Ismétlés: Visszatevéses mintavétel. A valószínőség további tulajdonságai. Visszatevés nélküli mintavétel. A valószínőség folytonossága
|
|
- Zalán Hajdu
- 6 évvel ezelőtt
- Látták:
Átírás
1 Valószíőségszámítás és statsztka elıadás f. BC/B-C szakskak. elıadás szeptember. Ismétlés: Vsszatevéses mtavétel N termék, melybıl M selejtes elemő mta vsszatevéssel A: ptsa k selejtes va a mtába k k k,, M M N N azaz a valószíőség kfejezhetı a pm/n selejtaráy segítségével: p k p k Mtavétel Vsszatevés élkül mtavétel N termék, melybıl M selejtes elemő mta vsszatevés élkül A: ptsa k selejtes va a mtába k,, Mtavétel M N M k P N A valószíőség tvább tulajdsága A valószíőség végese s addtív: ha A, A,..., A párkét kzáró eseméyek, akkr P A A A + A A Bzyítás. A + A + választással alkalmazzuk a σ-addtvtást. Tehát a krábba beláttt tulajdságk a Klmgrv-féle valószíőség mezıre s érvéyesek. Megszámlálható valószíőség mezı Ω{ω, ω,,ω, }, A P Ω. Jelölés: p P ω, valószíőségelszlás: p, az összegük. A σ-addtvtás matt tetszıleges A eseméyre megy a véges esetre láttt számítás: ω p : ω A : ω A Példa: Háyadkra dbjuk az elsı fejet egy szabálys érmével? p /,, A valószíőség flytssága Állítás. Ha A A,, és A A... akkr az A A jelöléssel lm A Bzyítás. A A A\ A A\ A3. dszjukt felbtás, tehát a P A \ + A \ sr kverges. A fet felbtást A -re alkalmazva: A + A\ A + + A + \ A
2 s s Eseméyek uójáak valószíősége A PA + PB PA Példa: Magyar kártyacsmagból kétszer húzuk vsszatevéssel. M a valószíősége, hgy húzuk prsat? A: elsı prs, B: másdk prs /4, A / Tehát A 7/ PA B C PA + PB + PC PA PA C PB C + PA B C zta Pcaré frmula Képlet az általás esetre: + A A A ahl Aj A j j < j <... < j A az téyezıs metszetek valószíőségeek összege. j Alkalmazásk Ha az egyes eseméyek és metszetek s egyfrmá valószíőek, akkr + A A A A A A Átfgalmazás metszetekre: A A A A Megállapdás:. Példa: M a valószíősége, hgy adtt k számú kckadbásból mde számt legalább egyszer megkaptuk? Megldás A : az számt em dbtuk A A A A A k d k k d Feltételes valószíőség. Az A eseméy valószíőségét keressük. Tudjuk, hgy B eseméy bekövetkezett. A relatív gyakrságkkal: csak azkat a kísérleteket ézzük, amelyekbe B bekövetkezett. Eze részsrzatba az A relatív gyakrsága: r A B / r B Feltételes valószíőség. Megfelelıje a valószíőségekre: A az A eseméy B-re vatkzó feltételes valószíősége feltétel: >. Példa: kckadbás. A{párs számt dbuk} B{3-ál agybbat dbtuk} /3.
3 Példa Mty Hall játék: 3 ajtó közül kell a játéksak választaa. Egy mögött yereméy autó va, a másk kettı mögött kecske. Mutá választttuk, a mősrvezetı kyt egy másk kecskés ajtót. Ezek utá döthetük: ktartuk az eredet választásuk mellett, vagy a harmadk, még bezárt ajtót választjuk kább. M a jó stratéga? Teljes eseméyredszer Defícó. Eseméyek A, A,..., srzata teljes eseméyredszer, ha egymást párkét kzárják és egyesítésük Ω. Tulajdság: P Legtöbbször véges sk elembıl álló teljes eseméyredszereket vzsgáluk. Teljes valószíőség tétele. Legye B, B,..., pztív valószíőségő eseméyekbıl álló teljes eseméyredszer, A A tetszıleges. Ekkr P Bzyítás. A A B A B dszjukt tagkra btás, tehát A B + A B +... és P A adja a tételt. Összetett mdellek pl. emtıl függı valószíőségek: a szívakság valószíősége a férfakál., a ıkél. Tfh. ugyaay a férf, mt a ı. M a valószíősége, hgy egy találmra választt ember szívak? A teljes eseméyredszer: {férf} {ı}. p./+./.55 Bayes tétele Legye B, B,..., pztív valószíőségő eseméyekbıl álló teljes eseméyredszer, A A pztív valószíőségő. Ekkr Bk Bk Bk Vsszakövetkeztetés az elsı lépés eredméyére. Bzyítás. A evezı éppe P a teljes valószíőség tétele matt. A számláló pedg P A, defícó szert. Példa Ha egy találmra választt ember szívak, m a valószíősége, hgy férf? p.5/.5+.5/. Ha egy, az egészségesekre 5% eséllyel téves dagózst adó szőrıvzsgálatál betegek tőük, akkr a betegség téyleges valószíősége p a betegség vszge, {Bbeteg, Eegészséges} a teljes eseméyredszer: B pzpz /pz + pz EEp/p+.5-p vszg. pztív teszteredméyél Betegség valószíusége vszg az adtt ppulácóba 3
4 Eseméyek függetlesége Ha a B eseméy bekövetkezése em beflyáslja az A valószíőségét, azaz, akkr azt mdjuk, hgy az A és B függetleek. Ez így em deáls defícó em szmmetrkus, P > kell hzzá, ezért Defícó. Az A és B eseméyek függetleek, ha A. Húzuk egy lapt egy magyarkártyacsmagból. A: prs B: ász. P /4, P /8, P A /3, tehát függetleek. A függetleség agy rtka azs kísérletbıl meghatárztt eseméyekél! Tpkus eset függetleségre: A az elsı, B a másdk kísérlet eredméye. Tulajdságk Ha A és B dszjuktak, akkr csak trváls P vagy P esetbe függetleek. Ha A és B függetleek, akkr kmplemeterek s függetleek. Ömaguktól csak a trváls eseméyek függetleek. A B eseté csak akkr függetleek, ha legalább az egyk trváls. Általásítás Két eseméyredszer függetle, ha az elsı tetszıleges eleme függetle a másdk tetszıleges elemétıl. eseméy függetle, ha P A A. A A A... A k k teljesül tetszıleges < < < k dexsrzatra és mde k számra. Megjegyzések Nem elég a fet szrzat-tulajdságt k-re megkövetel. Ha csak ez teljesül: párkét függetleségrıl beszélük. függetle kísérlet eseté az egyes kísérletekhez tartzó eseméyek függetleek. A gyakrlatba ez a tpkus, fts elıfrdulása eek a függetleségek. Klasszkus valószíőség mezı eseté függetle kísérleteket végezve, a kedvezı és az összes eseméyek száma s összeszrzódk. Példa: szabálys kckával dbva: elsı dbás párs és a másdk hats3/3. Tvább általásítás Végtele sk eseméyt függetleek evezük, ha tetszılegese kválasztva közülük véges skat, függetle eseméyeket kapuk. Végtele sk függetle kísérlethez tartzó valószíőség mezı s értelmezhetı. Ha A az -edk kísérlethez tartzk, akkr A,A,, A, függetle. 4
5 Valószíőség váltzók. A legtöbbször em maga a kísérlet kmeetele a realzálódtt elem eseméy haem egy számszerősíthetı eredméy az érdekes. Példa: par termelés mıségelleırzés: a kérdés az esetleges selejtesek száma, em pedg az, hgy ptsa melyk elemeket s választttuk. k gyakrlat esetbe em s adódk természetese az Ω halmaz pl. dıjárás megfgyelés. Valószíőség váltzók. Mtavétel példa flyt. N termék, elemő mta. Ω elemszáma: N elejtesek száma X: és között szám. Matematkalag: X : Ω R függvéy Feltétel: legye értelme pl. aak a valószíőségérıl beszél, hgy Xa. Haslóképpe más természetes feltételek s legye valószíősége. Frmálsa: megköveteljük, hgy {ω: Xω B} A teljesüljö mde, az tervallumkból megszámlálhatóa sk halmazmővelettel elıállítható B-re. A gyakrlatba általába em jelet prblémát. Kckadbás: X a dbtt szám. Ω{,,,}, X. Értékkészlete: {,,,}. X az elsı lya dbás srszáma, amkr jö k. Ω{,,,} {,,,} {,,,}... X értékkészlete: {,, } Ipar termelés: X az elsı selejt gyártásáak dıptja. X értékkészlete: R +. X egy adtt termék hssza. X értékkészlete: R + részhalmaza em szükséges elızetese krlátz. Dszkrét valószíőség váltzók Defícó: az X dszkrét valószíőség váltzó, ha értékkészlete x,, x legfeljebb megszámlálható. A valószíőség váltzó defícójából adódóa {ω:xω x }{Xx } A azaz p :P Xx értelmes. Ezek meg s határzzák X elszlását. Véges vagy megszámlálható valószíőség mezı mde valószíőség váltzó dszkrét. Nem célszerő a természetszerőe flyts értékkészlető X dszkretzálása egyszerőbbek a flyts mdellek. 5
A valószínőség folytonossága
Valószíőségszámítás és statszta elıadás f. BC/B-C szasa. elıadás szeptember 9. Megszámlálható valószíőség mezı Ω{ω, ω,,ω, }, A P Ω. Jelölés: p P ω, valószíőségelszlás: p, az összegü. A σ-addtvtás matt
Szita (Poincaré) formula. Megoldás. Alkalmazások. Teljes eseményrendszer. Példák, szimulációk
s s Valószíűségszámítás és statszta előadás f. BC/B-C szasa. előadás szeptember 7. zta Pcaré frmula Képlet az általás esetre: A A... A ahl Aj A j j j... j... A az téyezős metszete valószíűségee összege.
Teljes eseményrendszer. Valószínőségszámítás. Példák. Teljes valószínőség tétele. Példa. Bayes tétele
Teljes eseményrendszer Valószínőségszámítás 3. elıadás 2009.09.22. Defnícó. Események A 1, A 2,..., sorozata teljes eseményrendszer, ha egymást páronként kzárják és egyesítésük Ω. Tulajdonság: P A ) +
Valószínűségszámítás és statisztika előadás Info. BSC B-C szakosoknak. 1. előadás: Bevezetés. Számonkérés. Irodalom. Cél. Véletlen tömegjelenségek
Valószíűségszámítás és statszta előadás If. S - szasa 008/09. félév Zemplé drás zemple@caesar.elte.hu zemple.elte.hu. előadás: evezetés Irdalm, övetelméye félév céla Valószíűségszámítás tárgya Törtéet
1. előadás: Bevezetés. Irodalom. Számonkérés. A valószínűségszámítás és a statisztika tárgya. Cél
Valószíűségszámítás és statsztka előadás fo. BSC/B-C szakosokak 1. előadás szeptember 13. 1. előadás: Bevezetés Irodalom, követelméyek A félév célja Valószíűségszámítás tárgya Törtéet Alapfogalmak Valószíűségek
A peremeloszlások. Valószínőségszámítás elıadás III. alk. matematikus szak. Példa. Valószínőségi vektorváltozók eloszlásfüggvénye.
y Valószíőségszámítás elıaás III. alk. matematkus szak 4. elıaás, szeptember 30 A peremeloszlások (X,Y) eloszlásából (elevezés: együttes eloszlás) következtethetük az egyes változók eloszlására: P(X)P(X,Y0)+P(X,Y)+P(X,Y2)
1. elıadás: Bevezetés. Számonkérés. Irodalom. Valószínőségszámítás helye a tudományok között. Cél
1 Valószíőségszámítás 1 elıadás alk.mat és elemzı szakosokak 2013/2014 1. félév Zempléi Adrás zemplei@ludes.elte.hu http://www.cs.elte.hu/~zemplei/ 1. elıadás: Bevezetés Irodalom, követelméyek A félév
1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél
Valószíűségszámítás 1 előadás mat. BSc alk. mat. szakráyosokak 2016/2017 1. félév Zemplé Adrás zemple@ludes.elte.hu http://zemple.elte.hu/ 1. előadás: Bevezetés Irodalom, követelméyek A félév célja Valószíűségszámítás
? közgazdasági statisztika
Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem
Példák 2. Teljes eseményrendszer. Tulajdonságok. Példák diszkrét valószínőségi változókra
Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 28 dszkrét valószíőség változókra X(ω)=c mde ω-ra. Elevezés: elfajult eloszlás. P(X=c)=1. X akkor 1, ha egy adott,
ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet
Valószínőségszámítás helye a tudományok között. Véletlen tömegjelenségek. Történeti áttekintés 1. Modellezés. Történeti áttekintés 3.
Valószíőségszámítás és statsztka elıadás Ifo. BSC B-C szakosokak 4/5. félév Zemplé Adrás zemple@ludes.elte.hu http://www.cs.elte.hu/~zemple/. elıadás: Bevezetés Irodalom, követelméyek A félév célja Valószíőségszámítás
Matematikai statisztika
Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),
24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje.
24. tétel valószíűségszámítás elemei. valószíűség kiszámításáak kombiatorikus modellje. GYORISÁG ÉS VLÓSZÍŰSÉG meyibe az egyes adatok a sokaságo belüli részaráyát adjuk meg (törtbe vagy százalékba), akkor
? közgazdasági statisztika
... Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB
1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél
Valószíűségszámítás előadás formata BSC/ szaosoa és matemata elemző BSC-see 2015/2016 1. félév Zemplé drás zemple@ludes.elte.hu http://www.cs.elte.hu/~zemple/ 1. előadás: Bevezetés Irodalom, övetelméye
Tulajdonságok. Teljes eseményrendszer. Valószínőségi változók függetlensége. Példák, szimulációk
Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 26 p 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 A bomáls és a hpergeom. elo. összehasolítása 0 1 2 3 4 5 6 7 8 9 10 k Hp.geom
Környezet statisztika
Környezet statisztika Permutáció, variáció, kombináció k számú golyót n számú urnába helyezve hányféle helykitöltés lehetséges, ha a golyókat helykitöltés Minden urnába akárhány golyó kerülhet (ismétléses)
1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél
Valószíűségszámítás 1 előadás al.mat BSc szaosoa 2015/2016 1. félév Zemplé Adrás zemple@ludes.elte.hu http://www.cs.elte.hu/~zemple/ 1. előadás: Bevezetés Irodalom, övetelméye A félév célja Valószíűségszámítás
Kombinatorikus optimalizálás jegyzet TARTALOM
Kmbatrkus ptmalzálás egyzet az elıadás és a kadtt szakrdalm alapá Készítette: Schmdt Péter Alk. Mat., II. évf. 00-0 TARTALOM KOMBINATORIKUS OPTIMALIZÁLÁS... HALMAZOK... Halmaz lefedése... Sperer-redszerek...
Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János
BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI KAR JÁRMŐELEMEK ÉS HAJTÁSOK TANSZÉK Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János Budapest 2008
Feladatok és megoldások a 11. heti gyakorlathoz
Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
Sorozatok, határérték fogalma. Függvények határértéke, folytonossága
Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt
Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat
Megállapítható változók elemzése Függetleségvzsgálat, lleszkedésvzsgálat, homogetásvzsgálat Ordáls, omáls esetre s alkalmazhatóak a következő χ próbá alapuló vzsgálatok: 1) Függetleségvzsgálat: két valószíűség
Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától
Sztochasztkus tartalékolás és a tartalék függése a kfutás háromszög dőperódusától Faluköz Tamás Vtéz Ildkó Ibola Kozules: r. Arató Mklós ELTETTK Budapest IBNR kfutás háromszög IBNR: curred but ot reported
Statisztika 1. zárthelyi dolgozat március 21.
Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy
Valószínűségszámítás és statisztika előadás Info. BSC B-C szakosoknak. Bayes tétele. Példák. Események függetlensége. Példák.
Valószínűségszámítás és statisztia előadás Info. BSC B-C szaosona 20018/2019 1. félév Zempléni András 2.előadás Bayes tétele Legyen B 1, B 2,..., pozitív valószínűségű eseményeből álló teljes eseményrendszer
Matematikai alapok és valószínőségszámítás. Valószínőségszámítási alapok
Matematikai alapok és valószínőségszámítás Valószínőségszámítási alapok Bevezetés A tudományos életben vizsgálódunk pontosabb megfigyelés, elırejelzés, megértés reményében. Ha egy kísérletet végzünk, annak
Eseme nyalgebra e s kombinatorika feladatok, megolda sok
Eseme yalgebra e s kombiatorika feladatok, megolda sok Szűk elméleti áttekitő Kombiatorika quick-guide: - db. elemből db. sorredjeire vagyuk kívácsiak: permutáció - db. elemből m < db. háyféleképp rakható
13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai
Tárcsák számítása A felületszerkezetek A felületszerkezetek típusa A tartószerkezeteket geometra méretek alapjá osztálozzuk Az eddg taulmáakba szereplı rúdszerkezetek rúdjara az a jellemzı hog a hosszuk
Eseményalgebra, kombinatorika
Eseméyalgebra, kombiatorika Eseméyalgebra Defiíció. Véletle kísérletek evezük mide olya megfigyelést, melyek több kimeetele lehetséges, és a véletletől függ, (azaz az általuk figyelembevett feltételek
AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN
AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN Molár László Ph.D. hallgató Mskolc Egyetem, Gazdaságelmélet Itézet 1. A MINTANAGYSÁG MEGHATÁROZÁSA EGYSZERŐ VÉLETLEN (EV) MINTA
24. Kombinatorika, a valószínűségszámítás elemei
4. Kombiatoria, a valószíűségszámítás elemei Kombiatoria A véges halmazoal foglalozó tudomáyterület. Idő hiáyába csa a evezetes összeszámolásoal foglalozu. a) Sorbaállításo (ermutáció) alafeladat: ülöböző
x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
I. Adatok, adatgyűjtés
I. Adatk, adatgyűjtés Adatgyűjtés adatk minőségének értékelése. Gazdasági adatkról lesz szó! Adat: rögzített ismeret. Számszerű adatkkal fgunk fglalkzni. Általában az adatk nem teljes körűek (kmplettek).
1. A kísérlet naiv fogalma. melyek közül a kísérlet minden végrehajtásakor pontosan egy következik be.
IX. ESEMÉNYEK, VALÓSZÍNŰSÉG IX.1. Események, a valószínűség bevezetése 1. A kísérlet naiv fogalma. Kísérlet nek nevezzük egy olyan jelenség előidézését vagy megfigyelését, amelynek kimenetelét az általunk
Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás
SZDT-01 p. 1/23 Biometria az orvosi gyakorlatban Számítógépes döntéstámogatás Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Gyakorlat SZDT-01 p.
18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható
8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.
MATEMATIKA C 12. évfolyam 1. modul Sorban, egymás után
MATEMATIKA C. évflyam. mdul Srba, egymás utá Készítette: Kvács Kárlyé Matematika C. évflyam. mdul: Srba egymás utá Taári útmutató A mdul célja Időkeret Ajáltt krsztály Mdulkapcslódási ptk Srzat fgalma,
17. tétel: Egybevágósági transzformációk. Szimmetrikus sokszögek.
17. tétel: Egybevágósági transzfrmációk. Szimmetrikus skszögek. Gemetriai transzfrmáció: Olyan függvény, melynek értelmezési tartmánya és értékkészlete is egy-egy pnthalmaz (vagyis pntkhz rendel pntkat).
(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):
A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak
1. A radioaktivitás statisztikus jellege
A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a
FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Fizika középszint 0911 ÉRETTSÉGI VIZSGA 2009. któber 30. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dlgzatkat az útmutató utasításai
Matematikai statisztika elıadás III. éves elemzı szakosoknak. Zempléni András 9. elıadásból (részlet)
Matematka statsztka elıadás III. éves elemzı szakosokak Zemplé Adrás 9. elıadásból részlet Y közelítése függvéyével Gyakor eset, hogy em smerjük a számukra érdekes meység Y potos értékét pl. holap részvéy-árfolyam,
ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test
(eseményalgebra) (halmazalgebra) (kijelentéskalkulus)
Valószínűségszámítás Valószínűség (probablty) 0 és 1 között valós szám, amely egy esemény bekövetkezésének esélyét fejez k: 0 - (sznte) lehetetlen, 0.5 - azonos eséllyel gen vagy nem, 1 - (sznte) bztos
3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.
3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.
A paramétereket kísérletileg meghatározott yi értékekre támaszkodva becsülik. Ha n darab kisérletet (megfigyelést, mérést) végeznek, n darab
öbbváltozós regresszók Paraméterbecslés-. A paraméterbecslés.. A probléma megfogalmazása A paramétereket kísérletleg meghatározott y értékekre támaszkodva becsülk. Ha darab ksérletet (megfgyelést, mérést
6. Minısítéses ellenırzı kártyák
6. Miısítéses elleırzı kártyák Sokszor elıfordul, hogy a termék-egyedek miıségét em tudjuk mérhetı meyiségekkel jellemezi, csak megfelelı/em megfelelı kategóriákba sorolhatjuk ıket, és a hibás darabokat,
Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.
Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.
MATEMATIKA I. FEKETE MÁRIA. PÉCSI TUDOMÁNYEGYETEM POLLACK MIHÁLY MŰSZAKI KAR MATEMATIKA TANSZÉK feketemt@witch.pmmf.hu
MATEMATIKA I. FEKETE MÁRIA PÉCSI TUDOMÁNYEGYETEM POLLACK MIHÁLY MŰSZAKI KAR MATEMATIKA TANSZÉK feketemt@witch.pmmf.hu 007 PMMANB3 Matematika I. RÉSZLETES TANTÁRGYPROGRAM Hét Ea/Gyak./Lab.. 3 óra előadás
Ezt már mind tudjuk?
MATEMATIKA C 11. évflyam 10. mdul Ezt már mind tudjuk? Készítette: Kvács Kárlyné Matematika C 11. évflyam 10. mdul: Ezt már mind tudjuk? Tanári útmutató A mdul célja Időkeret Ajánltt krsztály Mdulkapcslódási
A felhasznált térfogalmak: lineáris tér (vektortér), normált tér, Banach tér, euklideszi-tér, Hilbert tér. legjobban közelítõ elem, azaz v u
Approxmácó Bevezetés A felhaszált térfogalmak: leárs tér (vektortér) ormált tér Baach tér eukldesz-tér Hlbert tér V ormált tér T V T kompakt halmaz Ekkor v V u ~ T legjobba közelítõ elem azaz v u ~ f {
A matematikai statisztika elemei
A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.
Táblázatok 4/5. C: t-próbát alkalmazunk és mivel a t-statisztika értéke 3, ezért mind a 10%-os, mind. elutasítjuk a nullhipotézist.
1. Az X valószínőség változó 1 várható értékő és 9 szórásnégyzető. Y tıle független várható értékkel és 1 szórásnégyzettel. a) Menny X + Y várható értéke? 13 1 b) Menny X -Y szórásnégyzete? 13 1 összesen
Valószínűségszámítás és matematikai statisztika. Ketskeméty László
Valószíűségszámítás és matematka statsztka Ketskeméty László Budapest, 996 Tartalomjegyzék I. fejezet VALÓSZÍNŰSÉGSZÁMÍTÁS 4. Kombatorka alapfogalmak 5 Elleőrző kérdések és gyakorló feladatok 7. A valószíűségszámítás
2014. szeptember 24. és 26. Dr. Vincze Szilvia
2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai
Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1
Halmazelmélet 1. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Halmazelmélet p. 1/1 A halmaz fogalma, jelölések A halmaz fogalmát a matematikában nem definiáljuk, tulajdonságaival
PMMANB 311 segédlet a PTE PMMK építőmérnök hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése
EURÓPAI UNIÓ STRUKTURÁLIS ALAPOK M A T E M A T I K A I. PMMANB 3 segédlet a PTE PMMK építőmérök hallgatói részére Az építész- és az építőmérök képzés szerkezeti és tartalmi ejlesztése HEFOP/004/3.3./000.0
Regresszió és korreláció
Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 016.11.10 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés
Hadamard-mátrixok Előadó: Hajnal Péter február 23.
Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára Hadamard-mátrixok Előadó: Hajnal Péter 2012. február 23. 1. Hadamard-mátrixok Ezen az előadáson látásra a blokkrendszerektől független kombinatorikus
2. fejezet. Számsorozatok, számsorok
. fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk
Elméleti összefoglaló a Valószín ségszámítás kurzushoz
Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek
Példák. Ismert a római számok halmaza, amely intuitív szintaxissal rendelkezik, hiszen pl.
A 10. óra vázlata: Példák Ismert a római számk halmaza, amely intuitív szintaxissal rendelkezik, hiszen pl. IIV-t VX-et vagy IIII-t nem fgadjuk el római számnak (habár v.ö. tarkk-kártya vagy némely óra
Matematika I. 9. előadás
Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 7. Bevezetés a valószínűségszámításba Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés 2 Definíciók, tulajdonságok Példák Valószínűségi mező
Turing-gép május 31. Turing-gép 1. 1
Turing-gép 2007. május 31. Turing-gép 1. 1 Témavázlat Turing-gép Determinisztikus, 1-szalagos Turing-gép A gép leírása, példák k-szalagos Turing-gép Univerzális Turing-gép Egyéb Turing-gépek Nemdeterminisztikus
I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.
I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.
Matematika érettségi emelt 2016 május 3. A mért tömegek között nincs 490 dkg-nál kisebb, tehát az első feltétel teljesül.
A mért tömegek között nincs 90 dkg-nál kisebb, tehát az első feltétel teljesül. 506 500 9 500 9 500 5 500 8 508 500 57 500 9 500 5 500 6 9 7 8 7 7 8 78 8 9,75 dkg 0 dkg Az árusítást engedélyezik. 50 8
Lineáris kódok. u esetén u oszlopvektor, u T ( n, k ) május 31. Hibajavító kódok 2. 1
Lieáris kódok Defiíció. Legye SF q. Ekkor S az F q test feletti vektortér. K lieáris kód, ha K az S k-dimeziós altere. [,k] q vagy [,k,d] q. Jelölések: F u eseté u oszlopvektor, u T (, k ) q sorvektor.
i-m- Megbízhatósági vizsgálatok Weibull-eloszláson alapuló mintavételi eljárásai és tervei /(f)=f'(0 = Hí F(f) =
k BALOGH ALBERT-DR. DUKÁTI FERENC Megbízhatósági vizsgálatk Weibull-elszlásn alapuló mintavételi eljárásai és tervei ETO 51926: 62-192: 621.3.019.S A megbízhatósági vizsgálatk mintavételi terveinek elkészítésekr
Ingatlanfinanszírozás és befektetés
Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:
Kutatói pályára felkészítı modul
Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI
Valószín ségszámítás és statisztika
Valószín ségszámítás és statisztika Informatika BSc, esti tagozat Backhausz Ágnes agnes@math.elte.hu fogadóóra: szerda 10-11 és 13-14, D 3-415 2018/2019. tavaszi félév Bevezetés A valószín ségszámítás
Matematika B4 II. gyakorlat
Matematika B II. gyakorlat 00. február.. Bevezető kérdések. Feldobunk egy kockát és egy érmét. Ábrázoljuk az eseményteret! Legyenek adottak az alábbi események: -ast dobunk, -est dobunk, fejet dobunk,
f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben
Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,
1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.
1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét
2. METROLÓGIA ÉS HIBASZÁMíTÁS
. METROLÓGIA ÉS HIBASZÁMíTÁS. Metrológa alapfogalmak A metrológa a mérések tdomáya, a mérésekkel kapcsolatos smereteket fogja össze. Méréssel egy objektm valamlye tlajdoságáról számszerő értéket kapk.
A biostatisztika és informatika szerepe a mindennapi orvosi gyakorlatban
A bistatisztika és infrmatika szerepe a mindennapi rvsi gyakrlatban Az rvstudmány célja (belgyógyászat tankönyvből): a betegségek megelőzése, a betegek meggyógyítása Diagnsztika, a betegségek felismerésének
Feladatok megoldása. Diszkrét matematika I. Beadandó feladatok. Bujtás Ferenc (CZU7KZ) December 14, feladat: (A B A A \ C = B)
Diszkrét matematika I. Beadadó feladatok Bujtás Ferec (CZU7KZ) December 14 014 Feladatok megoldása 1..1-6. feladat: (A B A A \ C = B) A B A = A \ C = B igazolása: A B A = B \A = Ø = B = A B (Mivel a B-ek
Regresszió és korreláció
Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 01.11.1 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés
Mi az adat? Az adat elemi ismeret. Az adatokból információkat
Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 10. A statisztika alapjai Debrecei Egyetem, 2015 Dr. Bérczes Attila, Bertók Csaád A diasor tartalma 1 Bevezetés 2 Statisztikai függvéyek Defiíció, empirikus várható érték Empirikus
Készítette: Fegyverneki Sándor
VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y
Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13
Tartalomjegyzék I Kombiatorika Pemutáció Ismétléses permutáció 8 Variáció 9 Ismétléses variáció Kombiáció Ismétléses kombiáció II Valószíségszámítás M/veletek eseméyek között 6 A valószí/ség fogalma 8
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
Valószínűségszámítás és statisztika
Valószínűségszámítás és statisztika Programtervező informatikus szak esti képzés Varga László Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem
Valószínűségszámítás és statisztika a fizikában február 16.
számítás és statisztika a fizikában 2018. február 16. Technikai információk Palla Gergely / pallag@hal.elte.hu / ELTE TTK Biológiai Fizika Tanszék, Északi Tömb, 3.90. szoba Fogadó óra: hétfő, 16-18. Az
VÉLETLENÍTETT ALGORITMUSOK. 1.ea.
VÉLETLENÍTETT ALGORITMUSOK 1.ea. 1. Bevezetés - (Mire jók a véletleített algoritmusok, alap techikák) 1.1. Gyorsredezés Vegyük egy ismert példát, a redezések témaköréből, méghozzá a gyorsredezés algoritmusát.
Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)
Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I. 5-6. o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls)
Logikai szita (tartalmazás és kizárás elve)
Logikai szita (tartalmazás és kizárás elve) Kombinatorika 5. előadás SZTE Bolyai Intézet Szeged, 2016. március 1. 5. ea. Logikai szita két halmazra 1/4 Középiskolás feladat. Egy 30 fős osztályban a matematikát
Zárthelyi dolgozat 2014 C... GEVEE037B tárgy hallgatói számára
Záthely dlgzat 4 C.... GEVEE37B tágy hallgató számáa Név, Nept ód., Néháy ss övd léyege töő válaszat adj az alább édésee! (5xpt a Ss és páhzams mmácós ptll felslása és legftsabb jellemző. Páhzams ptll
Valószín ségszámítás és statisztika
Valószín ségszámítás és statisztika Informatika BSc, esti tagozat Backhausz Ágnes agnes@cs.elte.hu 2016/2017. tavaszi félév Bevezetés Célok: véletlen folyamatok modellezése; kísérletekb l, felmérésekb
Prímszámok a Fibonacci sorozatban
www.titokta.hu D é e s T a m á s matematikus-kriptográfus e-mail: tdeest@freemail.hu Prímszámok a Fiboacci sorozatba A továbbiakba Fiboacci sorozato az alapsorozatot (u,,,3,5,...), Fiboacci számo az alapsorozat
Bizonytalan tudás kezelése
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Bizonytalan tudás kezelése Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz Valószínűségi
1.52 CS / CSK. Kulisszás hangcsillapítók. Légcsatorna rendszerek
1.52 CS / Légcsatra redszerek Alkalmazás: A légcsatraredszere építve, a légcsatráka terjedõ zaj csillapítására alkalmasak. Kialakításuk a eépített csillapító testek szerit alapvetõe hárm féle lehet: A,
Gépi tanulás. A szükséges mintaszám korlát elemzése. Pataki Béla (Bolgár Bence)
Gépi tanulás A szükséges mintaszám krlát elemzése Pataki Béla (Blgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki A Russell-Nrvig könyv n=10 bemenetű lgikai
Vegyipari és áramlástechnikai gépek. 7. előadás
egyiari és áramlástechikai géek. 7. előadás Kéítette: dr. áradi Sádr Budaesti Műaki és Gazdaságtudmáyi Egyetem Gééméröki Kar Hidrdiamikai Rederek Taék, Budaest, Műegyetem rk. 3. D é. 334. Tel: 463-6-80