A MATEMATIKAI STATISZTIKA ELEMEI

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A MATEMATIKAI STATISZTIKA ELEMEI"

Átírás

1 A MATEMATIKAI STATISZTIKA ELEMEI Az Eötvös Lórád Tudomáyegyetem Természettudomáy Kará a Fzka Kéma Taszék évek óta kéma-szakos taárhallgatókak matematka bevezetõ elõadásokat tart. Az elõadások célja az, hogy a hallgatóságak e legyeek degeek azok a matematka levezetések, állítások, amelyekkel késõbb, fõleg fzka-kéma taulmáya sorá találkozk. A valószíûségszámítás fejezetek smertetése utá a matematka statsztka eleme következek. Eek a tafolyamak léyeges részet tartalmazza jele vázlatos smertetés, elsõsorba azért, hogy a hallgatóság a taulás elõsegítésére azokat a számítógépes hálózatról magáak letölthesse. Az ayag a félév végég fokozatosa kerül fel a hálóra, tartalomjegyzéke eek megfelelõe folyamatosa bõvül. A tárgy elõadója Szepesváry Pál. Budapest 00 áprls

2 TARTALOM. A matematka statsztka jellemzése. Leíró és felderítõ statsztka. Sokaság és mta. Az adatok.. Az adatok fajtá.. Az adatok kezelése, a skálázás.. Az adatok skálázása..4 Az adatok ábrázolása. Az adatok eloszlása, a mták jellemzó.. Mtaközép jellemzõk a) számta közép, mtaátlag, (mea) b) medá, (meda) c) módusz (mode).. Kterjedés jellemzõk a) stadard devácó (stadard devato) b) varácós együttható (coeffcet of varato) c) terjedelem (rage) d) kvatlsek (quatles).. Egyéb eloszlásjellemzõk a) ferdeség (skewess) b) lapultság (kurtoss)..4 Megjegyzések a középértékrõl és a szórásról...5 A mta eloszlásáak grafkus szemléltetése a) a hsztogram b) a bo" vagy "szakállas" (bo ad whskers) ábra

3 . A matematka statsztka jellemzése A matematka statsztka a véletle (valószíûség) változókkal jellemezhetõ (továbbakba véletle) redszerek leíró adataak feldolgozásáról, értelmezésérõl és felhaszálásáról szóló tudomáyos módszerta. Amíg a valószíûségszámítás fogalma aomákkal összhagba defált vagy azokból levezetett absztrakt fogalmak, amelyek tulajdosága ílymódo adottak, a matematka statsztka megfgyelt, leszámlált vagy mért sajátságokat feleltet meg a valószíûségszámítás absztrak fogalmaak, sokszor megállapodásszerû módo. Szokásos modás: "amíg a valószíûségszámítás megtat valószíûségekkel számol, addg a statsztka megtat valószíûséget mér". Mutá a véletle által befolyásolt jeleségek em bztos kmeetelûek, a matematka statsztkába cseek bztos ítéletek. A matematka statsztka becsül, megbecsülhetõ valószíûségû ítéleteket hoz. Ige rtka az az eset, amelyél egy véletle redszer vselkedését mde elképzelhetõ kmeetelél meg lehet fgyel. A matematka statsztka következésképpe csak a redszer valamely szemügyre vett részletébõl, valamely folyamat pllaaty állapotából, tehát a redszer egy mtájából következtet magára a redszerre. Ez a statsztkus megállapítások bzoytalaságáak tovább oka. A matematka statsztka feladata tehát () jellemzõ számadatok, megállapítások levezetése, bemutatása megfgyelt adatokból, () valószíûség hozzáredelése a kapott vagy levot következtetésekhez, () dötés valamely fet alapo megfogalmazott állítás (hpotézs) elfogadásáról vagy elvetésérõl, végül, (4) olya ksérlet feltételek meghatározása (olya ksérletek tervezése), amelyek számukra az állítások megbízhatósága szempotjából legkedvezõbbek. 4. Leíró és felderítõ statsztka Vzsgált redszerek vagy teljese smeretleek vagy vaak róla elõzetes (a pror) smeretek. Ha vaak, képesek vagyuk többé-kevésbé alkalmas (adekvát) matematka modellt alkot, és ez esetbe a statsztka adatgyüjtés célja a modell paramétereek megbecslése. Ha cseek elõzetes smeretek, a leíró és felderítõ statsztka módszeret alkalmazzuk, amelyekre persze a modell alapú vzsgálatokál s szükség va. A felderítõ statsztka az adatok, a mta kezelésére, jellemzésére, ábrázolására voatkozóa ad útmutatásokat, több változó eseté pedg számos tovább feladatot old meg (alakfelsmerés, csoportosítás, osztályozás). 5. Sokaság és mta

4 4 Vszgálatuk tárgya egy redszer. Egy redszerek eleme (objektuma) vaak, az objektumokak tulajdosága. (Objektumok például: emberek, társadalmak, folyók, botópok, oldatok, spektrumok, tulajdoságok az emberek testmérete, emberek, társadalmak, folyók, botópok, oldatok, spektrumok, tulajdoságok az emberek testmérete, a társadalmak lakosságszáma, emzet jövedelme, a folyók vízhozama adott dõbe, helye, botópok fajaak száma, egyedsûrüsége, oldatok kocetrácó, spektrumok csúcsmagassága adott hullámhosszo stb.) Egy redszerek általába sok objektuma, azokak sok, számos esetbe végtele sok értékû tulajdosága va. A redszert alkotó objektumok, potosabba azok tulajdoságat leíró (végtele) sok jellemzõ változó adat alkotja az adatok sokaságát. A sokaság eleme tehát lehetek fzka létezõk, de elméletek s. A sokaság szabatos meghatározása fotos feltétele a statsztka mukáak, hsze ez jelet a feldolgozásra váró adatok potos meghatározását. (Egy folyó vzállása áprls 6-á és ovember -é például két statsztka sokaság). Általába csak arra va móduk, hogy a redszer egy részletét, vagy egy bzoyos állapotát fgyeljük meg, azaz aak leíró adataból mtát vegyük. Szokás moda: a sokaság az összes elképzelhetõ mta halmaza. A mta vzsgálatáak eredméyébõl következtetük a sokaságra, a mta vétele tehát az eredméyek értéke szempotjából elsõredûe fotos. A mta legye (a) reprezetatív, összetételébe képvselje helyese a sokaságot, amelybõl vették, (b) véletle, a mtaelemek kerüljeek egymástól függetleül, egyelõ valószíûséggel a mtába, (c) elégséges méretû, elegedõe agy ahhoz, hogy a mta alapjá levot következtetések kellõe valószíûek legyeek.. Az adatok.. Az adatok fajtá Az adatokat kategorkus és em kategorkus (kvattatív) jellegûekre szokás feloszta. A kategorkus adatok alapjá az objektumokat osztályoz lehet. A kategorkus adatok lehetek evesítõek (omálsak) és redezõek (ordálsak). A evestõ adat egy-egy objektumot valamely (esetleg egyelemû) osztályba osztályba sorol, a redezõ adat már sorredet s defál. (./a táblázat)

5 5./a táblázat. Kategorkus adatok Adatfajta Az adatoko értelmezhetõ müvelet Példa Nevesítõ (omáls) =, Nem, év, állampolgárság, foglalkozás, telefoszám Redezõ (ordáls) =,, <, > Iskola osztályzat, rag, betegség foka, IQ Azokat a kategorkus adatokat, amelyek csak két osztály valamelykébe sorolhatak, dchotómkus vagy bárs adatokak evezk. (Dchotómkus adatok: férf-õ, gaz-hams, kcs-agy, beteg-egészséges) A kvattatív adatok lehetek folytoos vagy dszkrét (mérhetõ vagy leszámlálható, gyakra metrkusak evezettek) adatok. Szokásosa megkülöböztetk azokat adatokat, amelyek skálájáak ökéyes a 0-potja,.léyegébe külöbségük értelmes (tervallum skála) azoktól, amelyekre multplkatív artmetka mûveletek s alkalmazhatók (aráyos skála).(./b táblázat)../b táblázat. Metrkus adatok példá Adatskála Folytoos Dszkrét Itervallum Potecál, Celsus fokba mért hõmérséklet Naptár apok Aráyos Tömeg, Abszolut hõmérséklet Részecskeszám Vegyész gyakorlatukba az esetek túlyomó részébe metrkus adatokkal (tömeg, ayagmeység, térfogat, kocetrácó, yomás, hõmérséklet, eergák sebességek) va dolguk... Az adatok kezelése, a skálázás A sokaságból vett elemû mta -edk adata egy: mtaelem =, (.) A mtaelemek sorozata a mta =,,, (.) ahol de az adat mérés sorszáma. Ha a mta adatat agyságuk szert állítjuk sorba, a redezett mtához jutuk: * * * * * * A redezett mta,,...,... (.)

6 6.. Az adatok skálázása Egy mta természetes terjedelmét a számegyeese a legksebb és legagyobb értékû mtaelem határozza meg. Külöbozõ okokból szükség lehet arra, hogy ezt a terjedelmet módosítsuk, hogy az adatokat más egységbe, más skálá tektsük. Ezt skálázással lehet elér, amelyek sorá az eredet mtaelemekhez valamely számot hozzáaduk, vagy/és azokat valamely azoos számmal osztjuk. A számos skálázás lehetõség közül a vegyész gyakorlatba a mértékegységváltás, a mta ormálása 0 és érték közé (móltört, tömegtört megadás), a mta cetrálása, és a mta stadardzálása leggyakorbbak. Normált mtához jutuk, ha az eredet mta mde elemét az elemek összegével osztjuk. Eek egy eleme: z Felhívjuk a fgyelmet arra, hogy az így ormált adatok között egy már függetle a többtõl, az adatok összegébõl és a - adatból a függõ már kszámítható. Cetrált mta keletkezk, ha mde elembõl kvojuk az elemek átlagát (l..7 képlet): ( c) = ( 5. ) = k= k (.4) A cetrált mtába szükségképpe poztv és egatív értékek lépek fel, az elemek összeg 0. Ebbõl következk, hogy a cetrált adatok közül s csak - darab függetle. A stadardzált lesz a mta akkor, ha az eredet mtaelemekbõl kvojuk azok átlagát és a külöbségeket a mta emprkus szórásával (l..0 képlet) osztjuk: u = (.6) s A stadardzált mta 0-közepû, szórása..4 Az adatok ábrázolása Mtákról szemléletes képet ad a potsor, azaz a mtaelemek ábrázolása a számegyeese, az (egyváltozós) szóródás kép (uvarate scatter plot).

7 7.. példa: Tektsük egy 4 elemû mtát: -7,-46, 67,-8,7, 07,, -0,, -6, -, -0 99, 7, 57, -5, 60, -7, -95, -6, 4, 9. 58, 87 Redezve: -6,-0,-0,-7,-95,-8,-46,-7,-5,-7,-6,- 4, 9,, 57, 58, 60, 67, 87, 99, 07,, 7 Potsorral ábrázolva: Uvarate Scatter Plots Data o Orgal Scale C ábra Potsoros ábrázolás. Az adatok eloszlása, a mták jellemzó Bár az adatok sorozatáak és képéek megtektése bzoyos fokg tájékoztat az adatok elhelyezkedésérõl, szükség va olya számadatokra, amelyek tömöre jellemzk a mta (a) közepét, (b) terjedelmét és (c) eloszlását. Egy-egy célra több jellemzõ közül lehet választa. A valószíûségszámítás sokaságok eloszlásáak jellemzésére potosa defált meységeket, mt várható érték, szórás, ferdeség, lapultság, korrelácós együttható stb. Levezette ezekek a meységekek tulajdoságat s. Az alábbakba smertetett tapasztalat (ksérlet, gyakra statsztkákak evezett) jellemzõk ezekek az elmélet meységekek becslése. A becslések között külööse értékeljük azokat, amelyek torzítatlaok. Torzítatla az a becslés, amelyek várható értéke megegyezk azzal a meységgel, amelyket becsül... Mtaközép jellemzõk a) számta közép, mtaátlag, (mea) A számta közép = = (.7)

8 8 A számta közép a hagyomáyos legksebb égyzetek elvéek megfelelõ jellemzõ, a várható érték torzítatla becslése. Hátráya, hogy érzékey a szélsõségese eltérõ ("klógó") adatokra. Az. példába szereplõ adatok számta közete: b) medá, (meda) A medá az változó azo értéke, amelyél a mta elemek fele ksebb, fele agyobb. % = = % = + m+ m + m + ha a mta páratla elemõ, = m+ (.8/a) ha a mta páros elemû, = m (.8/b) A medá em érzékey szélsõséges értékekre, u.. robusztus becslõ. Az. példába szereplõ adatok medája: 6 c) módusz (mode) A módusz a leggyakrabba elõforduló mtaelem értéke* * több mamumos eloszlásokál a leggyakorbb, majd a másodk leggyakorbb... d = leggyakorbb (.9) A módusz a valószíûség változó sûrüségfüggvéyéek mamumhelye. Ksérlet meghatározása agy mtákból lehetséges, ahol beszélhetük azoos értékû mtaelemekrõlrõl. Tovább, adott esetbe haszos, de gyakorlatukba rtkábba elõforduló mtaközép jellemzõk még a mérta közép: (g) =.... és a harmokus közép: ( h) = Kterjedés jellemzõk a) stadard devácó (tapasztalat szórás, korrgált emprkus szórás (stadard error, stadard devato): Stadard devácó ( ) s = = (.0)

9 9 Ez a jellemzõ az elmélet szórás becslése. Nevezõjébe a kézefekvõ helyett azért szerepel -, mert azt csak - függetle mért adatból számíthattuk k. A számta közép ugyas egy adatot az közül a többbõl kszámíthatóvá tesz. Ha a evezõbe álla, a stadard devácó torzította becsülé a szórást. Fotos megjegyzés: Ha adat között m darab megkötés létezk, az adat között csak - m darab függetle. A függetle adatokak ezt a számát szabadság fokak (degree of freedom, DF) s evezk. Az. példába szereplõ adatok stadard devácója: b) varácós együttható (coeffcet of varato) " c. v." = V = s / (.) A varácós együttható azt mutatja meg, háyadrésze, háy százaléka a tapasztalat szórás a középértékek. Bzoyos esetekbe (pl 0 várható értékû sokaságokál) értelmetle. c) terjedelem (rage) A terjedelem a legagyobb és legksebb mtaelem külöbsége d = ma - m (.) Az. példába szereplõ adatok terjedelme: 7 - (-6) = 5 d) kvatlsek (quatles) p-s kvatls az változó azo értéke, amelyél ksebb mtaelemek háyada p) 0.-es kvatls = decls = 0. percetls 0.5-ös kvatls = elsõ kvartls (Q ) = 5. percetls 0.5-ös kvatls = másodk kvartls (Q ) = 50. percetls= medá 0.75-ös kvatls = harmadk kvartls (Q ) = 75. percetls 0.90-es kvatls = 90. percetls Az. példába szereplõ adatok elsõ kvartlsa -6.5, medája 6, harmadk kvartlsa Egyéb eloszlásjellemzõk.. Egyéb eloszlásjellemzõk a) ferdeség (skewess) A ferdeség γ = ( )( ) = * s (.)

10 0 Ez a meység a harmadk cetráls mometum/szórás módo, a γ = E [( ξ E( ξ) ) ] képlettel defált meység becslése. A ferdeség valószíûség változókak külöbözõ sûrüségfüggvéye eseté az alábbak szert alakul: σ Sürüségfüggvéy Szmmetrkus Nem szmmetrkus Csúcs elõl Csúcs hátul Ferdeség: 0 poztív egatív Az. példába szereplõ adatok ferdesége: b) lapultság (kurtoss) A lapultság: A lapultság a γ = ( ) ( )( )( ) = γ E * s 4 [( ξ E( ξ) ) ] = 4 σ ( ) ( )( ) 4 (.4) képlettel, γ = egyedk cetráls mometum / szórás 4 - módo defált meység becslése. Ha a lapultság poztív, akkor a sokaság eloszlásáak sûrüségfüggvéye csúcsosabb, mt a ormáls eloszlás haraggörbéjéé, ha egatív, akkor laposabb, ha 0, akkor egyezõ. Az. példába szereplõ adatok lapultsága : Megjegyzések a középértékrõl és a szórásról. a) A középérték leárs fukcoál: E(αX + βy) =αe(x) + βe(y) b) Néháy fotos tétel a szórásról és a szóráségyzetrõl (varacáról): D (X ± Y) = D (X) + D (Y) = σ + σ y D(X+Y) = (σ + σ y ) / D (αx) =α D (X) D(αX) =αd(x) D (X ± α) = D (X) D (X ± α) = D(X) Fetekbõl következk: A középérték szórásáak becslése

11 s m s = = ( ) ( ) (.5) Levezetés: D ( ) D ( ) ( ) ( ) D σ σ σ = / = D = = = = Fotos összefüggés: ( ) = = ) / = ( ) = ( ) (..5 A mta eloszlásáak grafkus szemléltetése a) a hsztogram A hsztogram egy redezett mta elõre ktûzött változó-tartomáyaba esõ elemek számát vagy gyakorságát ábrázolja. A hsztogram hasábjaak szélessége a változótartomáyt, magassága az (abszolut vagy relatív) gyakorságot ábrázolja. Túl kevés tartomáy ktûzésekor az formácó szegéyes (./a ábra), túl sok eseté a kapott kép áttekthetele. (./c ábra) Hstogram 0 Frequecy C./a ábra Elagyolt hsztogram

12 Hstogram Frequecy C./b ábra Jól méretezett hsztogram Hstogram Frequecy C./c ábra Túlrészletezett hsztogram b) a bo" vagy "szakállas" (bo ad whskers) ábra A bo vagy szakállas (bo ad whskers) ábra az eloszlás szemléltetéséek célszerû módja, amely a változó számegyeesé külöbözõ, jellemzõ krtkus potokat tartalmaz: medá gyaús Q Q gyaús * /////// ////////////// * Q-.5 I m ma Q+.5 I (I = Q - Q = terkvartls távolság)

13 Boplots ma Q medá Q m C. ábra A bo ábra. példa. Négy mtát hasolítuk össze. C4 és C adatok aszmmetrkus eloszlású sokaságokból származak, C ormáls és C egyeletes eloszlásúak. A potsor ábrák az alábbak: Uvarate Scatter Plots Data o 0 - Scale C4 C C C ábra A. példa mtáak potsor ábrá Boplots Data o 0 - Scale C C C C4.5 ábra. A. példa mtáak bo ábrá

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

Statisztika. Eloszlásjellemzők

Statisztika. Eloszlásjellemzők Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem

Részletesebben

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük.

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük. Statisztikai módszerek. BMEGEVGAT01 Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudomáyi Egyetem Gépészméröki Kar Hidrodiamikai Redszerek Taszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum) Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika ... Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB

Részletesebben

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

A sokaság/minta eloszlásának jellemzése

A sokaság/minta eloszlásának jellemzése 3. előadás A sokaság/mnta eloszlásának jellemzése tpkus értékek meghatározása; az adatok különbözőségének vzsgálata, a sokaság/mnta eloszlásgörbéjének elemzése. Eloszlásjellemzők Középértékek helyzet (Me,

Részletesebben

A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet A biostatisztika alapfogalmai, kofideciaitervallum Dr. Boda Krisztia PhD SZTE ÁOK Orvosi Fizikai és Orvosi Iformatikai Itézet Mitavétel ormális eloszlásból http://www.ruf.rice.edu/~lae/stat_sim/idex.html

Részletesebben

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 202.03.0. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése 3 4 Tartalomegyzék. BEVEZETÉS 5. A MÉRÉS 8. A mérés mt folyamat, fogalmak 8. Fotosabb mérés- és műszertechka fogalmak 4.3 Mérés hbák 8.3. Mérés hbák csoportosítása eredetük szert 8.3. A hbák megeleítés

Részletesebben

Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat

Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat Megállapítható változók elemzése Függetleségvzsgálat, lleszkedésvzsgálat, homogetásvzsgálat Ordáls, omáls esetre s alkalmazhatóak a következő χ próbá alapuló vzsgálatok: 1) Függetleségvzsgálat: két valószíűség

Részletesebben

A paramétereket kísérletileg meghatározott yi értékekre támaszkodva becsülik. Ha n darab kisérletet (megfigyelést, mérést) végeznek, n darab

A paramétereket kísérletileg meghatározott yi értékekre támaszkodva becsülik. Ha n darab kisérletet (megfigyelést, mérést) végeznek, n darab öbbváltozós regresszók Paraméterbecslés-. A paraméterbecslés.. A probléma megfogalmazása A paramétereket kísérletleg meghatározott y értékekre támaszkodva becsülk. Ha darab ksérletet (megfgyelést, mérést

Részletesebben

Matematika B4 I. gyakorlat

Matematika B4 I. gyakorlat Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a

Részletesebben

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke

Részletesebben

4 2 lapultsági együttható =

4 2 lapultsági együttható = Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.

Részletesebben

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai 05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:

Részletesebben

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje.

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje. 24. tétel valószíűségszámítás elemei. valószíűség kiszámításáak kombiatorikus modellje. GYORISÁG ÉS VLÓSZÍŰSÉG meyibe az egyes adatok a sokaságo belüli részaráyát adjuk meg (törtbe vagy százalékba), akkor

Részletesebben

Statisztika 1. zárthelyi dolgozat március 21.

Statisztika 1. zárthelyi dolgozat március 21. Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy

Részletesebben

BIOSTATISZTIKA ÉS INFORMATIKA. Leíró statisztika

BIOSTATISZTIKA ÉS INFORMATIKA. Leíró statisztika BIOSTATISZTIKA ÉS INFORMATIKA Leíró statisztika Első közelítésbe a statisztikai tevékeységeket égy csoportba sorolhatjuk, de ezek között ics éles határ:. adatgyűjtés, 2. az adatok áttekithetővé tétele,

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 10. A statisztika alapjai Debrecei Egyetem, 2015 Dr. Bérczes Attila, Bertók Csaád A diasor tartalma 1 Bevezetés 2 Statisztikai függvéyek Defiíció, empirikus várható érték Empirikus

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék Adatfeldolgozás, adatértékelés Dr. Szűcs Péter, Dr. Madarász Tamás Mskolc Egyetem, Hdrogeológa Mérökgeológa Taszék A vzsgált köryezet elemek, lletve a felszí alatt közeg megsmerése céljából számtala külöböző

Részletesebben

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o) Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I. 5-6. o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls)

Részletesebben

Populáció. Történet. Adatok. Minta. A matematikai statisztika tárgya. Valószínűségszámítás és statisztika előadás info. BSC/B-C szakosoknak

Populáció. Történet. Adatok. Minta. A matematikai statisztika tárgya. Valószínűségszámítás és statisztika előadás info. BSC/B-C szakosoknak Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 16. A matematikai statisztika tárgya Következtetések levoása adatok alapjá Ipari termelés Mezőgazdaság Szociológia

Részletesebben

Statisztika I. 4. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 4. előadás. Előadó: Dr. Ertsey Imre Statsztka I. 4. előadás Előadó: Dr. Ertsey Imre KÖZÉPÉRTÉKEK A statsztka sor általáos jellemzésére szolgálak, a statsztka sokaságot egy számmal jellemzk. Számított középértékek: matematka számítás eredméyekét

Részletesebben

Eddig megismert eloszlások Jelölése Eloszlása EX D 2 X P(X = 1) = p Ind(p) P(X = 0) = 1 p. Leíró és matematikai statisztika

Eddig megismert eloszlások Jelölése Eloszlása EX D 2 X P(X = 1) = p Ind(p) P(X = 0) = 1 p. Leíró és matematikai statisztika Leíró és matematikai statisztika Matematika alapszak, matematikai elemző szakiráy Zempléi Adrás Valószíűségelméleti és Statisztika Taszék Matematikai Itézet Természettudomáyi Kar Eötvös Lorád Tudomáyegyetem

Részletesebben

A matematikai statisztika elemei

A matematikai statisztika elemei A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................

Részletesebben

Matematikai statisztika elıadás III. éves elemzı szakosoknak. Zempléni András 9. elıadásból (részlet)

Matematikai statisztika elıadás III. éves elemzı szakosoknak. Zempléni András 9. elıadásból (részlet) Matematka statsztka elıadás III. éves elemzı szakosokak Zemplé Adrás 9. elıadásból részlet Y közelítése függvéyével Gyakor eset, hogy em smerjük a számukra érdekes meység Y potos értékét pl. holap részvéy-árfolyam,

Részletesebben

Dr. Tóth Zsuzsanna Eszter Dr. Jónás Tamás Erdei János. Gazdaságstatisztika. II. rész A matematikai statisztika alapjai

Dr. Tóth Zsuzsanna Eszter Dr. Jónás Tamás Erdei János. Gazdaságstatisztika. II. rész A matematikai statisztika alapjai Budapest Műszak és Gazdaságtudomáy Egyetem Gazdaság- és Társadalomtudomáy Kar Üzlet Tudomáyok Itézet Meedzsmet és Vállalatgazdaságta Taszék Dr. Tóth Zsuzsaa Eszter Dr. Jóás Tamás Erde Jáos Gazdaságstatsztka

Részletesebben

PDF created with FinePrint pdffactory Pro trial version Irodalom.

PDF created with FinePrint pdffactory Pro trial version   Irodalom. r etskemétyászló matematkus http://wwwketskemetyhu laszlo@ketskemetyhu kela@sztbmehu : +36/70/3 00 5 0 egjelet az ötvös adó godozásába orgalmazza a Cytotechft egjeleés éve: 005 Jellemzők: 459 o, 94 cm

Részletesebben

A statisztika részei. Példa:

A statisztika részei. Példa: STATISZTIKA Miért tauljuk statisztikát? Mire haszálhatjuk? Szakirodalom értő és kritikus olvasásához Mit állít egyáltalá a cikk? Korrektek-e a megállaítások? Vizsgálatok (kísérletek és felmérések) tervezéséhez,

Részletesebben

MÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011

MÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011 MÉRÉSTECHNIKA DR. HUBA ANTAL c. egy. taár BME Mechatroka, Optka és Gépészet Iformatka Taszék 0 Rövde a tárgyprogramról Előadások tematkája: Metrológa és műszertechka alapok Mérés adatok kértékelése Időbe

Részletesebben

Információs rendszerek elméleti alapjai. Információelmélet

Információs rendszerek elméleti alapjai. Információelmélet Iformácós redszerek elmélet alaja Iformácóelmélet A forrás kódolása csatora jelekké 6.4.5. Molár Bált Beczúr Adrás NMMMNNMNfffyyxxfNNNNxxMNN verzazazthatóvsszaálímdeveszteségcsaakkorfüggvéykódolásaakódsorozat:eredméyekódolássorozatváltozó:forás

Részletesebben

Hipotéziselmélet. Statisztikai próbák I. Statisztikai próbák II. Informatikai Tudományok Doktori Iskola

Hipotéziselmélet. Statisztikai próbák I. Statisztikai próbák II. Informatikai Tudományok Doktori Iskola Hpotézselmélet Iformatka Tudomáyok Doktor Iskola Statsztka próbák I. 0.0.. Dr Ketskeméty László előadása Statsztka próbák II. Dötés eljárást dolgozuk k aak eldötésére, hogy a ullhpotézs gaz-e. Ha úgy kell

Részletesebben

A Statisztika alapjai

A Statisztika alapjai A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati

Részletesebben

1. A radioaktivitás statisztikus jellege

1. A radioaktivitás statisztikus jellege A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a

Részletesebben

Ingatlanfinanszírozás és befektetés

Ingatlanfinanszírozás és befektetés Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

Ha n darab standard normális eloszlású változót négyzetesen összegzünk, akkor kapjuk a χ 2 - eloszlást: N

Ha n darab standard normális eloszlású változót négyzetesen összegzünk, akkor kapjuk a χ 2 - eloszlást: N Krály Zoltá: Statsztka II. Bevezetés A paraméteres eljárások alkalmazásához, a célváltozóra ézve szgorú feltételek szükségesek (folytoosság, ormaltás, szóráshomogetás), ekkor a hpotézseket egy-egy paraméterre

Részletesebben

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

Arrhenius-paraméterek becslése közvetett és közvetlen mérések alapján

Arrhenius-paraméterek becslése közvetett és közvetlen mérések alapján Tudomáyos Dákkör Dolgozat SZABÓ BOTOND Arrheus-paraméterek becslése közvetett és közvetle mérések alapá Turáy Tamás. Zsély Istvá Gyula Kéma Itézet Eötvös Lorád Tudomáyegyetem Természettudomáy Kar Budapest,

Részletesebben

STATISZTIKA. ltozók. szintjei, tartozhatnak: 2. Előad. Intervallum skála. Az adatok mérési m. Az alacsony mérési m. Megszáml Gyakoriság módusz

STATISZTIKA. ltozók. szintjei, tartozhatnak: 2. Előad. Intervallum skála. Az adatok mérési m. Az alacsony mérési m. Megszáml Gyakoriság módusz A változv ltozók k mérés m sztje STATISZTIKA. Előad adás Az adatok mérés m sztje, Cetráls mutatók A változv ltozók k az alább típusba t tartozhatak: Nomáls (kategorkus és s dszkrét) Ordáls Itervallum skála

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

A Secretary problem. Optimális választás megtalálása.

A Secretary problem. Optimális választás megtalálása. A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra

Részletesebben

Változók függőségi viszonyainak vizsgálata

Változók függőségi viszonyainak vizsgálata Változók függőség vszoyaak vzsgálata Ismétlés: változók, mérés skálák típusa kategoráls változók Asszocácós kapcsolat számszerű változók Korrelácós kapcsolat testsúly (kg) szemüveges em ő 1 3 férf 5 3

Részletesebben

Tapasztalati eloszlás. Kumulált gyakorisági sorok. Példa. Értékösszegsor. Grafikus ábrázolás

Tapasztalati eloszlás. Kumulált gyakorisági sorok. Példa. Értékösszegsor. Grafikus ábrázolás Matemata statszta elıadás III. éves elemzı szaosoa 009/00. élév. elıadás Tapasztalat eloszlás Mde meggyeléshez (,,, ) / súlyt redel. Valószíőségeloszlás! Mtaátlag éppe ee az eloszlása a várható értée.

Részletesebben

Statisztikai. Statisztika Sportszervező BSc képzés NBG GI866G4. Statisztika fogalma. Statisztikai alapfogalmak. Statisztika fogalma

Statisztikai. Statisztika Sportszervező BSc képzés NBG GI866G4. Statisztika fogalma. Statisztikai alapfogalmak. Statisztika fogalma Statsztka Sportszervező BSc képzés NBG GI866G4 010-011-es taév II félév Statsztka alapfogalmak Oktató: Dr Csáfor Hajalka főskola doces Vállalkozás-gazdaságta Tsz E-mal: hcsafor@ektfhu Statsztka alapfogalmak

Részletesebben

STATISZTIKA II. kötet

STATISZTIKA II. kötet Szeged Tudomáyegyetem Gazdaságtudomáy Kar Petres Tbor Tóth László STATISZTIKA II. kötet Szerzők: Dr. Petres Tbor, PhD egyetem doces Statsztka és Demográfa Taszék Tóth László PhD-hallgató Gazdaságtudomáy

Részletesebben

BEVEZETÉS AZ SPSS ALAPJAIBA. (Belső használatra)

BEVEZETÉS AZ SPSS ALAPJAIBA. (Belső használatra) BEVEZETÉS AZ SPSS ALAPJAIBA (Belső haszálatra) TARTALOMJEGYZÉK. Statsztka alapfogalmak..... Sokaság...4.2. Ismérvek és mérés skálák...6.3. Statsztka sorok...7 2. SPSS alapfogalmak...9 3. Alapvető statsztka

Részletesebben

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága Azoos évleges értékű, htelesített súlyokból alkotott csoportok együttes mérés bzoytalasága Zeleka Zoltá* Több mérés feladatál alkalmazak súlyokat. Sokszor ezek em egyekét, haem külöböző társításba kombácókba

Részletesebben

AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN

AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN Molár László Ph.D. hallgató Mskolc Egyetem, Gazdaságelmélet Itézet 1. A MINTANAGYSÁG MEGHATÁROZÁSA EGYSZERŐ VÉLETLEN (EV) MINTA

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata 6. év OTKA zárójeletés: Vezető kutató:kalszky Sádor OTKA ylvátartás szám T 4993 A pályázat címe: Rugalmas-képlékey tartószerkezetek topológa optmalzálásáak éháy külöleges feladata (Részletes jeletés) Az

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

Hipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer?

Hipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer? 01.09.18. Hpotézs vzsgálatok Egy példa Kérdések (példa) Hogyan adhatunk választ? Kérdés: Hatásos a lázcsllapító gyógyszer? Hatásos-e a gyógyszer?? rodalomból kísérletekből Hpotézsek A megfgyelt változó

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény Palácz Béla - Soft Computig - 11-1. Adatok közelítése 1. Adatok közelítése Bevezetés A természettudomáyos feladatok megoldásához, a vizsgált jeleségek, folyamatok főbb jellemzői közötti összefüggések ismeretére,

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék Mskol Egyetem Gépészmérök és Iformatka Kar Alkalmazott Iformatka Taszék 2012/13 2. félév 9. Előadás Dr. Kulsár Gyula egyetem does Matematka modellek a termelés tervezésébe és ráyításába Néháy fotosabb

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június ÖKONOMETIA Készült a TÁMOP-4.1.-08//A/KM-009-0041pályázat projet eretébe Tartalomfejlesztés az ELTE TáTK Közgazdaságtudomáy Taszéé az ELTE Közgazdaságtudomáy Taszé az MTA Közgazdaságtudomáy Itézet és a

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 5. Megjegyzések. A tétel feltételei gyegíthetőek: elég, ha a függetle, azoos eloszlású változók várható értéke véges.

Részletesebben

Regresszió és korreláció

Regresszió és korreláció Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 01.11.1 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Megoldás a, A sebességből és a hullámhosszból számított periódusidőket T a táblázat

Megoldás a, A sebességből és a hullámhosszból számított periódusidőket T a táblázat Fzka feladatok: F.1. Cuam A cuam hullám formájáak változása, ahogy a sekélyebb víz felé mozog (OAA) (https://www.wdowsuverse.org/?page=/earth/tsuam1.html) Az ábra, táblázat a cuam egyes jellemzőt tartalmazza.

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

1. előadás: Bevezetés. Irodalom. Számonkérés. Cél. Matematikai statisztika előadás survey statisztika MA szakosoknak. A matematikai statisztika tárgya

1. előadás: Bevezetés. Irodalom. Számonkérés. Cél. Matematikai statisztika előadás survey statisztika MA szakosoknak. A matematikai statisztika tárgya Matematikai statisztika előadás survey statisztika MA szakosokak 206/207 2. félév Zempléi Adrás. előadás: Bevezetés Irodalom, követelméyek A félév célja Matematikai statisztika tárgya Törtéet Alapfogalmak

Részletesebben

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya II RÉZ 2 EJEZE 2 Az együttműködő vllamoseerga-redszer teljesítméy-egyesúlya 2 A frekveca és a hatásos teljesítméy között összefüggés A fogyasztó alredszerbe a fogyasztók hatásos wattos teljesítméyt lletve

Részletesebben

Izsák János. ELTE TTK Állatrendszertani és Ökológiai Tanszék. Kézirat

Izsák János. ELTE TTK Állatrendszertani és Ökológiai Tanszék. Kézirat BIOSTATISZTIKAI ALAPISMERETEK Izsák Jáos ELTE TTK Állatredszerta és Ökológa Taszék Kézrat Budapest, 5 Tartalomjegyzék Előszó 4. Valószíűség vektorváltozók 6.. Bevezetés 6.. A többváltozós, specálsa kétváltozós

Részletesebben

ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk,

ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk, A deceber -i gyakorlat téája A hipotézisvizsgálat fotos probléája a következő két kérdés vizsgálata. a) Egy véletle eyiség várható értékéek agyságáról va bízoyos feltevésük. Elleőrizi akarjuk e feltevés

Részletesebben

Geostatisztika c. tárgy a BSc földrajz alapszak hallgatóinak

Geostatisztika c. tárgy a BSc földrajz alapszak hallgatóinak Geostatsztka c. tárgy a BSc földrajz alapszak hallgatóak Dr. Szabó Norbert Péter egyetem taársegéd Geofzka Taszék e-mal: orbert.szabo.phd@gmal.com gfmal@u-mskolc.hu Tematka Adatredszerek, hsztogrammok

Részletesebben

Miért pont úgy kombinálja kétfokozatú legkisebb négyzetek módszere (2SLS) az instrumentumokat, ahogy?

Miért pont úgy kombinálja kétfokozatú legkisebb négyzetek módszere (2SLS) az instrumentumokat, ahogy? Mért pot úgy kombálja kétfokozatú legksebb égyzetek módszere (2SLS az strumetumokat, ahogy? Kézrat A Huyad László 60. születésapjára készülő köyvbe Kézd Gábor 2004. júlus A Budapest Corvus Egyetem rövd

Részletesebben

Tulajdonságok. Teljes eseményrendszer. Valószínőségi változók függetlensége. Példák, szimulációk

Tulajdonságok. Teljes eseményrendszer. Valószínőségi változók függetlensége. Példák, szimulációk Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 26 p 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 A bomáls és a hpergeom. elo. összehasolítása 0 1 2 3 4 5 6 7 8 9 10 k Hp.geom

Részletesebben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,

Részletesebben

A heteroszkedaszticitásról egyszerûbben

A heteroszkedaszticitásról egyszerûbben Mûhely Huyad László kaddátus, egyetem taár, a Statsztka Szemle főszerkesztője A heteroszkedasztctásról egyszerûbbe E-mal: laszlo.huyad@ksh.hu A heteroszkedasztctás az ökoometra modellezés egyk kulcsfogalma,

Részletesebben

VÉLETLENÍTETT ALGORITMUSOK. 1.ea.

VÉLETLENÍTETT ALGORITMUSOK. 1.ea. VÉLETLENÍTETT ALGORITMUSOK 1.ea. 1. Bevezetés - (Mire jók a véletleített algoritmusok, alap techikák) 1.1. Gyorsredezés Vegyük egy ismert példát, a redezések témaköréből, méghozzá a gyorsredezés algoritmusát.

Részletesebben

Korreláció- és regressziószámítás

Korreláció- és regressziószámítás Korrelácó- és regresszószámítás sztochasztkus kapcsolat léyege az, hogy a megfgyelt sokaság egységeek egyk smérv szert mlyeségét, hovatartozását smerve levoható ugya bzoyos következtetés az egységek másk

Részletesebben

Zavar (confounding): akkor lép fel egy kísérletben, ha a kísérletet végző nem tudja megkülönböztetni az egyes faktorokat.

Zavar (confounding): akkor lép fel egy kísérletben, ha a kísérletet végző nem tudja megkülönböztetni az egyes faktorokat. Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet végző em tudja megkülöbözteti az egyes faktorokat. Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

2. METROLÓGIA ÉS HIBASZÁMíTÁS

2. METROLÓGIA ÉS HIBASZÁMíTÁS . METROLÓGIA ÉS HIBASZÁMíTÁS. Metrológa alapfogalmak A metrológa a mérések tudomáya, a mérésekkel kapcsolatos smereteket fogja össze. Méréssel egy objektum valamlye tulajdoságáról számszerű értéket kapuk.

Részletesebben

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

Példák 2. Teljes eseményrendszer. Tulajdonságok. Példák diszkrét valószínőségi változókra

Példák 2. Teljes eseményrendszer. Tulajdonságok. Példák diszkrét valószínőségi változókra Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 28 dszkrét valószíőség változókra X(ω)=c mde ω-ra. Elevezés: elfajult eloszlás. P(X=c)=1. X akkor 1, ha egy adott,

Részletesebben

MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE

MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE Molár László egyetem taársegéd 1. BEVEZETÉS A statsztkusok a mtaagyság meghatározására számos módszert dolgoztak

Részletesebben

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +... . Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk

Részletesebben

A Sturm-módszer és alkalmazása

A Sturm-módszer és alkalmazása A turm-módszer és alalmazása Tuzso Zoltá, zéelyudvarhely zámtala szélsőérté probléma megoldása, vagy egyelőtleség bzoyítása agyo gyara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölderféle

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú

Részletesebben

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,

Részletesebben

I. Valószínűségelméleti és matematikai statisztikai alapok

I. Valószínűségelméleti és matematikai statisztikai alapok I. Valószíűségelmélet és matematka statsztka alapok. A szükséges valószíűségelmélet és matematka statsztka alapsmeretek összefoglalása Az alkalmazott statsztka módszerek tárgalása, amel e kötet célja,

Részletesebben

Komputer statisztika

Komputer statisztika Eszterházy Károly Főiskola Matematikai és Iformatikai Itézet Tómács Tibor Komputer statisztika Eger, 010. október 6. Tartalomjegyzék Előszó 4 Jelölések 5 1. Valószíűségszámítás 7 1.1. Valószíűségi mező............................

Részletesebben