł ő ő í ő ő ő í ő ő í ő ő ő í ó ź ő ő ő ó í ó ź í ł ő ö ź ó ő í Ö É ł ůź
ú ľ ú Í Ó ú Ö ľ ő Ĺ óľ ö ő ü ľ ľ ľ ó ű ľ ľó ő ó ő ó ľ ö ő ó ő ő ö ö ö ő ú ő ü ű ő ó ó ö ó ő ő ľ Ü ő ó ő ő ó ľ ő ť ö ő ü ł ź ő ö ó Í ő ő ó ü ó ö ó ő ľ ő ö ő ü ő ľ ö ó ó ó ó ú ö ó ľó ő ő Ĺ ő ě ü ł ó ź ő
Gráfszínezési problémák
Gráfszíezési rolémá Tót Áges Matematia- és Számítástudomáyo Dotori Isola Számítástudomáyi és Iformációelméleti Taszé BME Témavezet : Dr. Simoyi Gáor Gráfszíezési rolémá Szíezéseel roo gráfaramétere aszimtotius
Programozási tételek felsorolókra
Progrozás tételek elsorolókr Összegzés Feldt: Adott egy E-bel eleeket elsoroló t obektu és egy :E H üggvéy. A H hlzo értelezzük z összedás sszoctív bloldl ullelees űveletét. Htározzuk eg üggvéyek t eleehez
I. Sorozatok. I.1. Sorozatok megadása
Mgyr Zsolt: Alízis özépisoláb I Sorozto oldl Def A pozitív egész számo hlmzá értelmezett számértéű függvéyeet sorozto evezzü Megjegyzés: Egyes tárgylási módob éyelmességi szempotból em N R függvéyeről,
A paramétereket kísérletileg meghatározott yi értékekre támaszkodva becsülik. Ha n darab kisérletet (megfigyelést, mérést) végeznek, n darab
öbbváltozós regresszók Paraméterbecslés-. A paraméterbecslés.. A probléma megfogalmazása A paramétereket kísérletleg meghatározott y értékekre támaszkodva becsülk. Ha darab ksérletet (megfgyelést, mérést
2. LOGIKAI FÜGGVÉNYEK MEGADÁSI MÓDSZEREI. A tananyag célja: a többváltozós logikai függvények megadási módszereinek gyakorlása.
. LOGIKI ÜGGVÉNYEK EGÁSI ÓSZEREI taayag célja: a többváltozós logikai függvéyek egadási ódszereiek gyakorlása. Eléleti iseretayag: r. jtoyi Istvá: igitális redszerek I.... pot. Eléleti áttekités.. i jellezi
ú ú Í Ó ú ĺ ő ĺ ő ĺ ö ó ĺĺ ů ú í í ü ó Í ń ó ő ő ĺ ó ő ő ó ĺĺ ő ő ĺő ö ő ó í ł ő ő ö ö ő ő ő ő ů ő ó ů ĺ ő ů ő ö ź í ő Ę ő ő ĺĺ ö ő ó ő ő ó ź ĺ ő ö ź ó í ł ő ő ó í ő ő í ú íĺ ő ö ö ĺ ö ó ó ů ő ö ö í ł
Ł ő ü ľ ź é ő ü é ő ľľ í ź ő ľ ő ľ í Ü ő Ő ő ľľ ü é é ľ é é é é éľő í ľ ő ľ ő đľ ľ ő é í é ö é í é ü é é ľ ľő ľ é é é é ľ é ľ ź é ő Í ú ö ľ ö ű ő é ö ü é ú é ő ü ź ű ő é é ľ é é ľ é ź őľ é ü í ö ű ő é
Ą ął Ď Í ő ľ ľü ĺó ľ ĺ ľ ő ü ĺ ö ľ Ö ľ ó ő ĺ ó ĺ ö ľ ľ ĺó ľó ő ľ ó ź ő ü ó ľ ó ĺó ó ó ö ź öľ ĺ ö ĺľ ö ő ľ ó ő ő ő ľ ď ő ľ ĺľ ú ę ö ľ ő ó ź Í ö ő ľ ľ ľ ö ú ľü ő ü ő ű ö ü ő ľ ó ó ľ źú ü ő ű ű đ ő ü Đ ö
A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA
A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projet eretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszéén az ELTE Közgazdaságtudományi
ő ľü ő ę ľ ĺ ő ľ ü ő ő ő ź ĺ ö É ü ľ ľ ü í ĺ ľ ľ ő ľ ľ ľ Ü ľ ő ő ő ö ó ę ĺ ö í ő ő ü ö ü ľ ü ľ ľ ő ľü ó ľ ľ ő í ő ĺ ľ ź ú ö ó ľ Ü ú Í ó í ó ĺľ đ đ ľ ö ö ú ö ó ó ó ľ ő ü ĺí ú ź ö ö ó íľ ó ö ĺ ú ó ĺľ ö ĺ
ó ľ ľ é ľ é ü é ľ ó í í é é í ź ü é ź é ę é Ĺ é É É Á Á Ü É É Íľ ľľ ń ł ł Ą Ą É Ü É ľ ô ľľ É ľ é é ü é é é é ź é ź ł Á Ü é é ü ď źů é ó é é ü é ó é ź ö ö ó ö ü ó ó í ó ó ľ ü é ó é ö é é ľ ö ü é ľ ű é é
ľ ü ľ ń ű ö ő ó öľ í ő ő ó ö ť ö ľ ő ĺő ľ ő Ż ęľ ľ ľí í ü ľ ő ő í ő ü ő ĺ í ő ú Ä Í ü ą ó ĺ ľ ę ľ ó ĺ ö ő ó ó ó í Í ő ĺő í ő ó ő ĺ ő ą ú Í ő ö ľ ő ő ĺ
Ó ľ ü ĺ ľ Ö ľ ő Ĺ ľ ĺ ĺ ó ő ł Í ľő ľ ľ ľ ľ ľ ľ ľ ö ľĺ ľ ľ ľ ő ĺ ő Ĺ Ĺ ľ í ťő ő ó ó Ĺ Í ő ľ ó ó Ĺ ő ú ö ő ľ ĺ ĺ ĺ ó ľ ľ ľ ö ľ ľ ľ Ó ó ó Ö ľ ö ľ ő ľ ó ľ öľ ľ í ľ ő ľ ĺ ľ ĺ ľ ĺ ö Ĺ Ú í ö ö Ĺ Ż ő ľ í Ü ľ ľ
ő ü ó ő ü ü ő ő Ő É ę ü ü ľ üľ í ľ Ę ő ő ó ó í ö ö ó ő ü í ö í ö Ĺ ü ö ľ ő üľ í ü ľ ľ ľ ő í í ľ ú í ű í ő í ő í í ó ľü í ü ú í ľ ő ú í í ü ź ő ľ ź ź ő ú ó í í ó ú ü ő ó öľí ő í ü ú ü ű í ő ę ú í ó ő ű
Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Regresszió-számítás. 2. előadás. Kvantitatív statisztikai módszerek. Dr.
Gazdaságtudomán Kar Gazdaságelmélet és Módszertan Intézet Regresszó-számítás. előadás Kvanttatív statsztka módszerek Dr. Varga Beatr Gazdaságtudomán Kar Gazdaságelmélet és Módszertan Intézet Korrelácós
Feladatok és megoldások a 11. heti gyakorlathoz
Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.
Ú ľ ö ľ ř ľ ľ ú ľ Ö ő ü í ö ő ö ö ö ö í íľ í í ö Ś Ś ö ő í í í ú í ú ź ű ľ ő í ű ú ľ ö í Ö ú í ö ö í ú ű ö ú ö ľ í ľ ú í ö ö őí í ú ö í ú í ő ú ú í í ú ú í Ú ú í őí í ľ ú ú í í ő ľ í ú ú ľ ú í ű ö ö ö
ú ü ĺ ú ü ö ö źĺ ú ę ű ö ö ź ĺ ü ü ü í ú Ö ü ü ö ę ö ú Ö ę ö ö ö ö ű ö ű ö ĺ í ú ę ę ö í ę ü í ö ę ö ź í ú ź í źů ö ö ú í ý ű í ö ű ű ű ö í í ö ĺ ö ű ö ű í í í ö ĺ ű öĺ í ö í ö ĺ ö ö ü ü ö ű ö ý ö ú ö
18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható
8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.
3-4.elıadás: Optimális választás; A fogyasztó kereslete
(C) htt://kgt.e.hu/ / 3-4.elıdás: Otiális válsztás; A fogysztó kereslete A fogysztó válsztási roléáj A fogysztó száár elérhetı (egfizethetı) jószágkosrk közül neki legjot válsztj A fogysztó költségvetési
é é ő í é é ü é ü í é ó é é ó ü é é ú Ö é é í ö ó ó é é é é é é ű ö é ö ö é ó ú ő ő é ö é ö é ó ő é ü é é ő ő ö é í í ő é ó ö é é é é ö ú é ő ó é é ő
Á Á É É É Ü Á Ú í é ő ó ó ő é ő í í é Á é é é ő í Í ó ó í ü é ó ó ő ó ő é ű ő ő í í ü ő í ó ő é ü ő í ö ü ő í í ó ő é é ó é ó é é é é é é é ü ó é é é é é é ó é ö é é é é í ü ü ő é ő é ó é ő é ü ő í ó ü
MÉRÉSI ADATOK KEZELÉSE ÉS ÉRTÉKELÉSE
MÉRÉSI ADATOK KEZELÉSE ÉS ÉRTÉKELÉSE Köryezettudomáy alapo taöyvsorozat A öryezetta alapja A öryezetvédelem alapja Köryezetfza Köryezet áramláso Köryezet ásváyta Köryezet mtavételezés Köryezetéma Köryezetmősítés
Összeállította: dr. Leitold Adrien egyetemi docens
átrixok Összeállított: dr. Leitold Adrie egyetemi doces 28.9.8. átrix átrix: tégllp lkú számtáblázt 2 2 22 2 Amx = O m m2 Jelölés: A, A mx, ( ij ) mx átrix típus (redje): m x, A R m x m: sorok szám : oszlopok
ő ľü ó Ö ľ ő ź ź ő ľ ő ľ ľ ľ ü í ľ ö ő ľ ő ó ő í ľ ü ľ ö ü í ú í ó ú ó ó ú ó ő í í ű ľó ü ľ ö ö ö ó í ü ű Íć ű ö ö ź ę ő ö ü ő ö ő ö ö í ő ü ľ ő ü ö ź ź ó ó ő ü ľ ľ ö źľő ő ő í ó ó Ł ł ü ű ü ú í ü ź ó
ĺ ĺ Ą ľ ĺ ü ł ľú ľ ľ ĺ ĺ ľ ü Đ É Íľ ĺá É Íľ ľ í ü łĺ ľ źů í ö É Ü É É Á ĺ ľ É ľ ł É ĺ ľ ĺá ĺ ü ľ ľ ľľ źí í ź Í ĺá Á Á Ü ľá ü ĺ ľ í ĺ ź í Á ŕ ĺ ü ľ ĺ ľ ö ö ź ľ ĺ ľ ľĺ ľ ľ ö ö ľ ú ź ź ľ ľ ź ľ ľ ö ľĺ ľ ü
ť ó áľ ľ á é ő ź áľ ő ľ ő éľ é ő é ő ü é ő áľ ő é é á ľ é í ź ü é ľ ĺ é á á ľ ĺ ő í Í é ü é Ő É Íľ É Á Á Ü ľ É Íľ ľ Öľ Ü É É Ü É ľĺ ĺ ł Ö É É É łí É Á ĺ ľ Íľ á á á é é ü ĺ á é é á á á ĺ á é é á á ź á á
Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat
Megállapítható változók elemzése Függetleségvzsgálat, lleszkedésvzsgálat, homogetásvzsgálat Ordáls, omáls esetre s alkalmazhatóak a következő χ próbá alapuló vzsgálatok: 1) Függetleségvzsgálat: két valószíűség
ő ęľĺ ő Ö ľ ő ü ő ő ü ę ó ú ü ľ É ó ö ľ ő ő ő ź ó ľ ő ľ ő ź óľ ő ľ Í ü ő ź ő ź ź É ó ö ú ó ü ö ö ü ö ű ź őľ ľ ő ű đ ö ö đ ő ú ľ Ĺ ř đ ľ ő ő ę ľ Ĺ ó źú ľő ź ó ő Í ő ő ń ő ľ ľ ľ ľ ő đ ö ö ź ü ľü ę ű ę ú
Áringadozások elıadás Kvantitatív pénzügyek szakirány 2012/13 2. félév
Árigadozások elıadás Kvatitatív pézügyek szakiráy 01/13. félév Heti óra elıadás + óra gyakorlat Elıadás: fıleg modellek, elemzési módszerek Gyakorlat: R programmal, alkalmazások Számokérés 50%: beadadó
n m dimenziós mátrix: egy n sorból és m oszlopból álló számtáblázat. n dimenziós (oszlop)vektor egy n sorból és 1 oszlopból álló mátrix.
Vektorok, átrok dezós átr: egy soról és oszlopól álló szátálázt. L L Jelölés: A A, L hol z -edk sor -edk elee. dezós (oszlop)vektor egy soról és oszlopól álló átr. Jelölés: u u,...,, hol z -edk koordát.
5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI-
5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI- FÉLE RELATIVITÁSI ELV m, m,,m r, r,,r r, r,, r 6 db oordáta és sebességompoes 5.. Dama Mozgásegyelete: m r = F F, ahol F jelöl a
Abszolút folytonos valószín ségi változó (4. el adás)
Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t
Regresszió és korreláció
Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 01.11.1 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés
ľ ľĺ ó ü ý í ź ó í ľ ĺ Í í ę É ź đ ü ý ľ ę ö ź ó ä í ó í ó ü ľ ĺ í ó í í ó ö í ö ú ö ó ę ó ĺ ö ü ó ĺ ľ ľ ó í í ó ĺ í ę ó í ö ú đ í ö ó Ĺ ę ý ű ö ĺ ä ź ľ ľ ó ü ę ľ Ĺ ö ü đó í ĺ ó ĺ í ó ź öľ ĺ ę ü ó ü ý
ľ ö ú ű ö ó ő ő ö ĺó ó ó ö ĺ ö ľő ó ő í Ż Ż Ż Ż ű ú ĺ ő Ö í ó í Ż Ö ö ú ő ú ó ľ ę ę ę ę ű Ĺ ú ő ű ŕ í ĺĺ í ő í ó ö ú ö ú í ő Ż ó ü ĺ ő ľ ő ľ í ő ő ľ ĺ
ú í ú í ó ľ ľ ö ű ú í ó Ä í ű ö ó ő ó ö ő ő ő ó ó ö ę őę ú ó ä ó ĺ ę ę ú ó ĺ ú ú ü Á ó ú ó ú ü ű őđ ú ö ú ó ú ű ü Ä ő ó ĺ ő ű ő ĺĺ ű ĺ ó ű ć ü ű ü ő Í ĺ ő ő ű ďö ď ó ű ő ĺ ľ ó ľ ő ľ ő í ú ö ö ö ő ú ĺ ĺ
ó ő ü ő ő ő ĺ ő ó ő ő ĺó ő ł ő í ü ü É ĺ É Ö ĺá ł ł ó É Í ł ĺ ĺ É Ü É É ĺ ł ł ł É Ą ü ő ő ü ő ő ę ő ő ó ő Í ó ő ö ü í ź ź ź ő ü ó ĺĺ ő ü ő ü ű ĺ đ Íź ő ő ő ö đ ő Ú ő Í đó ü ő ő Ł ó ó ö ű ő ĺ ű ó í ő ó
Tuzson Zoltán A Sturm-módszer és alkalmazása
Tuzso Zoltá A turm-módszer és alalmazása zámtala szélsérté probléma megoldása, vag egeltleség bzoítása ago gara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölder-féle egeltleség, derválta
Á ĺó Á Á Á Ü í ő ĺ ő Ĺ ó í üĺ í í í í ń ó ď ę ď ź í ď ź ĺ ó ĺ ő í ź í ź ó ó ó ó đ ĺ ĺó ĺ ę ő í ő ü ő í ó ĺ í í ő ő ő ź ő ó ó ĺ ó ő ő ő ü ó ę ĺĺ ź ő ü ę üö í ź ĺő ő ő ĺ ĺ ĺ ő ĺ ö ó ő ĺĺ ö í ź ú ő ö ő ö
Matematika B4 I. gyakorlat
Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a
Í ľ ťę ó ľ ĺ ő ĺ ő ő ľ ĺ ľ ľ ü ü ő ó ľ ľ ľ ľ í ľ Úĺ ľ đ ĺ ťľ ę ľ ĺ ť ő í Ĺ ĺ É Í ó ľ É É ł ł ĺ ó É Í ľľ Ö Ö É Ü É ń Ä ł Á ł Ö É É É ł ŕ ł ŕ É Á ĺ Ó ő ľ ü ĺ ź í í ź ć ü ý ő ĺ ő ń ĺ ü ő ü ó ľ ź í Á đ ľ ü
Mivel sikerült egész kitev j hatványokat is definiálnunk, felvet dhet a kérdés, hogy lehet-e racionális (tört) kitev j hatványokat is definiálni.
. 3. Törtitev j htváo Mivel sierült egész itev j htváot is deiiálu, elvet dhet érdés, hog lehet-e rioális (tört) itev j htváot is deiiáli. Kövessü z lái godolteetet!. Az. Iserjü z 3. Ezért -t rju deiiáli.
Regresszió és korreláció
Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 016.11.10 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés
ľ ú Ö ź ő ü óľ ŕ Ö ő ü ü ü ę ę ľ ö ő í ó ó ó ő ö ö Íő ö ó ő ó ü ő ó ő ó Ĺ ő ú ö ő ö Ó ő ú Ó ó ę ö ľ ő ľ őľ ő ő ő ľ ó ö ő ő ő ő ő ő ü ü Ú í ő ó ö ö ü ö ę ę ö ö ę ó ő ő ő ó ű ö ó ľ ú ź ó ę ę ő ú ö ó ő ö
ő ľ é ü ú ľ Ö é ő é ę ü öľ ö ő í ł ü é é ő ü é ľ ľ é ľ ő é é é ő í ę ę ő ó ó é ő ľ é ő ö ö é ü ő é é é ó ő ö ő ó ö é ő ü ę ő Á é é ö é ľ ő é í ę ü é ę í ü ü é ő ö ü ő ó ę ő ö í ĺ é ü ö ę é ü é é ő ę í
A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük.
Statisztikai módszerek. BMEGEVGAT01 Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudomáyi Egyetem Gépészméröki Kar Hidrodiamikai Redszerek Taszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: