? közgazdasági statisztika

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "? közgazdasági statisztika"

Átírás

1 ... Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB P( A) P( B) P( AB) P() B Elem eseméy: A, B, AB, Teles eseméyhalmaz. Valószíűségek: P(A), P(B), P(AB), P() Egymást kzáró eseméyek, tehát: Összetett eseméy pl.: megtalálható az A atgé: valószíűsége = P(A)+P(AB) Egy és csak egy atgé található: valószíűsége = P(A)+P(B) P(B) P(AB) P() P(A) Be va feezve a agy mű, ge. A gép forog, az alkotó phe.? 45% 4% 35% 3% 5% % 5% % 5% % Vércsoportok eloszlása Magyarországo A B AB Elmélet úto (agyo rtka) (pl. kocka feldobás: mde elem eseméy valószíűsége: /6.) Hogya uthatuk lye formácóhoz? Meyre megbízható? Tapasztalat úto (kísérletet végzük. Kísérlet: mérés, megfgyelés, kkérdezés stb.)

2 ,6,5,4,3,, F N,8,7,6,5,4,3,, F N,6,5,4,3,,,4,35,3,5,,5,,5,35,3,5,,5,,5 F FN N 4F 3FN FN F3N 4N 6F 5FN 4FN 3F3N F4N F5N 6N,6,5,4,3,,,45,4,35,3,5,,5,,5,4,35,3,5,,5,,5 F FN N 4F 3FN FN F3N 4N 6F 5FN 4FN 3F3N F4N F5N 6N... Kérem a következőt! Kísérlet P(N) =,5 P(F) =,5 P(N) =,75 P(F) =,5 Példa: a férfak és ők aráya. Az eseméytér két elemű: férf, ő Valószíűségek: P(F) és P(N). Igaz, hogy: P(F)+P(N) = A mta elemszáma: ő férf ő férf Mlye emű a belépő páces? P(N) =,5 P(F) =,5 P(N) =,75 P(F) =,5 A mta elemszáma: 4 ő férf ő férf Kmeetel: F(érf) vagy N(ő) A mta elemszáma: (azaz kísérlet) ő férf ő férf A mta elemszáma: 6 ő férf ő férf Mtavétel alapelve Populácó és mta Következtetés agyobb elemszámú mta ksebb eltérések, megbízhatóbb eredméy. Ideáls, ha mde lehetséges esetet megvzsgáluk. Populácó (alapsokaság) Alapsokaság, olya vzsgál kívát egyedek, vagy más tetszőleges elemek véges vagy végtele összessége, amelyekek közös megfgyelhető ellemző vaak. Elmélet összesség s lehet, potecálsa megfgyelhető elemekkel. Lehetőleg mél agyobb elemszám. (Az ésszerűség határa belül.) Véletle mtavétel. Orvos kegészítés. Ha cs semm kzáró ok, akkor legye véletle. Mta A populácó relatíve ks méretű kragadott része valamlye előírás szert válogatva.

3 ... Mtavétel hba Nem mtavétel hba Abból adódk, hogy em az alapsokaságot, haem csak egy részét (mta) vzsgáluk. Adatfelvétel hba pl.: válaszadás hba, feldolgozás hba stb. A statsztka módszerevel elemezhető, számba vehető! (de em elkerülhető) Nőgyógyászat Egy szélsőséges példa: Nem véletleszerű mtavétel! (ha az előző példába alkalmazzuk) Kérem a következőt! A becslés A becslés típusa Mlye magas a fa? Potbecslés Egyetle értékkel törtéő közelítés. Itervallumbecslés Egy tervallummal (ambe agy megbízhatósággal megtalálható) törtéő közelítés. Kb. 7 m magas. Körözés kb. 75 cm magas Körözés 7-75 cm magas A becslés olya elárás, amely háyos, többyre tapasztalat adatok alapá, egy adott esetre, adott változóhoz egy becsült értéket redel. 3

4 ... A ó becslés tuladosága Kategoráls változó Kísérlet: kválasztuk egy embert és elvégezzük a vzsgálatot. Torzítatla: Hatásos: A becslés várható értéke mde mta-elemszám eseté éppe a keresett paraméter. (Körülötte gadozak) A becslések a paramétertől való közepes égyzetes eltérése mmáls. ( azaz a szórása kcs) Két egyarát torzítatla becslés közül az a hatásosabb, amelyre a közepes égyzetes eltérés a ksebb.) Kozsztes: becsléssorozat, amelybe a becslések torzítatlaok és közepes égyzetes eltérésük a zérushoz közeledk, (sztochasztkusa) kovergál a paraméter valód értékéhez. Igadozása övekedtével csökke. Elégséges: Olya becslés, amely az összes formácót tartalmazza a paraméterre, amt a mtából kaphatuk. (Pl. a ormáls eloszlásra középérték és a szórás elégséges statsztka). Kmeetel: A vagy B vagy AB vagy. Kválasztuk elegedő számú embert. : elemszám. Mta: a kválasztott számú ember a sokaságból. vércsoport A B AB gyakorság k A k B k AB k Egy valószíűség becslése A relatív gyakorság hbáa P(A) az A vércsoport előfordulásáak valószíűsége. Az A vércsoport előfordulásáak a várható értéke. P(A). Az. P(A) becslése a mta alapá: k A Bomáls eloszlás. várható érték: p varaca: p(-p) (o lám! Valószíűségszámítás?) elemű mta: k elem A vércsoportú, (-k) em. A P(A) potbecslése: k A /. A k A érték szórásáak becslése: s k/ érték a k/ szórása, vagy stadard hbáa. s k P( A) P( A) Redbe va, de egy másk mtából más érték származk. Meyre megbízható ez az érték? A k A / érték szórásáak becslése: P( A) P( A) P( A) P( A ) s k / P(A) helyett a k A /-t haszáluk. 4

5 ... Kofdeca tervallum Folytoos változó Eek segítségével megadhatuk egy tervallumot. (tervallumbecslés) Példa: testmagasság Helyes keletés? Az eseméytér végtele agy! k s k / 68%-os kofdeca (megbízhatóság) tervallum, amhez 68%-os kofdeca szt tartozk. Jeletése: Ha agyo sok mtá megsmételük a megfgyelést, akkor a kofdeca tervallumok 68%-a tartalmazza a P(A)-t. Vagys az tervallumbecslés megbízhatósága 68% testmagasság: 7 cm. Nem! Véges elemszámú mta. Ncs két azoos elem. (gyakorság értékek: vagy ) Hams következtetés, gyakorlatba em kvtelezhető. Potos mérés em lehetséges, végtele potosságú eszköz kellee. Mtavétel folytoos változó esetébe A m és a s Helyes keletés: A testmagasság (x): 7,5 x 7,5 cm Egy meghatározott érték helyébe, egy tervallum (osztály) lép. (Továbbakba a dszkrét eloszláshoz hasolóa haszálhatuk) A s az adatok szóródását ellemz a m körül. Az adatokak kb. 68%-a a m körül s széles tervallumba va. m s 68% m s 95% p aak a valószíűsége, hogy: x az adott osztályba tartozzo. m? 5

6 ... A mták eloszlása Az átlag várható értéke és varacáa Mdegyk x -edk elem eltér egymástól. Egy eloszlás redelhető hozzá. Ez egy egyszerű összeadás. x x Az x -k eloszlása megegyezk az alapsokaság eloszlásával. M ( x) M ( x ) ( m) m D ( x) s D ( x ) ( s ) M ( x ) m és D ( x ) s Az átlag várható értéke azoos az alapsokaságéval, varacáa aak -ed része. Becslés folytoos változó esetébe A várható érték becslése Várható érték: Az eloszlás ellemző: várható érték és az elmélet szórás. Defícók: M ( x) xf ( x) dx p x Elmélet szórás: D ( x) x M ( x) f ( x) dx p ( x m) M ( x) p x p -t közelítsük a k / relatív gyakorsággal! k x k x x A várható érték becslése az átlag. Torzítatla becslés, mert: M (x) m 6

7 ... Az elmélet szórás becslése p ( x m) m=? k p ( x m) ( x m) k ( x m) ( x m) p -t közelítsük a k / relatív gyakorsággal! Általába em smert, csak közelítő értéke, az átlag. Előzőleg láttuk, hogy: ( x Jó becslés? m) ( x x) > Átlagoluk agyo sok -elemű mtára! (várható érték) s > M ( x x) Ez egy torzított becslés! ( x x)? Korrgált tapasztalat szórás Az eltérés az átlag és a várható érték külöbségéből fakad. M x m x m s M s s s M s * s s ( x x) * s Az átlag varacáa: s Az átlag szórása: s De általába a s sem smert. A stadard hba s a ó becslése a s-ek. s x s Ez tehát az átlag szórása, vagy stadard hbáa. s A mták között eltérések varacáa. A továbbakba s-el elölük a korrgált tapasztalat szórást. 7

8 ... A várható érték kofdeca tervalluma Az tervallum becslés saátossága Hasolóa a P becsléséhez, a stadard hba smeretébe megadhatuk a várható érték kofdeca tervallumát. x s x 68%? Nem kevés egy kcst? x Hát övelhetük, pl.: a következő esetébe kb. 95% a kofdeca szt, de az formácó kevesebb. s x Ez az tervallum kb. 68% megbízhatósággal tartalmazza m- t. tervallum megbízhatóság formácó A potos összefüggés: x t p s x ahol t p : az (-)-ed fokú t-eloszlás esetébe a p valószíűséghez tartozó érték. (a megbízhatóság szt (-p)) Kapcsolat a paraméterek között Normál értékek Mt eleteek? férfak ők kálum 3,5-5 mmol/l 3,5-5 mmol/l mta populácó WBC /l /l átlag várható érték HCT 4-54 % 38-5 % szórás elmélet szórás stadard hba De ha em smerem a valód értékeket?... Ezért va szükség a statsztkára! Normáls eloszlású változó esetébe lásd az ábrát! (A m és s helyett általába agy elemszámú mtából becsült értékeket haszálak). Egyébkét pedg az az tervallum, amelyek mdkét oldalá keső rész együttese 5%. Egyéb elevezések: ormál tartomáy, refereca tartomáy. 8

9 kísérletek... Kérdések (példa) Hatásos-e a gyógyszer? Hpotézs vzsgálatok? Hogya adhatuk választ? rodalomból téyeke alapuló tudomáy Hpotézs = feltevés? Ncs elletmodás? feltevés kísérletekből Robert Koch esete a lépfeével lépfee baktérum Hpotézs Téyek, adatok A. cs kapcsolat B. A baktérum okozza Egymást kzáró állítások, elég az egyket megvzsgál. Robert Koch A. állítás gaz, tehát B hams Kérdés: Lehet-e a betegség okozóa a baktérum? Dötés: A. állítás hams, tehát B gaz 9

10 ... Orvos tevékeység Dötés Doktorő! Itt fá, ott szúr! Hpotézsek: A vagy B betegség? Ö az A betegségbe szeved. Helyes dötés? Mekkora az esélye a tévedések? tovább vzsgálatok

? közgazdasági statisztika

? közgazdasági statisztika Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat

Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat Megállapítható változók elemzése Függetleségvzsgálat, lleszkedésvzsgálat, homogetásvzsgálat Ordáls, omáls esetre s alkalmazhatóak a következő χ próbá alapuló vzsgálatok: 1) Függetleségvzsgálat: két valószíűség

Részletesebben

Hipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer?

Hipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer? 01.09.18. Hpotézs vzsgálatok Egy példa Kérdések (példa) Hogyan adhatunk választ? Kérdés: Hatásos a lázcsllapító gyógyszer? Hatásos-e a gyógyszer?? rodalomból kísérletekből Hpotézsek A megfgyelt változó

Részletesebben

Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától

Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától Sztochasztkus tartalékolás és a tartalék függése a kfutás háromszög dőperódusától Faluköz Tamás Vtéz Ildkó Ibola Kozules: r. Arató Mklós ELTETTK Budapest IBNR kfutás háromszög IBNR: curred but ot reported

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

Statisztika 1. zárthelyi dolgozat március 21.

Statisztika 1. zárthelyi dolgozat március 21. Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy

Részletesebben

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai 05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:

Részletesebben

STATISZTIKA II. kötet

STATISZTIKA II. kötet Szeged Tudomáyegyetem Gazdaságtudomáy Kar Petres Tbor Tóth László STATISZTIKA II. kötet Szerzők: Dr. Petres Tbor, PhD egyetem doces Statsztka és Demográfa Taszék Tóth László PhD-hallgató Gazdaságtudomáy

Részletesebben

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága Azoos évleges értékű, htelesített súlyokból alkotott csoportok együttes mérés bzoytalasága Zeleka Zoltá* Több mérés feladatál alkalmazak súlyokat. Sokszor ezek em egyekét, haem külöböző társításba kombácókba

Részletesebben

Matematikai statisztika elıadás III. éves elemzı szakosoknak. Zempléni András 9. elıadásból (részlet)

Matematikai statisztika elıadás III. éves elemzı szakosoknak. Zempléni András 9. elıadásból (részlet) Matematka statsztka elıadás III. éves elemzı szakosokak Zemplé Adrás 9. elıadásból részlet Y közelítése függvéyével Gyakor eset, hogy em smerjük a számukra érdekes meység Y potos értékét pl. holap részvéy-árfolyam,

Részletesebben

1. előadás: Bevezetés. Irodalom. Számonkérés. A valószínűségszámítás és a statisztika tárgya. Cél

1. előadás: Bevezetés. Irodalom. Számonkérés. A valószínűségszámítás és a statisztika tárgya. Cél Valószíűségszámítás és statsztka előadás fo. BSC/B-C szakosokak 1. előadás szeptember 13. 1. előadás: Bevezetés Irodalom, követelméyek A félév célja Valószíűségszámítás tárgya Törtéet Alapfogalmak Valószíűségek

Részletesebben

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük.

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük. Statisztikai módszerek. BMEGEVGAT01 Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudomáyi Egyetem Gépészméröki Kar Hidrodiamikai Redszerek Taszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o) Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I. 5-6. o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls)

Részletesebben

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum) Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa

Részletesebben

AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN

AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN Molár László Ph.D. hallgató Mskolc Egyetem, Gazdaságelmélet Itézet 1. A MINTANAGYSÁG MEGHATÁROZÁSA EGYSZERŐ VÉLETLEN (EV) MINTA

Részletesebben

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése 3 4 Tartalomegyzék. BEVEZETÉS 5. A MÉRÉS 8. A mérés mt folyamat, fogalmak 8. Fotosabb mérés- és műszertechka fogalmak 4.3 Mérés hbák 8.3. Mérés hbák csoportosítása eredetük szert 8.3. A hbák megeleítés

Részletesebben

Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás.

Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás. Statsztka próbák Paraméteres. A populácó paraméteret becsüljük, ezekkel számolunk.. Az alapsokaság eloszlására van kkötés. Nem paraméteres Nncs lyen becslés Nncs kkötés Ugyanazon problémára sokszor megvan

Részletesebben

Hipotéziselmélet. Statisztikai próbák I. Statisztikai próbák II. Informatikai Tudományok Doktori Iskola

Hipotéziselmélet. Statisztikai próbák I. Statisztikai próbák II. Informatikai Tudományok Doktori Iskola Hpotézselmélet Iformatka Tudomáyok Doktor Iskola Statsztka próbák I. 0.0.. Dr Ketskeméty László előadása Statsztka próbák II. Dötés eljárást dolgozuk k aak eldötésére, hogy a ullhpotézs gaz-e. Ha úgy kell

Részletesebben

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke

Részletesebben

Statisztika. Eloszlásjellemzők

Statisztika. Eloszlásjellemzők Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 10. A statisztika alapjai Debrecei Egyetem, 2015 Dr. Bérczes Attila, Bertók Csaád A diasor tartalma 1 Bevezetés 2 Statisztikai függvéyek Defiíció, empirikus várható érték Empirikus

Részletesebben

Változók függőségi viszonyainak vizsgálata

Változók függőségi viszonyainak vizsgálata Változók függőség vszoyaak vzsgálata Ismétlés: változók, mérés skálák típusa kategoráls változók Asszocácós kapcsolat számszerű változók Korrelácós kapcsolat testsúly (kg) szemüveges em ő 1 3 férf 5 3

Részletesebben

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek!

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! SPEC 2009-2010. II. félév Statsztka II HÁZI dolgozat Név:... Neptun kód: 20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! 1. példa Egy üzemben tejport csomagolnak zacskókba,

Részletesebben

A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet A biostatisztika alapfogalmai, kofideciaitervallum Dr. Boda Krisztia PhD SZTE ÁOK Orvosi Fizikai és Orvosi Iformatikai Itézet Mitavétel ormális eloszlásból http://www.ruf.rice.edu/~lae/stat_sim/idex.html

Részletesebben

1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél

1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél Valószíűségszámítás 1 előadás mat. BSc alk. mat. szakráyosokak 2016/2017 1. félév Zemplé Adrás zemple@ludes.elte.hu http://zemple.elte.hu/ 1. előadás: Bevezetés Irodalom, követelméyek A félév célja Valószíűségszámítás

Részletesebben

2. METROLÓGIA ÉS HIBASZÁMíTÁS

2. METROLÓGIA ÉS HIBASZÁMíTÁS . METROLÓGIA ÉS HIBASZÁMíTÁS. Metrológa alapfogalmak A metrológa a mérések tudomáya, a mérésekkel kapcsolatos smereteket fogja össze. Méréssel egy objektum valamlye tulajdoságáról számszerű értéket kapuk.

Részletesebben

A MATEMATIKAI STATISZTIKA ELEMEI

A MATEMATIKAI STATISZTIKA ELEMEI A MATEMATIKAI STATISZTIKA ELEMEI Az Eötvös Lórád Tudomáyegyetem Természettudomáy Kará a Fzka Kéma Taszék évek óta kéma-szakos taárhallgatókak matematka bevezetõ elõadásokat tart. Az elõadások célja az,

Részletesebben

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje.

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje. 24. tétel valószíűségszámítás elemei. valószíűség kiszámításáak kombiatorikus modellje. GYORISÁG ÉS VLÓSZÍŰSÉG meyibe az egyes adatok a sokaságo belüli részaráyát adjuk meg (törtbe vagy százalékba), akkor

Részletesebben

Valószínűségszámítás. Ketskeméty László

Valószínűségszámítás. Ketskeméty László Valószíűségszámítás Ketskeméty László Budapest, 996 Tartalomjegyzék I. fejezet VALÓSZÍNŰSÉGSZÁMÍTÁS 3. Kombatorka alapfogalmak 4 Elleőrző kérdések és gyakorló feladatok 6. A valószíűségszámítás alapfogalma

Részletesebben

Statisztika II. előadás és gyakorlat 2. rész

Statisztika II. előadás és gyakorlat 2. rész előadás és gyakorlat. rész T.Nagy Judt Ajálott rodalom: Ilyésé Molár Emese Lovasé Avató Judt: Feladatgyűjteméy, Perekt, 006. Korpás Attláé (szerk.): Általáos, Nemzet Taköyvkadó, 1997. Molár Mátéé Tóth

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)

Részletesebben

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június ÖKONOMETIA Készült a TÁMOP-4.1.-08//A/KM-009-0041pályázat projet eretébe Tartalomfejlesztés az ELTE TáTK Közgazdaságtudomáy Taszéé az ELTE Közgazdaságtudomáy Taszé az MTA Közgazdaságtudomáy Itézet és a

Részletesebben

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

Izsák János. ELTE TTK Állatrendszertani és Ökológiai Tanszék. Kézirat

Izsák János. ELTE TTK Állatrendszertani és Ökológiai Tanszék. Kézirat BIOSTATISZTIKAI ALAPISMERETEK Izsák Jáos ELTE TTK Állatredszerta és Ökológa Taszék Kézrat Budapest, 5 Tartalomjegyzék Előszó 4. Valószíűség vektorváltozók 6.. Bevezetés 6.. A többváltozós, specálsa kétváltozós

Részletesebben

Ha n darab standard normális eloszlású változót négyzetesen összegzünk, akkor kapjuk a χ 2 - eloszlást: N

Ha n darab standard normális eloszlású változót négyzetesen összegzünk, akkor kapjuk a χ 2 - eloszlást: N Krály Zoltá: Statsztka II. Bevezetés A paraméteres eljárások alkalmazásához, a célváltozóra ézve szgorú feltételek szükségesek (folytoosság, ormaltás, szóráshomogetás), ekkor a hpotézseket egy-egy paraméterre

Részletesebben

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x

Részletesebben

A matematikai statisztika elemei

A matematikai statisztika elemei A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................

Részletesebben

Tapasztalati eloszlás. Kumulált gyakorisági sorok. Példa. Értékösszegsor. Grafikus ábrázolás

Tapasztalati eloszlás. Kumulált gyakorisági sorok. Példa. Értékösszegsor. Grafikus ábrázolás Matemata statszta elıadás III. éves elemzı szaosoa 009/00. élév. elıadás Tapasztalat eloszlás Mde meggyeléshez (,,, ) / súlyt redel. Valószíőségeloszlás! Mtaátlag éppe ee az eloszlása a várható értée.

Részletesebben

MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE

MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE Molár László egyetem taársegéd 1. BEVEZETÉS A statsztkusok a mtaagyság meghatározására számos módszert dolgoztak

Részletesebben

Példák 2. Teljes eseményrendszer. Tulajdonságok. Példák diszkrét valószínőségi változókra

Példák 2. Teljes eseményrendszer. Tulajdonságok. Példák diszkrét valószínőségi változókra Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 28 dszkrét valószíőség változókra X(ω)=c mde ω-ra. Elevezés: elfajult eloszlás. P(X=c)=1. X akkor 1, ha egy adott,

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

MÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011

MÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011 MÉRÉSTECHNIKA DR. HUBA ANTAL c. egy. taár BME Mechatroka, Optka és Gépészet Iformatka Taszék 0 Rövde a tárgyprogramról Előadások tematkája: Metrológa és műszertechka alapok Mérés adatok kértékelése Időbe

Részletesebben

Dr. Tóth Zsuzsanna Eszter Dr. Jónás Tamás Erdei János. Gazdaságstatisztika. II. rész A matematikai statisztika alapjai

Dr. Tóth Zsuzsanna Eszter Dr. Jónás Tamás Erdei János. Gazdaságstatisztika. II. rész A matematikai statisztika alapjai Budapest Műszak és Gazdaságtudomáy Egyetem Gazdaság- és Társadalomtudomáy Kar Üzlet Tudomáyok Itézet Meedzsmet és Vállalatgazdaságta Taszék Dr. Tóth Zsuzsaa Eszter Dr. Jóás Tamás Erde Jáos Gazdaságstatsztka

Részletesebben

Tulajdonságok. Teljes eseményrendszer. Valószínőségi változók függetlensége. Példák, szimulációk

Tulajdonságok. Teljes eseményrendszer. Valószínőségi változók függetlensége. Példák, szimulációk Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 26 p 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 A bomáls és a hpergeom. elo. összehasolítása 0 1 2 3 4 5 6 7 8 9 10 k Hp.geom

Részletesebben

Információs rendszerek elméleti alapjai. Információelmélet

Információs rendszerek elméleti alapjai. Információelmélet Iformácós redszerek elmélet alaja Iformácóelmélet A forrás kódolása csatora jelekké 6.4.5. Molár Bált Beczúr Adrás NMMMNNMNfffyyxxfNNNNxxMNN verzazazthatóvsszaálímdeveszteségcsaakkorfüggvéykódolásaakódsorozat:eredméyekódolássorozatváltozó:forás

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

Ökonometria. /Elméleti jegyzet/

Ökonometria. /Elméleti jegyzet/ Ökoometra /Elmélet jegyzet/ Ökoometra /Elmélet jegyzet/ Szerző: Nagy Lajos Debrece Egyetem Gazdálkodástudomáy és Vdékfejlesztés Kar (1.,., 3., 4., 5., 6., és 9. fejezet) Balogh Péter Debrece Egyetem Gazdálkodástudomáy

Részletesebben

Tanult nem paraméteres próbák, és hogy milyen probléma megoldására szolgálnak.

Tanult nem paraméteres próbák, és hogy milyen probléma megoldására szolgálnak. 8. GYAKORLAT STATISZTIKAI PRÓBÁK ISMÉTLÉS: Tanult nem paraméteres próbák, és hogy mlyen probléma megoldására szolgálnak. Név Illeszkedésvzsgálat Χ próbával Illeszkedésvzsgálat grafkus úton Gauss papírral

Részletesebben

1. A radioaktivitás statisztikus jellege

1. A radioaktivitás statisztikus jellege A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a

Részletesebben

Miért pont úgy kombinálja kétfokozatú legkisebb négyzetek módszere (2SLS) az instrumentumokat, ahogy?

Miért pont úgy kombinálja kétfokozatú legkisebb négyzetek módszere (2SLS) az instrumentumokat, ahogy? Mért pot úgy kombálja kétfokozatú legksebb égyzetek módszere (2SLS az strumetumokat, ahogy? Kézrat A Huyad László 60. születésapjára készülő köyvbe Kézd Gábor 2004. júlus A Budapest Corvus Egyetem rövd

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika 014.10.03. Valózíűégzámítá é a tatztka Valózíűég zámítá Matematka tatztka Alkalmazott tatztka? közgazdaág tatztka épeég tatztka orvo tatztka Stb. Példa: vércoportok Az elozlá A AB 0 P( P( B) P( AB) P(0)

Részletesebben

BIOSTATISZTIKA ÉS INFORMATIKA. Leíró statisztika

BIOSTATISZTIKA ÉS INFORMATIKA. Leíró statisztika BIOSTATISZTIKA ÉS INFORMATIKA Leíró statisztika Első közelítésbe a statisztikai tevékeységeket égy csoportba sorolhatjuk, de ezek között ics éles határ:. adatgyűjtés, 2. az adatok áttekithetővé tétele,

Részletesebben

4 2 lapultsági együttható =

4 2 lapultsági együttható = Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.

Részletesebben

Variancia-analízis (ANOVA) Mekkora a tévedés esélye? A tévedés esélye Miért nem csinálunk kétmintás t-próbákat?

Variancia-analízis (ANOVA) Mekkora a tévedés esélye? A tévedés esélye Miért nem csinálunk kétmintás t-próbákat? Varanca-analízs (NOV Mért nem csnálunk kétmntás t-próbákat? B Van különbség a csoportok között? Nncs, az eltérés csak véletlen! Ez a nullhpotézs. és B nncs különbség Legyen, B és C 3 csoport! B és C nncs

Részletesebben

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel

Részletesebben

KÖVETKEZTETŐ STATISZTIKA

KÖVETKEZTETŐ STATISZTIKA ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak

Részletesebben

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék Adatfeldolgozás, adatértékelés Dr. Szűcs Péter, Dr. Madarász Tamás Mskolc Egyetem, Hdrogeológa Mérökgeológa Taszék A vzsgált köryezet elemek, lletve a felszí alatt közeg megsmerése céljából számtala külöböző

Részletesebben

Valószínűségszámítás és matematikai statisztika. Ketskeméty László

Valószínűségszámítás és matematikai statisztika. Ketskeméty László Valószíűségszámítás és matematka statsztka Ketskeméty László Budapest, 996 Tartalomjegyzék I. fejezet VALÓSZÍNŰSÉGSZÁMÍTÁS 4. Kombatorka alapfogalmak 5 Elleőrző kérdések és gyakorló feladatok 7. A valószíűségszámítás

Részletesebben

Regresszió és korreláció

Regresszió és korreláció Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 01.11.1 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés

Részletesebben

A paramétereket kísérletileg meghatározott yi értékekre támaszkodva becsülik. Ha n darab kisérletet (megfigyelést, mérést) végeznek, n darab

A paramétereket kísérletileg meghatározott yi értékekre támaszkodva becsülik. Ha n darab kisérletet (megfigyelést, mérést) végeznek, n darab öbbváltozós regresszók Paraméterbecslés-. A paraméterbecslés.. A probléma megfogalmazása A paramétereket kísérletleg meghatározott y értékekre támaszkodva becsülk. Ha darab ksérletet (megfgyelést, mérést

Részletesebben

Információs rendszerek elméleti alapjai. Információelmélet

Információs rendszerek elméleti alapjai. Információelmélet Iformácós redszerek elmélet alapja Iformácóelmélet Glbert-Moore Szemléltetése hasoló a Shao kódhoz A felezőpotokra a felezős kódolás A felezőpot értéke bttel hosszabb kfejtést géyel /2 0 x x x p p 2 p

Részletesebben

A peremeloszlások. Valószínőségszámítás elıadás III. alk. matematikus szak. Példa. Valószínőségi vektorváltozók eloszlásfüggvénye.

A peremeloszlások. Valószínőségszámítás elıadás III. alk. matematikus szak. Példa. Valószínőségi vektorváltozók eloszlásfüggvénye. y Valószíőségszámítás elıaás III. alk. matematkus szak 4. elıaás, szeptember 30 A peremeloszlások (X,Y) eloszlásából (elevezés: együttes eloszlás) következtethetük az egyes változók eloszlására: P(X)P(X,Y0)+P(X,Y)+P(X,Y2)

Részletesebben

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 202.03.0. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

Regresszió. Fő cél: jóslás Történhet:

Regresszió. Fő cél: jóslás Történhet: Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján

Részletesebben

Wilcoxon-féle előjel-próba. A rangok. Ismert eloszlás. A nullhipotézis megfogalmazása H 1 : m 0 0. A medián 0! Az eltérés csak véletlen!

Wilcoxon-féle előjel-próba. A rangok. Ismert eloszlás. A nullhipotézis megfogalmazása H 1 : m 0 0. A medián 0! Az eltérés csak véletlen! 0.0.4. Wlcoxo-féle előel-próba ragok Példa: Va-e hatáa egy zórakoztató flm megtektééek, a páceek együttműködé halamára? ( zámok potértékek) orzám előtte utáa külöbég 0 0 3 3-4 4 5 3 6 3 3 0 7 4 3 8 5 4

Részletesebben

Bevezetés a hipotézis vizsgálatba. Hipotézisvizsgálatok. Próbák leírása. Kétoldali és egyoldali hipotézisek. Illeszkedésvizsgálatok

Bevezetés a hipotézis vizsgálatba. Hipotézisvizsgálatok. Próbák leírása. Kétoldali és egyoldali hipotézisek. Illeszkedésvizsgálatok Bevezetés a hpotézs vzsgálatba Lásd előadás ayagát. Kétoldal és egyoldal hpotézsek Hpotézsvzsgálatok Ebbe a ejezetbe egyajta határozókulcsot szereték ad a hpotézsvzsgálatba haszált próbákhoz. Először dötsük

Részletesebben

Regresszió és korreláció

Regresszió és korreláció Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 016.11.10 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés

Részletesebben

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata 6. év OTKA zárójeletés: Vezető kutató:kalszky Sádor OTKA ylvátartás szám T 4993 A pályázat címe: Rugalmas-képlékey tartószerkezetek topológa optmalzálásáak éháy külöleges feladata (Részletes jeletés) Az

Részletesebben

Táblázatok 4/5. C: t-próbát alkalmazunk és mivel a t-statisztika értéke 3, ezért mind a 10%-os, mind. elutasítjuk a nullhipotézist.

Táblázatok 4/5. C: t-próbát alkalmazunk és mivel a t-statisztika értéke 3, ezért mind a 10%-os, mind. elutasítjuk a nullhipotézist. 1. Az X valószínőség változó 1 várható értékő és 9 szórásnégyzető. Y tıle független várható értékkel és 1 szórásnégyzettel. a) Menny X + Y várható értéke? 13 1 b) Menny X -Y szórásnégyzete? 13 1 összesen

Részletesebben

I. Valószínűségelméleti és matematikai statisztikai alapok

I. Valószínűségelméleti és matematikai statisztikai alapok I. Valószíűségelmélet és matematka statsztka alapok. A szükséges valószíűségelmélet és matematka statsztka alapsmeretek összefoglalása Az alkalmazott statsztka módszerek tárgalása, amel e kötet célja,

Részletesebben

KOMBINATORIKA ELŐADÁS osztatlan matematikatanár hallgatók számára. Szita formula J = S \R,

KOMBINATORIKA ELŐADÁS osztatlan matematikatanár hallgatók számára. Szita formula J = S \R, KOMBINATORIKA ELŐADÁS osztatla matematkataár hallgatók számára Szta formula Előadó: Hajal Péter 2018 1. Bevezető példák 1. Feladat. Háy olya sorbaállítása va a {a,b,c,d,e} halmazak, amelybe a és b em kerül

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

Függvénygörbe alatti terület a határozott integrál

Függvénygörbe alatti terület a határozott integrál Függvéygörbe alatt terület a határozott tegrál Tektsük az üggvéyt a ; tervallumo. Adjuk becslést a görbe az tegely és az egyees között síkdom területére! Jelöljük ezt a területet I-vel! A becslést legegyszerűbbe

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

GEOFIZIKA / 4. GRAVITÁCIÓS ANOMÁLIÁK PREDIKCIÓJA, ANALITIKAI FOLYTATÁSOK MÓDSZERE, GRAVITÁCIÓS ANOMÁLIATEREK SZŰRÉSE

GEOFIZIKA / 4. GRAVITÁCIÓS ANOMÁLIÁK PREDIKCIÓJA, ANALITIKAI FOLYTATÁSOK MÓDSZERE, GRAVITÁCIÓS ANOMÁLIATEREK SZŰRÉSE MSc GEOFIZIKA / 4. BMEEOAFMFT3 GRAVITÁCIÓS ANOMÁLIÁK REDIKCIÓJA, ANALITIKAI FOLYTATÁSOK MÓDSZERE, GRAVITÁCIÓS ANOMÁLIATEREK SZŰRÉSE A gravtácós aomálák predkcója Külöböző feladatok megoldása sorá - elsősorba

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Statisztikai. Statisztika Sportszervező BSc képzés NBG GI866G4. Statisztika fogalma. Statisztikai alapfogalmak. Statisztika fogalma

Statisztikai. Statisztika Sportszervező BSc képzés NBG GI866G4. Statisztika fogalma. Statisztikai alapfogalmak. Statisztika fogalma Statsztka Sportszervező BSc képzés NBG GI866G4 010-011-es taév II félév Statsztka alapfogalmak Oktató: Dr Csáfor Hajalka főskola doces Vállalkozás-gazdaságta Tsz E-mal: hcsafor@ektfhu Statsztka alapfogalmak

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

Valószínőségszámítás helye a tudományok között. Véletlen tömegjelenségek. Történeti áttekintés 1. Modellezés. Történeti áttekintés 3.

Valószínőségszámítás helye a tudományok között. Véletlen tömegjelenségek. Történeti áttekintés 1. Modellezés. Történeti áttekintés 3. Valószíőségszámítás és statsztka elıadás Ifo. BSC B-C szakosokak 4/5. félév Zemplé Adrás zemple@ludes.elte.hu http://www.cs.elte.hu/~zemple/. elıadás: Bevezetés Irodalom, követelméyek A félév célja Valószíőségszámítás

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Arrhenius-paraméterek becslése közvetett és közvetlen mérések alapján

Arrhenius-paraméterek becslése közvetett és közvetlen mérések alapján Tudomáyos Dákkör Dolgozat SZABÓ BOTOND Arrheus-paraméterek becslése közvetett és közvetle mérések alapá Turáy Tamás. Zsély Istvá Gyula Kéma Itézet Eötvös Lorád Tudomáyegyetem Természettudomáy Kar Budapest,

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,

Részletesebben

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz

Részletesebben

Statisztika I. 4. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 4. előadás. Előadó: Dr. Ertsey Imre Statsztka I. 4. előadás Előadó: Dr. Ertsey Imre KÖZÉPÉRTÉKEK A statsztka sor általáos jellemzésére szolgálak, a statsztka sokaságot egy számmal jellemzk. Számított középértékek: matematka számítás eredméyekét

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Statisztika 1. zárthelyi dolgozat március 18.

Statisztika 1. zárthelyi dolgozat március 18. Statisztika. zárthelyi dolgozat 009. március 8.. Ismeretle m várható értékű, szórású ormális eloszlásból a következő hatelemű mitát kaptuk:, 48 3, 3, 83 0,, 3, 97 a) Számítsuk ki a mitaközepet és a tapasztalati

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

A heteroszkedaszticitásról egyszerûbben

A heteroszkedaszticitásról egyszerûbben Mûhely Huyad László kaddátus, egyetem taár, a Statsztka Szemle főszerkesztője A heteroszkedasztctásról egyszerûbbe E-mal: laszlo.huyad@ksh.hu A heteroszkedasztctás az ökoometra modellezés egyk kulcsfogalma,

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

specific (assignable) cause: azonosítható, tettenérhető (veszélyes) hiba megváltozott a folyamat

specific (assignable) cause: azonosítható, tettenérhető (veszélyes) hiba megváltozott a folyamat ELLENŐRZŐ KÁRTYÁK méréses mősítéses commo cause: véletle gadozás secfc (assgable) cause: azoosítható, tetteérhető (veszélyes) hba megváltozott a folyamat Mősítéses elleőrző kártyák 41 Mősítéses elleőrző

Részletesebben

Eseme nyalgebra e s kombinatorika feladatok, megolda sok

Eseme nyalgebra e s kombinatorika feladatok, megolda sok Eseme yalgebra e s kombiatorika feladatok, megolda sok Szűk elméleti áttekitő Kombiatorika quick-guide: - db. elemből db. sorredjeire vagyuk kívácsiak: permutáció - db. elemből m < db. háyféleképp rakható

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

A sokaság/minta eloszlásának jellemzése

A sokaság/minta eloszlásának jellemzése 3. előadás A sokaság/mnta eloszlásának jellemzése tpkus értékek meghatározása; az adatok különbözőségének vzsgálata, a sokaság/mnta eloszlásgörbéjének elemzése. Eloszlásjellemzők Középértékek helyzet (Me,

Részletesebben