A peremeloszlások. Valószínőségszámítás elıadás III. alk. matematikus szak. Példa. Valószínőségi vektorváltozók eloszlásfüggvénye.
|
|
- Klára Csonka
- 6 évvel ezelőtt
- Látták:
Átírás
1 y Valószíőségszámítás elıaás III. alk. matematkus szak 4. elıaás, szeptember 30 A peremeloszlások (X,Y) eloszlásából (elevezés: együttes eloszlás) következtethetük az egyes változók eloszlására: P(X)P(X,Y0)+P(X,Y)+P(X,Y2) Az egyes kooráták (alacsoyabb mezós vektorok) eloszlása: peremeloszlás. Az együttes eloszlás tehát meghatározza a peremeloszlást. Kapcsolat az együttes- és a peremeloszlás között Péla A peremeloszlások vszot em határozzák meg az együttest: (tetsz. a </4-re P(X)P(X-)/2 P(Y)P(Y-)/2) Kvétel: ha a kompoesek függetleek o / 4+ a o / 4-a o / 4- a o / 4+ a Polomáls eloszlás: a kísérletükek r külöbözı kmeetele lehet: p,p 2,...,p r valószíőségőek (p +p p r ). függetle, azoos körülméyek között végrehajtott kísérlet sorá az -ek eseméy bekövetkezéséek száma X. Az együttes eloszlásuk:! k k2 kr P( X k,..., Xr kr ) p p2... pr ( k + k kr ) k! k!... k! 2 r x Tulajoságok Specáls esetek: r trváls r2: bomáls eloszlás (X, X 2 - X ) Az egymezós peremeloszlások (X eloszlása) bomáls (, p ) paraméterrel Péla: kockaobásál az egyes értékek gyakorsága (tt r 6). A kooráták em függetleek! (Pl. X eseté a több kooráta 0.) Valószíőség vektorváltozók eloszlásfüggvéye Az eloszlás megaásához elegeı a F X (z):p(x<z) valószíőségeket mega (z R ), a < relácó koorátákét érteı, azaz X<z potosa akkor teljesül, ha X <z me -re. Ezek meghatározzák Q X (B) értékét tetszıleges B-re.
2 Az együttes eloszlásfüggvéy Az F X (z):p(x<z) R R függvéy az X valószíőség vektorváltozó együttes eloszlásfüggvéye. Az egymezós esettel aalóg tulajosága: 0 F X (z) F X (z) me koorátájába mooto övı lm F X (z), ha z me koorátájára z lm F X (z)0 ha z legalább egy koorátájára z - F X (z) me koorátájába balról folytoos. Téglatestek valószíősége P(a X < b) 0 me a < b R re. Ez kfejezhetı az X eloszlásfüggvéyével: 2-re: P(a X < b)f(b,b 2 )- F(b,a 2 )- F(a,b 2 )+ F(a,a 2 ). Általáosa: P( a X < b) ahol 0 ε {0, } εj εa(ε a, ε 2 a 2,..., ε a ) ( ) F[ εa + ( ε ) b] S P Bzoyítás Legye A : {X < a } és B: {X< b}. Ezekkel az eseméyekkel P a X < b) P( A A... A ( 2 B ( A 2... B) P( B) P(( A A2... A ) B + *( ) P(( A A2... A ) B) ( ) S ahol *( ) j < j2 <... < j P( Aj j2... B) ε {0,} εj mvel P(B)F(εa+ (-ε)b) az ε(0,0,...,0) vektorral, éppe a tételbe szereplı formulát kaptuk. j F[ εa + ( ε) b] ) ) Az eloszlásfüggvéy tulajosága Legye k k <k 2 <,...<k az {,,} részhalmaza. Ekkor ha z potosa az {,,}\k bel koorátákra, akkor lm F X (z) F X* (z*) ahol z* R potosa a z k-bel koorátából áll. X* s - mezós valószíőség változó, elevezés: az X peremeloszlása. Spec.: 2, : lm x F X,Y (x,f Y ( lm y F X,Y (x,f X (x) Tetszıleges, a felsorolt összes tulajosággal reelkezı F-hez létezk X -mezós vektorváltozó, amek F az eloszlásfügvéye. Sőrőségfüggvéy Ha létezk fq X /λ: R R függvéy, akkor X abszolút folytoos eloszlású. Ekkor F elıáll f tegrálfüggvéyekét: F ( z) z f ( t) t f: az X sőrőségfüggvéye. Az tegrál most -mezós, értelmezése: F( z) z z 2 z... f ( t, t2,..., t ) t... t2t A peremeloszlások sőrőségfüggvéye Legye 2. Ha (X,Y) abszolút folytoos, f(x, együttes sőrőségfüggvéyel, akkor X sőrőségfüggvéye g X ( x) fx, Y ( x, y Bzoyítás. z f x, yx F ( z, ) P( X < z) X, Y ( X, Y Ugyaígy Y sőrőségfüggvéye hy ( fx, Y ( x, x 2
3 Pélák Az egységégyzet 0<x<y< részé egyeletes eloszlásra a peremeloszlások meghatározása. Függvéy eloszlása: Tfh az A tartomáyo aott egy g, folytoosa erválható fügvéy, melyek létezk verze. Ha az X abszolút folytoos változó értéke A-belek, akkor g(x) s abszolút folytoos, sőrőségfüggvéye fg( X )( fx ( g ( ) J ahol J a g - függvéy Jacob etermásáak abszolút értéke. Valószíőség változók függetlesége eseméyreszer függetle, ha P ( A... ) ( ) ( )... ( ) A 2 k teljesül tetszıleges 2 k A A, A A,..., A k A 2 2 k eseméyekre, < 2 < < k exsorozatra és me 2 k számra. Def. Az X,,X valószíőség változók függetleek, ha az F X, F X2,,F X geerált σ-algebrák függetleek. A függetleség karakterzácó Ha X koorátá függetleek, akkor efícó szert F X (z)p(x <z, X 2 < z 2,..., X <k )F (z )F 2 (z 2 )...F (z ) (me z R re). Meg s forítható: F szorzatelıállításából következk a függetleség. Derválva: a függetleség abszolút folytoos változókra ekvvales a sőrőségfüggvéy f X (z)f (z )f 2 (z 2 )...f (z ) alakú elıállításával s. Péla: az egységégyzete egyeletes eloszlás sőrőségfüggvéye (f(z) ha 0<z<) elıáll f (z )f 2 (z 2 ) alakba, ahol f (z ), ha 0<z < (,2), ez éppe a [0,] tervallumo egyeletes eloszlás. Valószíőség változók függetlesége eseméyreszer függetle, ha P ( A... ) ( ) ( )... ( ) A 2 k teljesül tetszıleges 2 k A A, A A,..., A k A 2 2 k eseméyekre, < 2 < < k exsorozatra és me 2 k számra. Def. Az X,,X valószíőség változók függetleek, ha az F X, F X2,,F X geerált σ-algebrák függetleek. A függetleség karakterzácó Ha X koorátá függetleek, akkor efícó szert F X (z)p(x <z, X 2 < z 2,..., X <z )F (z )F 2 (z 2 )...F (z ) (me z R re). Meg s forítható: F szorzatelıállításából következk a függetleség. Derválva: a függetleség abszolút folytoos változókra ekvvales a sőrőségfüggvéy f X (z)f (z )f 2 (z 2 )...f (z ) alakú elıállításával s. Péla: az egységégyzete egyeletes eloszlás sőrőségfüggvéye (f(z) ha 0<z<) elıáll f (z )f 2 (z 2 ) alakba, ahol f (z ), ha 0<z < (,2), ez éppe a [0,] tervallumo egyeletes eloszlás. Tulajoságok. Az X,,X szkrét valószíőség változók függetleek, ha P (X x,..., X x )P (X x )... P (X x ) teljesül me x,...,x értékre. 2. Ha az X,,X valószíőség változók függetleek, a g,,g függvéyek Borelmérhetıek, akkor g (X ),, g (X ) s függetleek. 3. Ha az X,,X valószíőség változók függetleek, a h k-változós Borel-mérhetı fv., akkor h(x,, X k ), X k+,,x s függetleek. 3
4 Várható érték Legye X valószíőség változó. A várható X ) X ( ω) P( ω) Ω ha létezk az tegrál. Néháy tulajoság: cx)cx) Ha X Y, és létezek a várható értékek, akkor X) Y). EX E X ha EX létezk. Dszkrét valószíőség változók várható értéke A p P (Xx ) eloszlással megaott valószíőség változó várható értéke X) p x + p 2 x 2 +, ha a sor abszolút koverges. Péla: Dobókocka: ay a yereméyük, ameyt obuk. Eek átlagos értéke /6(+2+ +6)2/63.5 De ha em szabályos a kocka, pélául az egyes helyett s 6 va, akkor az átlagos yereméy /6(2+ +5)+6/33/3. Pélák Az elfajult eloszlás várható X)cP(Xc)c. A p valószíőségő A eseméy kátoráak várható X)P(X) p Az (,p) paraméterő bomáls eloszlás várható k k k k X ) k p ( p) p p ( p) p k k k k Amerka rulett. Ha k számra teszük, a yereméyük 36/k. A várható yereméy (36/k) (k/38)- - 2/38. Pélák 2. A hpergeometra eloszlás várható értéke M N M M N M k k M k k M E X k ( ) k N k N N N A Posso eloszlás várható értéke X ) λ λ λ k e k e k e kλ λ λλ k k! k ( k )! k ( k )! λ A várható érték tovább tulajosága X ) X ( ω) P( ω) yq Ω R X ( Elıforulhat, hogy X + ) X - ), ekkor X) em létezk. Ha létezk EX, akkor me A Aeseméyre létezk Xχ A ) s. Ha létezk EX és EY és értelmes EX+EY, akkor X+Y) EX+EY. Ha X0 valószíőséggel, akkor EX0. Az atvtás következméye Bomáls eloszlás várható értéke p (függetle, azoos paraméterő kátorok összege) Péla. N ember letesz az eseryıjét a tartóba. Távozáskor véletleszerőe választaak egyet. Várható értékbe háya fogak a saját eryıjükkel hazame? Ugyaígy: hpergeometrkus eloszlás várható M/N. 4
5 Szt.Pétervár paraoxo Nem me valószíőség változóak va véges várható legye P(X2 k )(/2) k k,2, Ekkor X)+++. Azaz aak a játékak az ára, ahol 2 k Ft-ot kapuk, ha szabályos érmével k-akra obuk elıször fejet: végtele. Ez a Szt.Pétervár paraoxo; gyakorlatba persze em reáls így ez a játék, hsze cs az a bak, amely korlátla pézt tua fzet. 5
Bevezetés. Valószínűségszámítás 2 előadás III. alk. matematikus szak. Irodalom. Egyéb info., számonkérés. Cél. Alapfogalmak (ismétlés)
Valószínűségszámítás 2 előaás III. alk. matematikus szak 2016/2017 1. félév Zempléni Anrás Bevezetés Iroalom, követelmények A félév célja Alapfogalmak mértékelméleti alapon Kapcsolóás a val.szám. 1-hez
18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható
8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.
Valószínőségszámítás helye a tudományok között. Véletlen tömegjelenségek. Történeti áttekintés 1. Modellezés. Történeti áttekintés 3.
Valószíőségszámítás és statsztka elıadás Ifo. BSC B-C szakosokak 4/5. félév Zemplé Adrás zemple@ludes.elte.hu http://www.cs.elte.hu/~zemple/. elıadás: Bevezetés Irodalom, követelméyek A félév célja Valószíőségszámítás
Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat
Megállapítható változók elemzése Függetleségvzsgálat, lleszkedésvzsgálat, homogetásvzsgálat Ordáls, omáls esetre s alkalmazhatóak a következő χ próbá alapuló vzsgálatok: 1) Függetleségvzsgálat: két valószíűség
Áringadozások elıadás Kvantitatív pénzügyek szakirány 2012/13 2. félév
Árigadozások elıadás Kvatitatív pézügyek szakiráy 01/13. félév Heti óra elıadás + óra gyakorlat Elıadás: fıleg modellek, elemzési módszerek Gyakorlat: R programmal, alkalmazások Számokérés 50%: beadadó
Sorozatok, határérték fogalma. Függvények határértéke, folytonossága
Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt
Matematikai statisztika
Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),
Példák 2. Teljes eseményrendszer. Tulajdonságok. Példák diszkrét valószínőségi változókra
Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 28 dszkrét valószíőség változókra X(ω)=c mde ω-ra. Elevezés: elfajult eloszlás. P(X=c)=1. X akkor 1, ha egy adott,
ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet
Statisztika 1. zárthelyi dolgozat március 21.
Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy
Tulajdonságok. Teljes eseményrendszer. Valószínőségi változók függetlensége. Példák, szimulációk
Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 26 p 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 A bomáls és a hpergeom. elo. összehasolítása 0 1 2 3 4 5 6 7 8 9 10 k Hp.geom
Ismétlés: Visszatevéses mintavétel. A valószínőség további tulajdonságai. Visszatevés nélküli mintavétel. A valószínőség folytonossága
Valószíőségszámítás és statsztka elıadás f. BC/B-C szakskak. elıadás szeptember. Ismétlés: Vsszatevéses mtavétel N termék, melybıl M selejtes elemő mta vsszatevéssel A: ptsa k selejtes va a mtába k k k,,
Abszolút folytonos valószín ségi változó (4. el adás)
Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t
f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben
Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,
ANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2
ANALÍZIS. I. VIZSGA. jauár. Mérök iformatikus szak α-variás Mukaidő: perc. feladat pot) Adja meg az z 4 i)z i egyelet összes megoldását. i + i) + 4i + 4 i +, vagyis z p i p cos 3 + i si ) 3 vagy z p i
? közgazdasági statisztika
Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem
Kopulák. 2 dimenziós példák különbözı összefüggıséggel. Példák. Elliptikus kopulák. Sőrőségfüggvények. ( u) 7. elıadás március 24.
Kopulák 7. elıaás 204. március 24. Kopulák Az összefüggıségi struktúra uiverzális megjeleítıi (többimeziós eloszlás egyeletes margiálisokkal, Hoeffig, 940 az 990-es évekbe újra felfeezték és azóta széles
Teljes eseményrendszer. Valószínőségszámítás. Példák. Teljes valószínőség tétele. Példa. Bayes tétele
Teljes eseményrendszer Valószínőségszámítás 3. elıadás 2009.09.22. Defnícó. Események A 1, A 2,..., sorozata teljes eseményrendszer, ha egymást páronként kzárják és egyesítésük Ω. Tulajdonság: P A ) +
I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.
I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.
2. METROLÓGIA ÉS HIBASZÁMíTÁS
. METROLÓGIA ÉS HIBASZÁMíTÁS. Metrológa alapfogalmak A metrológa a mérések tdomáya, a mérésekkel kapcsolatos smereteket fogja össze. Méréssel egy objektm valamlye tlajdoságáról számszerő értéket kapk.
Matematikai statisztika elıadás III. éves elemzı szakosoknak. Zempléni András 9. elıadásból (részlet)
Matematka statsztka elıadás III. éves elemzı szakosokak Zemplé Adrás 9. elıadásból részlet Y közelítése függvéyével Gyakor eset, hogy em smerjük a számukra érdekes meység Y potos értékét pl. holap részvéy-árfolyam,
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
véletlen : statisztikai törvényeknek engedelmeskedik (Mi az ami közös a népszavazásban, a betegségek gyógyulásában és a fiz. kém. laborban?
BEVEZETÉS A statisztika teljese laikusokak: agy mukával gyűjtött adatok vizsgálata, abból következtetések levoása ( statistical iferece ) (Egy kicsit sok hűhó semmiért azaz Much ado about othig.) Mi is
Statisztika október 27.
Statisztika 2011. október 27. Külöbség valószíőségszámítás és statisztika között Kísérlet: 4-szer dobuk fel egy érmét. Megszámoljuk a fejek számát. Valszám: Ismert a fejdobás valószíősége. Milye valószíőséggel
Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha
. Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,
? közgazdasági statisztika
... Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB
Feladatok és megoldások a 11. heti gyakorlathoz
Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.
Gazdasági matematika II. vizsgadolgozat megoldása A csoport
Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége
FELADATOK A KALKULUS C. TÁRGYHOZ
FELADATOK A KALKULUS C. TÁRGYHOZ. HALMAZOK RELÁCIÓK FÜGGVÉNYEK. Bizoyítsuk be a halmaz-műveletek alapazoosságait! 2. Legye adott az X halmaz legye A B C X. Ha A B := (A B) (B A) akkor bizoyítsuk be hogy
egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk
Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,
Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik
Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik Az A halmazrendszer σ-algebra az Ω alaphalmazon, ha Ω A; A A A c A; A i A, i N, i N A i A. Az A halmazrendszer
ELTE TTK Budapest, január
Valószíűségszámítás Arató Miklós előadásai alapjá Készítették: Martiek László Tassy Gergely ELTE TTK Budapest, 008. jauár Typeset by L A TEX . el adás 007. IX.. szerda Klasszikus (kombiatorikus valószí
Valószínőségszámítás
Vlószíőségszáítás 6. elıdás... Kovrc Defícó. Az és ovrcáj: cov,:[--] Kszáítás: cov, [-- ]- A últ ór végé látott állítás értelée cov,, h és függetlee. Megj.: Aól, hogy cov, e övetez, hogy függetlee: legye
2. gyakorlat - Hatványsorok és Taylor-sorok
. gyakorlat - Hatváysorok és Taylor-sorok 9. március 3.. Adjuk meg az itt szereplő sorok kovergeciasugarát és kovergeciaitervallumát! + a = + Azaz a hatváysor kovergeciasugara. Az biztos, hogy a (-,) yílt
= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05
Folytoos vlószíűségi változók Értékkészletük számegyees egy folytoos (véges vgy végtele) itervllum. Vlmeyi lehetséges érték vlószíűségű, pozitív vlószíűségek csk értéktrtomáyokhoz trtozk. Az eloszlás em
Valószín ségszámítás (jegyzet)
Valószí ségszámítás (jegyzet) Csiszár Vill 9. február 8.. Valószí ségi mez Két bevezet példa: ) Osztozkodási probléma (494, helyes megoldás több, mit évvel kés bb, Pascal, Fermat): Két játékos fej-írás
1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél
Valószíűségszámítás 1 előadás mat. BSc alk. mat. szakráyosokak 2016/2017 1. félév Zemplé Adrás zemple@ludes.elte.hu http://zemple.elte.hu/ 1. előadás: Bevezetés Irodalom, követelméyek A félév célja Valószíűségszámítás
1. elıadás: Bevezetés. Számonkérés. Irodalom. Valószínőségszámítás helye a tudományok között. Cél
1 Valószíőségszámítás 1 elıadás alk.mat és elemzı szakosokak 2013/2014 1. félév Zempléi Adrás zemplei@ludes.elte.hu http://www.cs.elte.hu/~zemplei/ 1. elıadás: Bevezetés Irodalom, követelméyek A félév
1. előadás: Bevezetés. Irodalom. Számonkérés. A valószínűségszámítás és a statisztika tárgya. Cél
Valószíűségszámítás és statsztka előadás fo. BSC/B-C szakosokak 1. előadás szeptember 13. 1. előadás: Bevezetés Irodalom, követelméyek A félév célja Valószíűségszámítás tárgya Törtéet Alapfogalmak Valószíűségek
V. Deriválható függvények
Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája
x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O
1. Mit nevezünk elemi eseménynek és eseménytérnek? A kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük. Az adott kísélethez tartozó elemi események halmazát eseménytérnek nevezzük, jele: X 2.
Metrikus terek. továbbra is.
Metrius tere továbbra is. Defiíció: Legye X egy halmaz, d : X X R egy függvéy. Azt modju, hogy d metria (távolság), ha.. 3. 4. d d d d x, x 0, x, y 0 x y, x, y dy, x, x, z dx, y dy, z. Az X halmazt a d
Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János
BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI KAR JÁRMŐELEMEK ÉS HAJTÁSOK TANSZÉK Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János Budapest 2008
A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat
A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Legye N, x k R k =,, és tegyük fel, hogy vagy x k 0 k =,, vagy pedig x k 0 k =,, Ekkor + x k + x k Speciális Beroulli-egyelőtleség Ha N és
Fourier sorok FO 1. Trigonometrikus. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
Fourier sorok FO Trigoometrikus Fourier sorok FO Trigoometrikus redszer Defiíció: trigoometrikus redszer Az {, cos x, si x, cos x, si x, cos 3x, si 3x, } függvéyekből álló (végtele sok függvéyt tartalmazó)
Ingatlanfinanszírozás és befektetés
Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:
2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...
. Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk
Feladatok megoldással
Fladatok mgoldással. sztmbr 6.. Halmazrdszrk. Igazoljuk! A \ B A r (A r B) (A [ B) r ((A r B) [ (B r A)) Mgoldás. A r (A r B) A \ A \ B A \ A [ B A \ A [ (A \ B) A \ B (A [ B) r ((A r B) [ (B r A)) (A
Valószín ségszámítás 2 gyakorlat Alkalmazott matematikus szakirány
Valószí ségszámítás gyakorlat Alkalmazott matematikus szakiráy Játékszabályok Az óráko részt kell vei, maximum 3-szor lehet hiáyozi. Aki többször hiáyzik, em ka gyakjegyet. 00 + x otot lehet szerezi a
Kevei Péter. 2013. november 22.
Valószíűségelmélet feladatok Kevei Péter 2013. ovember 22. 1 Tartalomjegyzék 1. Mérhetőség 4 2. 0 1 törvéyek 12 3. Vektorváltozók 18 4. Véletle változók traszformáltjai 28 5. Várható érték 33 6. Karakterisztikus
(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):
A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak
Komputer statisztika
Eszterházy Károly Főiskola Matematikai és Iformatikai Itézet Tómács Tibor Komputer statisztika Eger, 010. október 6. Tartalomjegyzék Előszó 4 Jelölések 5 1. Valószíűségszámítás 7 1.1. Valószíűségi mező............................
Barczy Mátyás és Pap Gyula
Barczy Mátyás és Pap Gyula mobidiák köyvtár Barczy Mátyás és Pap Gyula mobidiák köyvtár SOROZATSZERKESZTŐ Fazekas Istvá Barczy Mátyás és Pap Gyula Debrecei Egyetem mobidiák köyvtár Debrecei Egyetem Szerzők
Logika és informatikai alkalmazásai
Logika és informatikai alkalmazásai 2. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2008 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás
Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2.
Itervallum Paraméteres Hipotézisek Nemparaméteres Statisztika Hipotézisvizsgálat Székely Balázs 2010. december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Előadás vázlat 1 Itervallumbecslések
24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje.
24. tétel valószíűségszámítás elemei. valószíűség kiszámításáak kombiatorikus modellje. GYORISÁG ÉS VLÓSZÍŰSÉG meyibe az egyes adatok a sokaságo belüli részaráyát adjuk meg (törtbe vagy százalékba), akkor
Valószínűségszámítás és matematikai statisztika. Ketskeméty László
Valószíűségszámítás és matematka statsztka Ketskeméty László Budapest, 996 Tartalomjegyzék I. fejezet VALÓSZÍNŰSÉGSZÁMÍTÁS 4. Kombatorka alapfogalmak 5 Elleőrző kérdések és gyakorló feladatok 7. A valószíűségszámítás
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:
Valószín ségszámítás és statisztika
Valószín ségszámítás és statisztika Informatika BSc, esti tagozat Backhausz Ágnes agnes@cs.elte.hu 2016/2017. tavaszi félév Bevezetés Célok: véletlen folyamatok modellezése; kísérletekb l, felmérésekb
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 10. A statisztika alapjai Debrecei Egyetem, 2015 Dr. Bérczes Attila, Bertók Csaád A diasor tartalma 1 Bevezetés 2 Statisztikai függvéyek Defiíció, empirikus várható érték Empirikus
Együ ttes e s vetü leti eloszlá s, sü rü se gfü ggve ny, eloszlá sfü ggve ny
Együ ttes e s vetü leti eloszlá s, sü rü se gfü ggve ny, eloszlá sfü ggve ny Szűk elméleti összefoglaló Együttes és vetületi eloszlásfüggvény: X = (X, X, X n ) valószínűségi vektorváltozónak hívjuk. X
Autoregressziós folyamatok
Autoregressziós folyamatok.. Példa.. Az ε(t) folyamat függetle érték zaj, ha a várható értéke és ε(t)-k függetle, azoos eloszlású valószí ségi változók.. Az ε(t) folyamat fehér zaj, ha Eε(t) =, és ε(t)-k
Információs rendszerek elméleti alapjai. Információelmélet
Iformácós redszerek elmélet alaja Iformácóelmélet A forrás kódolása csatora jelekké 6.4.5. Molár Bált Beczúr Adrás NMMMNNMNfffyyxxfNNNNxxMNN verzazazthatóvsszaálímdeveszteségcsaakkorfüggvéykódolásaakódsorozat:eredméyekódolássorozatváltozó:forás
Kalkulus II., második házi feladat
Uger Tamás Istvá FTDYJ Név: Uger Tamás Istvá Neptu: FTDYJ Web: http://maxwellszehu/~ugert Kalkulus II, második házi feladat pot) Koverges? Abszolút koverges? ) l A feladat teljese yilvávalóa arra kívácsi,
KOMBINATORIKA ELŐADÁS osztatlan matematikatanár hallgatók számára. Szita formula J = S \R,
KOMBINATORIKA ELŐADÁS osztatla matematkataár hallgatók számára Szta formula Előadó: Hajal Péter 2018 1. Bevezető példák 1. Feladat. Háy olya sorbaállítása va a {a,b,c,d,e} halmazak, amelybe a és b em kerül
Diszkrét Matematika 1. óra Fokszámsorozatok
Dszkrét Matematka. óra 29.9.7. A köetkezı fogalmakat smertek tektük: gráf, egyszerő gráf, hurokél, párhuzamos élek, fa, ághatás operácó. Fokszámsorozatok Def.: G gráf fokszámsorozata fokaak reezett öekı
Nemparaméteres próbák
Nemparaméteres próbák Budapesti Mőszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Mőegyetem rkp. 3. D ép. 334. Tel: 463-16-80 Fax: 463-30-91 http://www.vizgep.bme.hu
Backhausz Ágnes 1. Bevezetés A valószínűség elemi tulajdonságai... 5
Valószínűségszámítás Földtudomány BSc szak, 2016/2017. őszi félév Backhausz Ágnes agnes@cs.elte.hu Tartalomjegyzék 1. Bevezetés 2 2. A Kolmogorov-féle valószínűségi mező 3 2.1. Klasszikus valószínűségi
ANALÍZIS I. DEFINÍCIÓK, TÉTELEK
ANALÍZIS I. DEFINÍCIÓK, TÉTELEK Szerkesztette: Balogh Tamás 2012. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add el! - Így add
Logika és informatikai alkalmazásai
Logika és informatikai alkalmazásai 2. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2009 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás
A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük.
Statisztikai módszerek. BMEGEVGAT01 Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudomáyi Egyetem Gépészméröki Kar Hidrodiamikai Redszerek Taszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Valószínűségszámítás összefoglaló
Vlószíűségszámítás összefoglló I. Feezet ombtor ermutácó Ismétlés élül ülöböző elem lehetséges sorrede! b Ismétléses em feltétleül ülöböző elem összes ülöböző sorrede!... hol z zoos eleme gyorság!!...!
3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.
3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.
VÉLETLENÍTETT ALGORITMUSOK. 1.ea.
VÉLETLENÍTETT ALGORITMUSOK 1.ea. 1. Bevezetés - (Mire jók a véletleített algoritmusok, alap techikák) 1.1. Gyorsredezés Vegyük egy ismert példát, a redezések témaköréből, méghozzá a gyorsredezés algoritmusát.
Logika és informatikai alkalmazásai
Logika és informatikai alkalmazásai 2. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2011 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás
Integrálás sokaságokon
Itegrálás sokaságoko I. Riema-itegrál R -e Jorda-mérték haszálható ehhez: A R eseté c(a)=0, ha 0 eseté létezek C 1,,C s kockák hogy A C1 Cs és s i 1 c C i defiíció: D ullmértékű R itegrálási tartomáy,
1. A radioaktivitás statisztikus jellege
A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a
Logika és informatikai alkalmazásai
Logika és informatikai alkalmazásai 6. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2008 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás
Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.
Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika
Valószínűségszámítás alapjai szemléletesen
### walszam07-jav-80.doc, ### 08.0.3., :00' http://math.ui-pao.hu/~szalkai/walszam07.pdf Valószíűségszámítás alapjai szemléletese /Kézirat, 08-0-3. / dr.szalkai Istvá Pao Egyetem, Veszprém Matematika Taszék
Kutatói pályára felkészítı modul
Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI
Valószín ségszámítás 1. Csiszár Vill
Valószí ségszámítás 1. Csiszár Vill Tartalomjegyzék 1. Valószí ségi mez 1 1.1. Klasszikus valószí ségi mez................................ 2 1.2. Geometriai valószí ségi mez................................
Valószín ségszámítás és statisztika gyakorlat Programtervez informatikus szak, esti képzés
Valószí ségszámítás és statisztika gyakorlat Programtervez iformatikus szak, esti képzés.) Egy érmével dobuk. Ha az eredméy fej, akkor még egyszer dobuk, ha írás, akkor még kétszer. a.) Mik leszek a kísérletet
Készítette: Fegyverneki Sándor
VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y
A felhasznált térfogalmak: lineáris tér (vektortér), normált tér, Banach tér, euklideszi-tér, Hilbert tér. legjobban közelítõ elem, azaz v u
Approxmácó Bevezetés A felhaszált térfogalmak: leárs tér (vektortér) ormált tér Baach tér eukldesz-tér Hlbert tér V ormált tér T V T kompakt halmaz Ekkor v V u ~ T legjobba közelítõ elem azaz v u ~ f {
Logika és informatikai alkalmazásai
Logika és informatikai alkalmazásai 2. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2009 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás
Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13
Tartalomjegyzék I Kombiatorika Pemutáció Ismétléses permutáció 8 Variáció 9 Ismétléses variáció Kombiáció Ismétléses kombiáció II Valószíségszámítás M/veletek eseméyek között 6 A valószí/ség fogalma 8
Wiener-folyamatok definiciója. A funkcionális centrális határeloszlástétel. Norbert Wienerre, a második pedig egy Brown nevű XIX. században élt angol
Wieer-folyamatok defiiciója. A fukcioális cetrális határeloszlástétel. A valószíűségszámítás egyik agyo fotos fogalma a Wieer-folyamat, amelyet Browmozgásak is hívak. Az első elevezés e fogalom első matematikailag
Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév
Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis 1. Írásbeli beugró kérdések Készítette: Szátó Ádám 2011. Tavaszi félév 1. Írja le a Dedekid-axiómát! Legyeek A R, B R. Ekkor ha a A és b B : a b, akkor
Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia
Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 5. Megjegyzések. A tétel feltételei gyegíthetőek: elég, ha a függetle, azoos eloszlású változók várható értéke véges.
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2
Játékszabályok. a keresett valószín ség:
Játékszabályok Az óráko részt kell vei, maximum -szor lehet hiáyozi. Aki többször hiáyzik, em kap gyakjegyet. + x potot lehet szerezi a félév sorá: pot:. ZH a félév közepé pot:. ZH a félév végé x pot:
[f(x) = x] (d) B f(x) = x 2 ; g(x) =?; g(f(x)) = x 1 + x 4 [
Bodó Beáta 1 FÜGGVÉNYEK 1. Határozza meg a következő összetett függvényeket! g f = g(f(x)); f g = f(g(x)) (a) B f(x) = cos x + x 2 ; g(x) = x; f(g(x)) =?; g(f(x)) =? f(g(x)) = cos( x) + ( x) 2 = cos( x)
A valószínőség folytonossága
Valószíőségszámítás és statszta elıadás f. BC/B-C szasa. elıadás szeptember 9. Megszámlálható valószíőség mezı Ω{ω, ω,,ω, }, A P Ω. Jelölés: p P ω, valószíőségelszlás: p, az összegü. A σ-addtvtás matt
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
Valószínűségelmélet. Pap Gyula. Szegedi Tudományegyetem. Szeged, 2016/2017 tanév, I. félév
Valószínűségelmélet Pap Gyula Szegedi Tudományegyetem Szeged, 2016/2017 tanév, I. félév Pap Gyula (SZTE) Valószínűségelmélet 2016/2017 tanév, I. félév 1 / 125 Ajánlott irodalom: CSÖRGŐ SÁNDOR Fejezetek
A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata
6. év OTKA zárójeletés: Vezető kutató:kalszky Sádor OTKA ylvátartás szám T 4993 A pályázat címe: Rugalmas-képlékey tartószerkezetek topológa optmalzálásáak éháy külöleges feladata (Részletes jeletés) Az
Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.
Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.
min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is:
. A szupréum elv. = H R felülr l körlátos H fels korlátai között va legkisebb, azaz A és B a A és K B : a K Ekkor ξ-re: mi{k R K fels korlátja H-ak} } a A : a ξ : ξ fels korlát A legkisebb fels korlát