Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I o)
|
|
- Eszter Németh
- 10 évvel ezelőtt
- Látták:
Átírás
1 Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls) mérés skála: az egységekhez redelhető smérvértékek (akár számok akár em) alapá csak azt tuduk megállapíta, hogy az egységek az adott smérv szempotából egyezőek-e vagy sem. Műveleteket em tuduk velük végez. Példa: lakhely típusa smérv smérvértéke: főváros, város, község. A mérés szt évleges, hsze ez alapá csak azt tuduk megállapíta, hogy egy egyed más típusú települése él-e mt egy másk egyé, de em modhatuk, hogy a város több vagy obb mt a község. Szté semm értelme em lee ezeket eloszta egymással vagy kvo őket egymásból, még akkor sem ha az smérvértékeket számmal elölék. b. Sorred (ordáls) skála: em csak az smérvértékek külöbsége hordoz formácót, haem azok sorrede s. Példa: érdemegyek (smérvértékek: 1,, 3, 4, 5). Tuduk, hogy ak ötöst kapott, az emcsak eltér attól, ak égyest kapott, haem obba s telesített. Tehát va értelme sorredbe helyez az egyedeket az érdemegy alapá. Ugyaakkor ylvávalóa sem a kvoásak, sem az osztásak em lee értelme: az egyes és a kettes között más a külöbség, mt a kettes és a hármas között. Az sem lee gaz, hogy ak kettest kapott az kétszer olya ó volt, mt ak egyest, vagy, hogy az egyes a ketteshez úgy aráylk, mt a kettes a égyeshez. c. ülöbség (tervallum) skála: az smérvértékek külöbségeek va értelme (va mértékegység s), ugyaakkor az aráyokat em tuduk értelmez. Eek oka, hogy a külöbség skálá mérhető smérvek esetébe a ulla pot ökéyese va kelölve. Példa: Celsus-féle hőmérséklet skála. 10 C és 0 C között a külöbség ugyaay mt 0 C és 30 C között. Ugyaakkor em modhatuk, hogy a 10 C kétszer melegebb, mt az 5 C, vagy, hogy a 0 C pot ayszor melegebb a 10 C-ál, mt a 10 C az 5 C-ál. elátható, hogy eek az az oka, hogy a Celsus-féle skála ulla pota (lletve a 100 C s) ökéyese került megállapításra: 0 C em elet a hőmérséklet háyát. d. Aráyskála: Az smérvértékek aráya s értelmezhetőek, a ulla pot em ökéyese va megállapítva. Példa: az smérv a hav övedelem. Ha valakek 00 ezer fort a hav övedelme, akkor arra yugodta modhatuk, hogy kétszer ay, mt a 100 ezer fortos övedelem és, hogy ez a két övedelem pot úgy aráylk egymáshoz, mt az 1 mlló fortos övedelem az 500 ezres övedelemhez. A ulla pot em ökéyes, hsze a ulla fort övedelem a övedelem háyát elöl. Az smérvek között kapcsolat szorosságát az smérvek mérés skáláától függőe a következő eszközökkel vzsgálhatuk: 1. Mdkét smérv mőség vagy terület (azaz omáls mérés sztű): asszocácó. Az egyk smérv terület vagy mőség (azaz omáls mérés sztű), a másk smérv (változó) pedg meység (azaz legalább külöbség skálá mért): vegyes kapcsolat 3. Mdkét smérv meység: korrelácó.
2 Asszocácó: Megfgyeltük, hogy egy három szíbe (pros, kék, zöld) gyártott termékből a férfak és a ők mey darabot vásároltak. (Azaz két mőség smérvük va: termék szíe, és a vásárló eme). Vao va-e kapcsolat a vásárló eme, és a választott szí között? pros kék zöld összese férfak ők összese Az általáos elölésekkel: pros kék zöld összese férfak f 11 f 1 f 13 f 1. ők f 1 f f 3 f. összese f.1 f. f.3 A fet kotgecatáblába a sorok és az oszlopok utolsó adata peremgyakorságokak evezzük. A feladat megoldásához készítsük el a fet tábla egy olya verzóát, amelybe feltételeztük az smérvek függetleségét. Ha a két smérv függetlee, akkor a gyakorságok kszámíthatóak a peremgyakorságokból a következő módo: f *. f. f Azaz ha a szí és a vásárló eme függetleek leéek egymástól, akkor az f 11 gyakorság helyé a következő gyakorság szerepele: * f.1 f f11 16, Így elkészíthetük a kotgecatáblát a feltételezett gyakorságokkal: pros kék zöld összese férfak 16,875 14,065 14, ők 13,15 10, , összese A taköyv 16. oldalá látható kh-égyzet teststatsztkát a valós és a feltételezett valószíűségekből a következő módo számolhatuk k: r c * f f * f 1 1, ahol r a sorok, c pedg az oszlopok száma. Jele példába: (10 16,875) (15 14,065) (0 14,065) (0 13,15) (10 10,9375) 16,875 14, , ,15 10,9375 (5 10,9375) 1, ,9375 Az, hogy a fet statsztka ullától eltér, már elz, hogy a két smérv között va kapcsolat. Az asszocácó egyk gyakor mérőszámát, a Cramer-féle asszocácós együtthatót a következő módo számolhatuk k: C m(( r 1),( c 1))
3 Ahol a m((r-1),(c-1)) függvéy azt elet, hogy a sorok lletve az oszlopok számából vouk k egyet, és a ksebb értéket vegyük fgyelembe. Azaz, mvel ebbe a példába két sor és három oszlop volt (az összesítő oszlop és sor em számít!) Azaz: 1, 751 C 0,3917 m(( r 1),( c 1)) 801 A Cramer-féle mutató értéke 0 és 1 között értékeket vehet fel. Értéke 0 a két smérv függetlesége, 1 pedg a két smérv determsztkus kapcsolata eseté. A fet érték egy a közepesél gyegébb kapcsolatra utal a vásárló eme, és a választott szí között. Vegyes kapcsolat: Példa: egy vállalatál megfgyeltük a férfak és a ők keresetet (ezer fort/hó): Férfak: 10, 83, 65, 190, 30, 10, 130, 190 ők: 70, 65, 90, 100, 10, 130 Vao va-e összefüggés a kereset (meység smérv) és a em (mőség smérv) között? Az átlagbért és a szórást kszámoluk az egyes kategórákba, azaz a részsokaságokra (ezt em részletezem, a képletek smertek). Az egyes kategórákra (emekre) kszámolt átlagok a részátlagok. észítsük el a táblát a megoldáshoz: em Létszám Átlagbér (ezer ft/hó) (részátlagok, Y ) Szóráségyzet Szórás (ezer ft/hó) férf ,5 53,46 ő 6 95,83 570,14 3,88 összese 14 Illetve számoluk k az átlagbért és a szórást az egész sokaságra (utóbb a teles szórás), azaz férfakra és őkre együttese: Y 11,7 ezer ft/hó, a teles szórás pedg 48,76 ezer ft/hó A taköyv oldalá található meg a módszer részletes leírása. A léyeg, hogy a teles szóráségyezet (σ ) felotható két szóráségyzet összegére: Ahol σ a külső szórás és azt mutata meg, hogy a részátlagok átlagosa meyre térek el a főátlagtól, míg σ a belső szórás és azt mutata meg, hogy az egyes részsokaságokhoz tartozó megfgyelések (a ők lletve külö a férfak) meyre térek el átlagosa a saát részátlaguktól. Láthatuk, hogy ha a fet szóráségyzetekből (lletve a szórásokból) kettőt smerük, a harmadk már azokból kszámolható. A teles szóráségyzetet smerük, hsze az: 48, , A külső szóráségyzet a következő módo számolható k: M 1 8 (14111, 7) 6 (95,8311, 7) ( Y Y ) 499,6 14 1
4 Vagys a külső szóráségyzet em más, mt az egyes részátlagokak a sokaság egészéek átlagától vett égyzetes eltéréséek az egyes részsokaságokba tartozó egyedek számával súlyozott számta átlaga. A belső szóráségyzet tehát: 377, 499,6 1877, 6 Természetese k lehete számol a belső szóráségyzetet s: M , , ,6, am egybe a számításak próbáa s. A 1 14 megoldásuk helyes. A vegyes kapcsolat szorosságáak leírásához a H mutatót haszáluk fel, am em más, mt az Y smérv (fzetés) szóráségyzetéek az X smérv (em) által magyarázott háyada. 499,6 H 1 0,1 377, Azaz ebbe a példába azt találuk, hogy a em a fzetésekbe megfgyelhető külöbségek 1%-át magyarázza. Ez gyege vegyes kapcsolatra utal. orrelácó: ét meység smérv között kapcsolat szorosságát mérhetük ezzel a mutatóval. Példa: a övedelem és a fogyasztás kapcsolatát elemeztük Egyé Fogyasztás Jövedelem (ezer ft) (ezer ft) összese - - Vzsgáluk meg a két smérv között kapcsolat szorosságát! Az egyk kulcsfotosságú statsztka a kovaraca: Y Y X X dydx 1 1 cov( y, x), ahol dy Y Y, dx X X Ha a kovaraca értéke ulla, akkor a két változó között leárs kapcsolat cs. A kovaraca előele a kapcsolat ráyára utal. Poztív kovaraca eseté magasabb x értékekhez általába magasabb y értékeke társulak, míg egatív kovaraca eseté a kapcsolat ráya s egatív, azaz magasabb x értékekhez általába alacsoyabb y értékeke társulak. A kapcsolat szorosságáról azoba a kovaraca em ad táékoztatást.
5 A két smérv között kapcsolat szorosságáak mérésére a kovaracáál alkalmasabb mutató a korrelácós együttható. 1 cov( y, x) r( y, x) y x dy dx 1 dy dx dy dx A korrelácós együttható -1 és 1 között értékeket vehet fel. Ha r=0, akkor a két változó között cs leárs kapcsolat. A korrelácós együttható előele, megőrzve a kovaraca előelét, a kapcsolat ráyára utal. Azaz poztív korrelácós együttható eseté magasabb x értékek általába magasabb y értékekkel párosulak, míg egatív együttható eseté magasabb x értékekhez általába alacsoy y értékek tartozak. Mél közelebb kerül az együttható értéke a 1-hez vagy -1-hez, aál erősebb a kapcsolat. Specáls eset ha r=1 vagy r=-1. Ekkor azt moduk, hogy x és y között determsztkus kapcsolat va, azaz ha smerük x értékét potosa (bzoytalaság, hba élkül) meg tuduk határoz y értékét s. Azaz y=a+b*x, ha r=1, és y=a-b*x, ha r=-1. Számoluk k a korrelácós együttható értékét! dy Egyé Fogyasztás övedelem (ezer ft) (ezer ft) dy dx dy dx dydx összese dx dydx cov( y, x) 80, azaz va kapcsolat a övedelem és a fogyasztás között, 7 ráya pedg poztív. dy dx (, ) 0, dy dx 1 1 r y x A fet korrelácós együttható erős, poztív kapcsolatra utal a övedelem és a fogyasztás között. Magasabb övedelmekhez magasabb fogyasztás társul. A korrelácós együtthatóból számítható a determácós együttható (r ), amelyek értelmezése a H együtthatóhoz hasoló: megmutata, hogy x változó segítségével az y változó szóráségyzetéek mekkora háyadát magyaráztuk. r 0,934 0,87, azaz a övedelem a fogyasztás szóráségyzetéek 87,%-át magyarázza.
Statisztika. Eloszlásjellemzők
Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az
Matematikai statisztika elıadás III. éves elemzı szakosoknak. Zempléni András 9. elıadásból (részlet)
Matematka statsztka elıadás III. éves elemzı szakosokak Zemplé Adrás 9. elıadásból részlet Y közelítése függvéyével Gyakor eset, hogy em smerjük a számukra érdekes meység Y potos értékét pl. holap részvéy-árfolyam,
Feladatok és megoldások a 11. heti gyakorlathoz
Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.
ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet
Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat
Megállapítható változók elemzése Függetleségvzsgálat, lleszkedésvzsgálat, homogetásvzsgálat Ordáls, omáls esetre s alkalmazhatóak a következő χ próbá alapuló vzsgálatok: 1) Függetleségvzsgálat: két valószíűség
? közgazdasági statisztika
Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem
? közgazdasági statisztika
... Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB
Változók függőségi viszonyainak vizsgálata
Változók függőség vszoyaak vzsgálata Ismétlés: változók, mérés skálák típusa kategoráls változók Asszocácós kapcsolat számszerű változók Korrelácós kapcsolat testsúly (kg) szemüveges em ő 1 3 férf 5 3
Regresszió és korreláció
Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 01.11.1 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés
Példa: Egy üzletlánc boltjainak forgalmára vonatkozó adatok 1999. október hó: (adott a vastagon szedett!) S i g i z i g i z i
. konzult. LEV. 013. ápr. 5. MENNYISÉGI ISMÉRV szernt ELEMZÉS Tk. 3-8., 88-90. oldal, kmarad: 70., 74. oldal A mennység smérv (X) lehet: dszkrét és folytonos. A rangsor a mennység smérv értékenek monoton
STATISZTIKA. ltozók. szintjei, tartozhatnak: 2. Előad. Intervallum skála. Az adatok mérési m. Az alacsony mérési m. Megszáml Gyakoriság módusz
A változv ltozók k mérés m sztje STATISZTIKA. Előad adás Az adatok mérés m sztje, Cetráls mutatók A változv ltozók k az alább típusba t tartozhatak: Nomáls (kategorkus és s dszkrét) Ordáls Itervallum skála
) ( s 2 2. ^t = (n x 1)s n (s x+s y ) x +(n y 1)s y n x+n y. +n y 2 n x. n y df = n x + n y 2. n x. s x. + s 2. df = d kritikus.
Kétmtás t-próba ^t ȳ ( s +( s + + df + vag ha, aor ^t ȳ (s +s Welch-próba ^d ȳ s + s ( s + s df ( s ( s + d rtus t s (α, +t s (α, s + s Kofdecatervallum ét mta átlagáa ülöbségére SE s ( + s ( ±t (α,df
Regresszió és korreláció
Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 016.11.10 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés
Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától
Sztochasztkus tartalékolás és a tartalék függése a kfutás háromszög dőperódusától Faluköz Tamás Vtéz Ildkó Ibola Kozules: r. Arató Mklós ELTETTK Budapest IBNR kfutás háromszög IBNR: curred but ot reported
Statisztikai. Statisztika Sportszervező BSc képzés NBG GI866G4. Statisztika fogalma. Statisztikai alapfogalmak. Statisztika fogalma
Statsztka Sportszervező BSc képzés NBG GI866G4 010-011-es taév II félév Statsztka alapfogalmak Oktató: Dr Csáfor Hajalka főskola doces Vállalkozás-gazdaságta Tsz E-mal: hcsafor@ektfhu Statsztka alapfogalmak
Ha n darab standard normális eloszlású változót négyzetesen összegzünk, akkor kapjuk a χ 2 - eloszlást: N
Krály Zoltá: Statsztka II. Bevezetés A paraméteres eljárások alkalmazásához, a célváltozóra ézve szgorú feltételek szükségesek (folytoosság, ormaltás, szóráshomogetás), ekkor a hpotézseket egy-egy paraméterre
2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya
II RÉZ 2 EJEZE 2 Az együttműködő vllamoseerga-redszer teljesítméy-egyesúlya 2 A frekveca és a hatásos teljesítméy között összefüggés A fogyasztó alredszerbe a fogyasztók hatásos wattos teljesítméyt lletve
Hipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer?
01.09.18. Hpotézs vzsgálatok Egy példa Kérdések (példa) Hogyan adhatunk választ? Kérdés: Hatásos a lázcsllapító gyógyszer? Hatásos-e a gyógyszer?? rodalomból kísérletekből Hpotézsek A megfgyelt változó
Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága
Azoos évleges értékű, htelesített súlyokból alkotott csoportok együttes mérés bzoytalasága Zeleka Zoltá* Több mérés feladatál alkalmazak súlyokat. Sokszor ezek em egyekét, haem külöböző társításba kombácókba
A sokaság/minta eloszlásának jellemzése
3. előadás A sokaság/mnta eloszlásának jellemzése tpkus értékek meghatározása; az adatok különbözőségének vzsgálata, a sokaság/mnta eloszlásgörbéjének elemzése. Eloszlásjellemzők Középértékek helyzet (Me,
s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés
A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,
Matematikai statisztika
Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),
A matematikai statisztika elemei
A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................
A paramétereket kísérletileg meghatározott yi értékekre támaszkodva becsülik. Ha n darab kisérletet (megfigyelést, mérést) végeznek, n darab
öbbváltozós regresszók Paraméterbecslés-. A paraméterbecslés.. A probléma megfogalmazása A paramétereket kísérletleg meghatározott y értékekre támaszkodva becsülk. Ha darab ksérletet (megfgyelést, mérést
AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN
AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN Molár László Ph.D. hallgató Mskolc Egyetem, Gazdaságelmélet Itézet 1. A MINTANAGYSÁG MEGHATÁROZÁSA EGYSZERŐ VÉLETLEN (EV) MINTA
Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése
3 4 Tartalomegyzék. BEVEZETÉS 5. A MÉRÉS 8. A mérés mt folyamat, fogalmak 8. Fotosabb mérés- és műszertechka fogalmak 4.3 Mérés hbák 8.3. Mérés hbák csoportosítása eredetük szert 8.3. A hbák megeleítés
BEVEZETÉS AZ SPSS ALAPJAIBA. (Belső használatra)
BEVEZETÉS AZ SPSS ALAPJAIBA (Belső haszálatra) TARTALOMJEGYZÉK. Statsztka alapfogalmak..... Sokaság...4.2. Ismérvek és mérés skálák...6.3. Statsztka sorok...7 2. SPSS alapfogalmak...9 3. Alapvető statsztka
Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék
Adatfeldolgozás, adatértékelés Dr. Szűcs Péter, Dr. Madarász Tamás Mskolc Egyetem, Hdrogeológa Mérökgeológa Taszék A vzsgált köryezet elemek, lletve a felszí alatt közeg megsmerése céljából számtala külöböző
KOMBINATORIKA ELŐADÁS osztatlan matematikatanár hallgatók számára. Szita formula J = S \R,
KOMBINATORIKA ELŐADÁS osztatla matematkataár hallgatók számára Szta formula Előadó: Hajal Péter 2018 1. Bevezető példák 1. Feladat. Háy olya sorbaállítása va a {a,b,c,d,e} halmazak, amelybe a és b em kerül
A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai
05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:
A MATEMATIKAI STATISZTIKA ELEMEI
A MATEMATIKAI STATISZTIKA ELEMEI Az Eötvös Lórád Tudomáyegyetem Természettudomáy Kará a Fzka Kéma Taszék évek óta kéma-szakos taárhallgatókak matematka bevezetõ elõadásokat tart. Az elõadások célja az,
Korreláció- és regressziószámítás
Korrelácó- és regresszószámítás sztochasztkus kapcsolat léyege az, hogy a megfgyelt sokaság egységeek egyk smérv szert mlyeségét, hovatartozását smerve levoható ugya bzoyos következtetés az egységek másk
Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Korreláció-számítás. 1. előadás. Döntéselőkészítés módszertana. Dr.
Korrelácó-számítás 1. előadás Döntéselőkészítés módszertana Dr. Varga Beatr Két változó között kapcsolat Függetlenség: Az X smérv szernt hovatartozás smerete nem ad semmlen többletnformácót az Y szernt
PDF created with FinePrint pdffactory Pro trial version Irodalom.
r etskemétyászló matematkus http://wwwketskemetyhu laszlo@ketskemetyhu kela@sztbmehu : +36/70/3 00 5 0 egjelet az ötvös adó godozásába orgalmazza a Cytotechft egjeleés éve: 005 Jellemzők: 459 o, 94 cm
Megjegyzés: Amint már előbb is említettük, a komplex számok
1 Komplex sámok 1 A komplex sámok algeba alakja 11 Defícó: A komplex sám algeba alakja: em más, mt x y, ahol x, y R és 1 A x -et soktuk a komplex sám valós éséek eve, míg y -t a komplex sám képetes (vagy
A Secretary problem. Optimális választás megtalálása.
A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra
Statisztika I. 4. előadás. Előadó: Dr. Ertsey Imre
Statsztka I. 4. előadás Előadó: Dr. Ertsey Imre KÖZÉPÉRTÉKEK A statsztka sor általáos jellemzésére szolgálak, a statsztka sokaságot egy számmal jellemzk. Számított középértékek: matematka számítás eredméyekét
Hipotéziselmélet. Statisztikai próbák I. Statisztikai próbák II. Informatikai Tudományok Doktori Iskola
Hpotézselmélet Iformatka Tudomáyok Doktor Iskola Statsztka próbák I. 0.0.. Dr Ketskeméty László előadása Statsztka próbák II. Dötés eljárást dolgozuk k aak eldötésére, hogy a ullhpotézs gaz-e. Ha úgy kell
MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE
MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE Molár László egyetem taársegéd 1. BEVEZETÉS A statsztkusok a mtaagyság meghatározására számos módszert dolgoztak
i 0 egyébként ábra. Negyedfokú és ötödfokú Bernstein polinomok a [0,1] intervallumon.
3. Bézer görbék 3.1. A Berste polomok 3.1. Defícó. Legye emegatív egész, tetszőleges egész. A ( ) B (u) = u (1 u) polomot Berste polomak evezzük, ahol ( ) = {!!( )! 0, 0 egyébkét. A defícóból közvetleül
Dr. Tóth Zsuzsanna Eszter Dr. Jónás Tamás Erdei János. Gazdaságstatisztika. II. rész A matematikai statisztika alapjai
Budapest Műszak és Gazdaságtudomáy Egyetem Gazdaság- és Társadalomtudomáy Kar Üzlet Tudomáyok Itézet Meedzsmet és Vállalatgazdaságta Taszék Dr. Tóth Zsuzsaa Eszter Dr. Jóás Tamás Erde Jáos Gazdaságstatsztka
GEOFIZIKA / 4. GRAVITÁCIÓS ANOMÁLIÁK PREDIKCIÓJA, ANALITIKAI FOLYTATÁSOK MÓDSZERE, GRAVITÁCIÓS ANOMÁLIATEREK SZŰRÉSE
MSc GEOFIZIKA / 4. BMEEOAFMFT3 GRAVITÁCIÓS ANOMÁLIÁK REDIKCIÓJA, ANALITIKAI FOLYTATÁSOK MÓDSZERE, GRAVITÁCIÓS ANOMÁLIATEREK SZŰRÉSE A gravtácós aomálák predkcója Külöböző feladatok megoldása sorá - elsősorba
KTK. Dr. Herman Sándor Dr. Rédey Katalin. Statisztika I. PÉCSI TUDOMÁNYEGYETEM. Közgazdaságtudományi Kar. Alapítva: 1970
Dr. Herma Sádor Dr. Rédey Katal Statsztka I. PÉCSI TUDOMÁNYEGYETEM KTK Közgazdaságtudomáy Kar Alapítva: 97 Mde jog fetartva. Jele köyvet vagy aak részletet a szerző egedélye élkül bármlye formába vagy
Valószínűségszámítás. Ketskeméty László
Valószíűségszámítás Ketskeméty László Budapest, 996 Tartalomjegyzék I. fejezet VALÓSZÍNŰSÉGSZÁMÍTÁS 3. Kombatorka alapfogalmak 4 Elleőrző kérdések és gyakorló feladatok 6. A valószíűségszámítás alapfogalma
Valószínőségszámítás
Vlószíőségszáítás 6. elıdás... Kovrc Defícó. Az és ovrcáj: cov,:[--] Kszáítás: cov, [-- ]- A últ ór végé látott állítás értelée cov,, h és függetlee. Megj.: Aól, hogy cov, e övetez, hogy függetlee: legye
Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat:
JÁRATTERVEZÉS Kapcsolatok szert: Sugaras, gaárat: Járattípusok Voalárat: Körárat: Targocás árattervezés egyszerű modelle Feltételek: az ayagáram determsztkus, a beszállítás és kszállítás dőpot em kötött
Tulajdonságok. Teljes eseményrendszer. Valószínőségi változók függetlensége. Példák, szimulációk
Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 26 p 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 A bomáls és a hpergeom. elo. összehasolítása 0 1 2 3 4 5 6 7 8 9 10 k Hp.geom
Függvénygörbe alatti terület a határozott integrál
Függvéygörbe alatt terület a határozott tegrál Tektsük az üggvéyt a ; tervallumo. Adjuk becslést a görbe az tegely és az egyees között síkdom területére! Jelöljük ezt a területet I-vel! A becslést legegyszerűbbe
Arrhenius-paraméterek becslése közvetett és közvetlen mérések alapján
Tudomáyos Dákkör Dolgozat SZABÓ BOTOND Arrheus-paraméterek becslése közvetett és közvetle mérések alapá Turáy Tamás. Zsély Istvá Gyula Kéma Itézet Eötvös Lorád Tudomáyegyetem Természettudomáy Kar Budapest,
Ökonometria. /Elméleti jegyzet/
Ökoometra /Elmélet jegyzet/ Ökoometra /Elmélet jegyzet/ Szerző: Nagy Lajos Debrece Egyetem Gazdálkodástudomáy és Vdékfejlesztés Kar (1.,., 3., 4., 5., 6., és 9. fejezet) Balogh Péter Debrece Egyetem Gazdálkodástudomáy
Bevezetés a hipotézis vizsgálatba. Hipotézisvizsgálatok. Próbák leírása. Kétoldali és egyoldali hipotézisek. Illeszkedésvizsgálatok
Bevezetés a hpotézs vzsgálatba Lásd előadás ayagát. Kétoldal és egyoldal hpotézsek Hpotézsvzsgálatok Ebbe a ejezetbe egyajta határozókulcsot szereték ad a hpotézsvzsgálatba haszált próbákhoz. Először dötsük
4 TÁRSADALMI JELENSÉGEK TÉRBELI EGYÜTTMOZGÁSA
ELTE Regoáls Földrajz Taszék 005 4 TÁRSADALMI JELENSÉGEK TÉRBELI EGYÜTTMOZGÁSA 4. Általáos szempotok A terület folyamatok, a tagoltság vzsgálata szte sohasem szűkül le egy-egy jeleség (mutatószám) térbel
1. Írd fel hatványalakban a következõ szorzatokat!
Számok és mûveletek Hatváyozás aaaa a a darab téyezõ a a 0 0 a,ha a 0. Írd fel hatváyalakba a következõ szorzatokat! a) b),,,, c) (0,6) (0,6) d) () () () e) f) g) b b b b b b b b h) (y) (y) (y) (y) (y)
Bizonyítások. 1) a) Értelmezzük a valós számok halmazán az f függvényt az képlettel! (A k paraméter valós számot jelöl).
) a) Értelmezzük a valós számok halmazá az f függvéyt az f x = x + kx + 9x képlettel! (A k paraméter valós számot jelöl) ( ) Számítsa ki, hogy k mely értéke eseté lesz x = a függvéyek lokális szélsőértékhelye
Izsák János. ELTE TTK Állatrendszertani és Ökológiai Tanszék. Kézirat
BIOSTATISZTIKAI ALAPISMERETEK Izsák Jáos ELTE TTK Állatredszerta és Ökológa Taszék Kézrat Budapest, 5 Tartalomjegyzék Előszó 4. Valószíűség vektorváltozók 6.. Bevezetés 6.. A többváltozós, specálsa kétváltozós
Példák 2. Teljes eseményrendszer. Tulajdonságok. Példák diszkrét valószínőségi változókra
Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 28 dszkrét valószíőség változókra X(ω)=c mde ω-ra. Elevezés: elfajult eloszlás. P(X=c)=1. X akkor 1, ha egy adott,
Miért pont úgy kombinálja kétfokozatú legkisebb négyzetek módszere (2SLS) az instrumentumokat, ahogy?
Mért pot úgy kombálja kétfokozatú legksebb égyzetek módszere (2SLS az strumetumokat, ahogy? Kézrat A Huyad László 60. születésapjára készülő köyvbe Kézd Gábor 2004. júlus A Budapest Corvus Egyetem rövd
Regresszió. Fő cél: jóslás Történhet:
Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján
20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek!
SPEC 2009-2010. II. félév Statsztka II HÁZI dolgozat Név:... Neptun kód: 20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! 1. példa Egy üzemben tejport csomagolnak zacskókba,
Megoldás a, A sebességből és a hullámhosszból számított periódusidőket T a táblázat
Fzka feladatok: F.1. Cuam A cuam hullám formájáak változása, ahogy a sekélyebb víz felé mozog (OAA) (https://www.wdowsuverse.org/?page=/earth/tsuam1.html) Az ábra, táblázat a cuam egyes jellemzőt tartalmazza.
ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk,
A deceber -i gyakorlat téája A hipotézisvizsgálat fotos probléája a következő két kérdés vizsgálata. a) Egy véletle eyiség várható értékéek agyságáról va bízoyos feltevésük. Elleőrizi akarjuk e feltevés
Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1
Mérés adatok feldolgozása 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel
4 2 lapultsági együttható =
Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.
2.10. Az elegyek termodinamikája
Kéma termodamka.1. z elegyek termodamkája fzka kéma több féle elegyekkel foglakozk, kezdve az deáls elegyektől a reáls elegyekg. Ha az deáls elegyek esetébe az alkotók közt kölcsöhatásokat elhayagoljuk,
Matematika B4 I. gyakorlat
Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a
Diszkrét Matematika 1. óra Fokszámsorozatok
Dszkrét Matematka. óra 29.9.7. A köetkezı fogalmakat smertek tektük: gráf, egyszerő gráf, hurokél, párhuzamos élek, fa, ághatás operácó. Fokszámsorozatok Def.: G gráf fokszámsorozata fokaak reezett öekı
Valószínűségszámítás összefoglaló
Vlószíűségszámítás összefoglló I. Feezet ombtor ermutácó Ismétlés élül ülöböző elem lehetséges sorrede! b Ismétléses em feltétleül ülöböző elem összes ülöböző sorrede!... hol z zoos eleme gyorság!!...!
NEMPARAMÉTERES ELJÁRÁSOK
Kály Zoltá: Statsztka II. NEMPARAMÉTERES ELJÁRÁSOK Az eddgek soá találkoztuk má olya eláásokkal, melyek a változók középétékét vzsgálták: egymtás-, páos-, függetle mtás t-póba, egy- és többszempotos vaaca
Komplex regionális elemzés és fejlesztés tanév DE Népegészségügyi Iskola Egészségpolitika tervezés és finanszírozás MSc
Komplex regonáls elemzés és fejlesztés 2016-2017. tanév DE Népegészségügy Iskola Egészségpoltka tervezés és fnanszírozás MSc 2. előadás Terület elemzés módszerek az egészségföldrajzban Terület ellátás
SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo
SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő
VARIANCIAANALÍZIS (szóráselemzés, ANOVA)
VARIANCIAANAÍZIS (szóráselemzés, ANOVA) Varancaanalízs. Varancaanalízs (szóráselemzés, ANOVA) Adott: egy vagy több tetszőleges skálájú független változó és egy legalább ntervallum skálájú függő változó.
Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)
Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa
( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn
Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes
Statisztika segédlet*
Statsztka segédlet* Deícók: Statsztka: Valóság tömör számszerő jellemzésére szolgáló módszerta ll. gyakorlat teékeység. Statsztka gyakorlat ter: Tömegese elıorduló jeleségek egyedere oatkozó ormácók győjtése,
Korrelációs kapcsolatok elemzése
Korrelációs kapcsolatok elemzése 1. előadás Kvantitatív statisztikai módszerek Két változó közötti kapcsolat Független: Az X ismérv szerinti hovatartozás ismerete nem ad semmilyen többletinformációt az
Sorozatok, határérték fogalma. Függvények határértéke, folytonossága
Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt
Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás.
Statsztka próbák Paraméteres. A populácó paraméteret becsüljük, ezekkel számolunk.. Az alapsokaság eloszlására van kkötés. Nem paraméteres Nncs lyen becslés Nncs kkötés Ugyanazon problémára sokszor megvan
Tuzson Zoltán A Sturm-módszer és alkalmazása
Tuzso Zoltá A turm-módszer és alalmazása zámtala szélsérté probléma megoldása, vag egeltleség bzoítása ago gara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölder-féle egeltleség, derválta
A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata
6. év OTKA zárójeletés: Vezető kutató:kalszky Sádor OTKA ylvátartás szám T 4993 A pályázat címe: Rugalmas-képlékey tartószerkezetek topológa optmalzálásáak éháy külöleges feladata (Részletes jeletés) Az
1. Gyökvonás komplex számból
1. Gyökvoás komplex számból Gyökvoás komplex számból. Ismétlés: Ha r, s > 0 valós, akkor rcos α + i siα) = scos β + i siβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete scos β+i
3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló
. Számelmélet I. Feladatok 1. Háy égyzetszám osztója va a 7 5 5 7 számak?. Az pozitív egész számak potosa két pozitív osztója va, az + 1-ek pedig potosa három. Háy pozitív osztója va az + 01 számak? OKTV
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 10. A statisztika alapjai Debrecei Egyetem, 2015 Dr. Bérczes Attila, Bertók Csaád A diasor tartalma 1 Bevezetés 2 Statisztikai függvéyek Defiíció, empirikus várható érték Empirikus
Matematikai statisztika
Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika
Statisztika 1. zárthelyi dolgozat március 21.
Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy
A heteroszkedaszticitásról egyszerûbben
Mûhely Huyad László kaddátus, egyetem taár, a Statsztka Szemle főszerkesztője A heteroszkedasztctásról egyszerûbbe E-mal: laszlo.huyad@ksh.hu A heteroszkedasztctás az ökoometra modellezés egyk kulcsfogalma,
Kutatói pályára felkészítı modul
Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI
7. MÉRÉSEK KIÉRTÉKELÉSE FÜGGVÉNYILLESZTÉSSEL
7. MÉRÉSEK KIÉRTÉKELÉSE FÜGGVÉNYILLESZTÉSSEL Ebbe a fejezetbe kokrét mérések kértékelését mutatjuk be, köztük azokét s, amelyeket az. fejezetbe leírtuk. A kértékelés módszerét tulajdoképpe levezethetjük
Tanult nem paraméteres próbák, és hogy milyen probléma megoldására szolgálnak.
8. GYAKORLAT STATISZTIKAI PRÓBÁK ISMÉTLÉS: Tanult nem paraméteres próbák, és hogy mlyen probléma megoldására szolgálnak. Név Illeszkedésvzsgálat Χ próbával Illeszkedésvzsgálat grafkus úton Gauss papírral
I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.
I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.
A Sturm-módszer és alkalmazása
A turm-módszer és alalmazása Tuzso Zoltá, zéelyudvarhely zámtala szélsőérté probléma megoldása, vagy egyelőtleség bzoyítása agyo gyara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölderféle
STATISZTIKA II. kötet
Szeged Tudomáyegyetem Gazdaságtudomáy Kar Petres Tbor Tóth László STATISZTIKA II. kötet Szerzők: Dr. Petres Tbor, PhD egyetem doces Statsztka és Demográfa Taszék Tóth László PhD-hallgató Gazdaságtudomáy
Wilcoxon-féle előjel-próba. A rangok. Ismert eloszlás. A nullhipotézis megfogalmazása H 1 : m 0 0. A medián 0! Az eltérés csak véletlen!
0.0.4. Wlcoxo-féle előel-próba ragok Példa: Va-e hatáa egy zórakoztató flm megtektééek, a páceek együttműködé halamára? ( zámok potértékek) orzám előtte utáa külöbég 0 0 3 3-4 4 5 3 6 3 3 0 7 4 3 8 5 4
Statisztikai hipotézisvizsgálatok
Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy
2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1
Mérés adatok feldolgozása 202.03.0. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel
Sorozatok A.: Sorozatok általában
200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,
A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege
A multkrtérumos elemzés célja, alkalmazás területe, adat-transzformácós eljárások, az osztályozás eljárások lényege Cél: tervváltozatok, objektumok értékelése (helyzetértékelés), döntéshozatal segítése
MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)
O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei
Kalkulus II., második házi feladat
Uger Tamás Istvá FTDYJ Név: Uger Tamás Istvá Neptu: FTDYJ Web: http://maxwellszehu/~ugert Kalkulus II, második házi feladat pot) Koverges? Abszolút koverges? ) l A feladat teljese yilvávalóa arra kívácsi,
1. előadás: Bevezetés. Irodalom. Számonkérés. A valószínűségszámítás és a statisztika tárgya. Cél
Valószíűségszámítás és statsztka előadás fo. BSC/B-C szakosokak 1. előadás szeptember 13. 1. előadás: Bevezetés Irodalom, követelméyek A félév célja Valószíűségszámítás tárgya Törtéet Alapfogalmak Valószíűségek
STATISZTIKAI MÓDSZEREK
HAJTMAN BÉLA STATISZTIKAI MÓDSZEREK Egetem egzet Pázmá Péter Katolkus Egetem, Bölcsészettudomá Kar Plscsaba, 0. Bevezetés Az első félévbe (Bostatsztka) a statsztka alapat smertük meg. Természetese ez