Statisztika segédlet*
|
|
- Hanna Veres
- 6 évvel ezelőtt
- Látták:
Átírás
1 Statsztka segédlet* Deícók: Statsztka: Valóság tömör számszerő jellemzésére szolgáló módszerta ll. gyakorlat teékeység. Statsztka gyakorlat ter: Tömegese elıorduló jeleségek egyedere oatkozó ormácók győjtése, eldolgozása, elemzése. A zsgált jeleség egészéek tömör számszerő jellemzése. eíró statsztka: a győjtött adatok alajá statsztka köetkeztetéseket ouk le. éése: - Adat győjtés - Adatok ábrázolása - Mőeletek égrehajtása Statsztka sokaság redszerezése: táblázatosa, grakusa Statsztka sokaság: - A sokaságot alkotó elemeket egyedekek s eezk, melyek bármlye számmal jellemezhetı tárgy, személy, stb. lehet. Álló sokaság: Kostas adatok csak egy bzoyos dıllaatba értelmezhetıek: Mozgó sokaság: A kostas adatokat egy dıterallumo lehet értelmez. Dszkrét sokaság: Egyértelmőe elkülöíthetı egyedő Folytoos sokaság: Az egyedek egymástól em szétálaszthatóak Véges sokaság: Mde egyes egyed csak egyszer kerül megszámolásra Végtele sokaság: Az egyedek smétlıdhetek Statsztka smér: - Statsztka sokaság egyedet jellemzı tulajdoság, lehetséges kmeetelek, az smér áltozatok. Tíusa: alteratí (agy-agy kacsolat), dıbel, gyakorság, meység Szám adatok: Mérések eredméye, agy becsült eredméye. Mérés [ mérés em mérés, sör em sör ]: Számok meghatározott szabályok szert hozzáredelése a jeleségekhez ll ezekhez a tulajdoságokhoz. Mérés tíusa és redszerezése: éleges adatrögzítés, sorred skála (közös tulajdoság alajá), terallum skála, aráy skála. A statsztka adat, alamely statsztka sokaság elemeek száma, agy a sokaság alamlye számszerő jellemzıje. Származtatott adatokak eezzük azokat az értékeket, amelyeket a sokaságból köetkeztettük. Statsztka mutatószám: Azok a statsztka adatok, amelyekkel alamely redszerese megsmétlıdı jeleséget jellemezzük. Adatelétel lehet, rerezetatí, moográ. Mérés hbák: Mde mérés hbáal terhelt, melyek értékét egy elogadható sztre leet csökkete. Hba meghatározásáak módja: - Abszolút hbák: a A A', ahol A alós, A a mért érték. Deál lehet a hba korlátot a -két, így a mérés megegedett hba tartomáya [A -a ; A +a ] Relatí hba: α a ; A α ˆ a' A'
2 Vszoyszám: Két egymással logka kacsolatba álló szám háyadosa. Tíusa: Megoszlás (%-os aráy); koordácós ( érra háy ı jut); damkus (két dıszak háyadosa); teztás (motorzácós ok) eggyakrabba származtatott értékek: Átlagok: Számta átlag: Súlyozott számta átlag: Harmokus átlag: Mérta átlag: égyzetes átlag: Közees eltérés: X d Meység sorok: gyakorság sor lehet az abszolút () relatí (r) értékek; értékösszeg sor lehet abszolút (z) agy relatí (zr). Ezekek kumulált értékeket s értelmezhetjük ( - jelöljük) Egy adathalmaz legotosabb leíró statsztka elemzése:. Átlag (lásd et). Szórás ( ) σ (amely az értékek szóródását jellemz) 3. Relatí szórás σ (azt mutatja meg, hogy az átlag meyre jellemz az adatsort. Ha étéke %-ál ksebb, akkor az átlag jól jellemz a sokaágot) 4. Módusz Mo a Mo + bszmo (r A leggyakorbb érték Mo r r Mo Mo r Mo ) + (r Mo r Mo+ )
3 4+. Módusz grakus megoldása 6. Medá A sokaság ele (az a ot, am elett és alatt ugyaay érték a) 5 rme Me a Me + bszme rme 7. Kartls és decmáls zsgálat Q 5%; Q 5%; Q 3 75% D %; D 9% Q m a m% + b 8. Asszmetra SZmo Me Mo baloldal m% r r Me Mo jobboldal mo mo 9. earso-éle asszmetra mutató Mo A σ ha A Sszmmetrkus ha A > baloldal ha A < jobboldal. csúcsosság mutató Q3 Q k (D9 D) ha k <,63 akkor csúcsos ha k >,63 akkor lault. Kacsolat zsgálat módszerek Akkor a szükség rá, ha agy több dmezóba zsgáljuk az adatsort. Az adat sor lehet egymástól üggetle, sztochasztkusa összeüggı, asszocácós, egyes, ok-okozat agy kölcsöös kacsolatú.
4 Yule-éle együttható (alteratí kacsolat) a + ha -,3: gyege kacsolat ha,3-,7: közeese erıs kacsolat ha,7-:erıs kacsolat, ahol a értéke <a< Serma-éle ragkorrelácó ρ 6 3 d, ahol -< ρ < elıjel korrelácó r e U V U + V U V Függetleség zsgálat (Kh róba) ha s t j krt j > ( Összeüggés zsgálat Cramer módszer j j*), ahol * j j *, akkor üggetle. Hogy mey krt azt em tudom. C (S ) C (t ) <C< Csuro-éle módszer T <T< S t
5 . ZH Regresszó otok learzálása, egy egyeessel/görbéel aló helyettesítése Ŷ β + β Megoldása, a legksebb égyzetek módszeréel. (Y Ŷ ) (Y βˆ M βˆ ) Eoecáls regresszó Y β β ogy logβ + logβ M * * * Y β + β élda: (lásd gyak ayag ) Vszoyszámok A V B Érték de V V Árde Volumede Aggregált értékde
6 aseyres-éle olumede: w ahol w aasche-éle olumede: Fsher-éle olumede: F aseyres-éle árde: w aasche-éle árde: Fsher-éle árde: F deek között összeüggések: F F Mtaételezés: A mtaételezés sorá bztosa hbázuk alamekkora mértékbe. Ez lehet a Mtaételezés módjáak hbája matt, agy a sokasából adódó hba (em mtaételezés hba). Mtaételezés módja:, sszatéréses egyszerő: egymástól üggetle áltozók, egyelı alószíőséggel., sszatérés élkül 3, rétegzett: A sokaság mde tagját zsgáljuk 4, csoortos: a sokaság egy csoortját zsgáljuk csak 5, többletelemzés: a, életle b, em életle (szsztematkus, kóta szert, kocetrált, ökéyes)
7 Gauss eloszlás: ( m) σ () e (általáos jármőgéta tudásukat eleeítsük el, a mely sgma σ π értékhez mekkora alószíőség tartozk.) terallumbecslés: s M ( ) ± ± t élda megoldás sorá elıször a sokaság átlagát majd a taasztalat szórást kell kszámol, d s kélettel, t adott agy otosság alajá meghatározható (t a sgmák száma, l.: 9% t,64 ) Ameybe szükséges a szórást korrgált szórással számoljuk, am a -el aló szorzást jelet. Ez akkor szükséges, ha >, ( a zsgált meység, a sokaság agysága) Ameybe alteratí smérek aak, haszálhatjuk a s összeüggést s. A eladatégé adjuk meg az terallumot[ ; ] alakba és szöegese álaszoljuk. osso eloszlás eseté Hotézs zsgálat: s alakba adható meg a szórás. Ez agy több sokaságra oatkozó állítást, eletést, hotézsek eezzük. A hotézs oatkozhat sokaság eloszlásra, agy a szóba orgó eloszlás araméterezése s. ull hotézs: (H ) alaelteés Alteratí hotézs: (H ) A hotézsek kölcsööse kegészítk egymást, csak egyet ogadhatuk el. H : µ m H : µ (kétoldal róba) m z róbaüggéy: m z σ a zsgálat lehet kétoldal, agy egy oldal (jobb agy bal; H : µ m H : µ > m ;H : µ < m ). Kétoldal eseté az α szgkaca szt kettéoszlk, egyoldal eseté csak az egyk oldalo a értelmeze, és az alajá kell a otosságot meghatároz, és az értelmezés terallumot megbecsül.
8 Hbák a hotézs zsgálat sorá: H Elogadás Elutasítás gaz Helyes dötés -α Elsıajú hba α Hams Másodajú hba β Helyes dötés -β Α és β csak egymás kárára csökkethetı. Megbízhatóság szttel agy a mtaszám öeléséel lehet jaíta. Másodajú hba elköetése a súlyosabb, mert olyakor tées elteést ogaduk el. éldamegoldás meete: Szgkaca szt, mtaétel agysága adott, elteszük egy ull hotézst, és az alteratí hotézst. Határozzuk meg z róbaüggéyt, amely ha bee a a megadott szgkaca szthez tartozó terallumba, akkor a elteésük helyes. Abba az esetbe, ha em smerjük a szórást, akkor t róbaüggéyt haszáljuk, ambe S-sel, a sokaság szórásáal számoluk. dısorok, mozgóátlagok: Determsztkus dısorok:, terd/tedeca (öekı, csökkeı), cklkusság (szezoáls) 3, egyéb/életle Abszolút áltozás: d t Yt Yt ; d t d Yt Tartam dısor: Y Állaot dısor: adott dıszakba oatkozó ytó llete záró érték. Több dıot átlagát, a köetkezı összeüggéssel határozhatjuk meg: Y Y + Y + Fejlıdés átlagos üteme (lác szoyszámok mérta átlaga): l l l3 l l Π Y Ey. Ez a és 9..6-e között Varga Róbert által leadott elıadások, és gyakorlatok ayagát tartalmazza. A szerzı em kíát semmlye szerzı jogokat megsérte mde jogot etartuk. Csak saját elelısségre. Az esetleges elgéelésekért, elírásokért a kadó elelısséget em állal. *csak azokak segédlet, akk bejártak elıadásra/gyakra, és értk mrıl a szó
Statisztika I. 4. előadás. Előadó: Dr. Ertsey Imre
Statsztka I. 4. előadás Előadó: Dr. Ertsey Imre KÖZÉPÉRTÉKEK A statsztka sor általáos jellemzésére szolgálak, a statsztka sokaságot egy számmal jellemzk. Számított középértékek: matematka számítás eredméyekét
ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet
? közgazdasági statisztika
Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem
Statisztika. Eloszlásjellemzők
Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az
A sokaság/minta eloszlásának jellemzése
3. előadás A sokaság/mnta eloszlásának jellemzése tpkus értékek meghatározása; az adatok különbözőségének vzsgálata, a sokaság/mnta eloszlásgörbéjének elemzése. Eloszlásjellemzők Középértékek helyzet (Me,
Matematikai statisztika
Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),
? közgazdasági statisztika
... Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB
Sorozatok, határérték fogalma. Függvények határértéke, folytonossága
Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt
Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)
Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I. 5-6. o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls)
STATISZTIKA. ltozók. szintjei, tartozhatnak: 2. Előad. Intervallum skála. Az adatok mérési m. Az alacsony mérési m. Megszáml Gyakoriság módusz
A változv ltozók k mérés m sztje STATISZTIKA. Előad adás Az adatok mérés m sztje, Cetráls mutatók A változv ltozók k az alább típusba t tartozhatak: Nomáls (kategorkus és s dszkrét) Ordáls Itervallum skála
Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat
Megállapítható változók elemzése Függetleségvzsgálat, lleszkedésvzsgálat, homogetásvzsgálat Ordáls, omáls esetre s alkalmazhatóak a következő χ próbá alapuló vzsgálatok: 1) Függetleségvzsgálat: két valószíűség
BIOSTATISZTIKA ÉS INFORMATIKA. Leíró statisztika
BIOSTATISZTIKA ÉS INFORMATIKA Leíró statisztika Első közelítésbe a statisztikai tevékeységeket égy csoportba sorolhatjuk, de ezek között ics éles határ:. adatgyűjtés, 2. az adatok áttekithetővé tétele,
Matematikai statisztika elıadás III. éves elemzı szakosoknak. Zempléni András 9. elıadásból (részlet)
Matematka statsztka elıadás III. éves elemzı szakosokak Zemplé Adrás 9. elıadásból részlet Y közelítése függvéyével Gyakor eset, hogy em smerjük a számukra érdekes meység Y potos értékét pl. holap részvéy-árfolyam,
Változók függőségi viszonyainak vizsgálata
Változók függőség vszoyaak vzsgálata Ismétlés: változók, mérés skálák típusa kategoráls változók Asszocácós kapcsolat számszerű változók Korrelácós kapcsolat testsúly (kg) szemüveges em ő 1 3 férf 5 3
AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN
AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN Molár László Ph.D. hallgató Mskolc Egyetem, Gazdaságelmélet Itézet 1. A MINTANAGYSÁG MEGHATÁROZÁSA EGYSZERŐ VÉLETLEN (EV) MINTA
Feladatok és megoldások a 11. heti gyakorlathoz
Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.
Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)
Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa
20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek!
SPEC 2009-2010. II. félév Statsztka II HÁZI dolgozat Név:... Neptun kód: 20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! 1. példa Egy üzemben tejport csomagolnak zacskókba,
A MATEMATIKAI STATISZTIKA ELEMEI
A MATEMATIKAI STATISZTIKA ELEMEI Az Eötvös Lórád Tudomáyegyetem Természettudomáy Kará a Fzka Kéma Taszék évek óta kéma-szakos taárhallgatókak matematka bevezetõ elõadásokat tart. Az elõadások célja az,
ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június
ÖKONOMETIA Készült a TÁMOP-4.1.-08//A/KM-009-0041pályázat projet eretébe Tartalomfejlesztés az ELTE TáTK Közgazdaságtudomáy Taszéé az ELTE Közgazdaságtudomáy Taszé az MTA Közgazdaságtudomáy Itézet és a
Kutatói pályára felkészítı modul
Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI
Matematikai statisztika
Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika
Hipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer?
01.09.18. Hpotézs vzsgálatok Egy példa Kérdések (példa) Hogyan adhatunk választ? Kérdés: Hatásos a lázcsllapító gyógyszer? Hatásos-e a gyógyszer?? rodalomból kísérletekből Hpotézsek A megfgyelt változó
Statisztikai Statisztika I. elemzések viszonyszámokkal viszony 1. Láncból bázis Mennyiségi ismérv szerinti elemzés 1.
Statzta. ÉPLETE --e taé. élé Statzta elemzée zozámoal Vzozámo Damu zozámo V ahol : a zoítá tárga (zoítadó adat) : a zoítá alaa ázzozám: Láczozám: Vdb b Vdl l t b Damu zozámo Vzozámo özött özeüggée:. Lácból
4 2 lapultsági együttható =
Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.
Függetlenségvizsgálat, Illeszkedésvizsgálat
Varga Beatrix, Horváthné Csolák Erika Függetlenségvizsgálat, Illeszkedésvizsgálat 4. előadás Üzleti statisztika A sokaság/minta több ismérv szerinti vizsgálata A statisztikai elemzés egyik ontos eladata
s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés
A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,
Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés
Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció
Tapasztalati eloszlás. Kumulált gyakorisági sorok. Példa. Értékösszegsor. Grafikus ábrázolás
Matemata statszta elıadás III. éves elemzı szaosoa 009/00. élév. elıadás Tapasztalat eloszlás Mde meggyeléshez (,,, ) / súlyt redel. Valószíőségeloszlás! Mtaátlag éppe ee az eloszlása a várható értée.
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Statisztika
Statisztika A statisztika adatok gyűjtésével, redszerezésével, illetve adatsorok elemzésével, szemléltetésével foglalkozik. Adatok redszerezése DEFINÍCIÓ: (Populáció) Populációak (statisztikai sokaságak)
Példák 2. Teljes eseményrendszer. Tulajdonságok. Példák diszkrét valószínőségi változókra
Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 28 dszkrét valószíőség változókra X(ω)=c mde ω-ra. Elevezés: elfajult eloszlás. P(X=c)=1. X akkor 1, ha egy adott,
1. előadás: Bevezetés. Irodalom. Számonkérés. A valószínűségszámítás és a statisztika tárgya. Cél
Valószíűségszámítás és statsztka előadás fo. BSC/B-C szakosokak 1. előadás szeptember 13. 1. előadás: Bevezetés Irodalom, követelméyek A félév célja Valószíűségszámítás tárgya Törtéet Alapfogalmak Valószíűségek
Tulajdonságok. Teljes eseményrendszer. Valószínőségi változók függetlensége. Példák, szimulációk
Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 26 p 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 A bomáls és a hpergeom. elo. összehasolítása 0 1 2 3 4 5 6 7 8 9 10 k Hp.geom
Statisztikai. Statisztika Sportszervező BSc képzés NBG GI866G4. Statisztika fogalma. Statisztikai alapfogalmak. Statisztika fogalma
Statsztka Sportszervező BSc képzés NBG GI866G4 010-011-es taév II félév Statsztka alapfogalmak Oktató: Dr Csáfor Hajalka főskola doces Vállalkozás-gazdaságta Tsz E-mal: hcsafor@ektfhu Statsztka alapfogalmak
Intelligens adatelemzés ea. vázlat 1. rész
Itellges adatelemzés ea. vázlat. rész A tematka.ea. a tárgy tematkájáak áttektése. Egy mtaélda M-S adatok elemzése (A)..ea. HF-ok jellegéek megbeszélése, a HF témák választásához szemotok 3.ea. Statsztka
Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Korreláció-számítás. 1. előadás. Döntéselőkészítés módszertana. Dr.
Korrelácó-számítás 1. előadás Döntéselőkészítés módszertana Dr. Varga Beatr Két változó között kapcsolat Függetlenség: Az X smérv szernt hovatartozás smerete nem ad semmlen többletnformácót az Y szernt
Kalkulus II., második házi feladat
Uger Tamás Istvá FTDYJ Név: Uger Tamás Istvá Neptu: FTDYJ Web: http://maxwellszehu/~ugert Kalkulus II, második házi feladat pot) Koverges? Abszolút koverges? ) l A feladat teljese yilvávalóa arra kívácsi,
Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI
Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció
STATISZTIKA I. Mekkora? Viszonyszá m = Viszonyszám. sa: 1. Két t statisztikai adat arány. egyik főf. csoportját t alkotják,
Mekkora? STATISZTIKA I. 3. Előad adás, Vszoyszámok Előad adó: Dr. Huzsva LászlL szló egyetem doces Vszoyszámok. Két t statsztka adat aráy yát kfejező számok, 2. Az ú. leszármaztatott számok egyk főf csoportját
I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.
I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.
Statisztika II. előadás és gyakorlat 2. rész
előadás és gyakorlat. rész T.Nagy Judt Ajálott rodalom: Ilyésé Molár Emese Lovasé Avató Judt: Feladatgyűjteméy, Perekt, 006. Korpás Attláé (szerk.): Általáos, Nemzet Taköyvkadó, 1997. Molár Mátéé Tóth
Ha n darab standard normális eloszlású változót négyzetesen összegzünk, akkor kapjuk a χ 2 - eloszlást: N
Krály Zoltá: Statsztka II. Bevezetés A paraméteres eljárások alkalmazásához, a célváltozóra ézve szgorú feltételek szükségesek (folytoosság, ormaltás, szóráshomogetás), ekkor a hpotézseket egy-egy paraméterre
Közúti közlekedésüzemvitel-ellátó. Tájékoztató
12/2013. (III. 29.) NFM rendelet szakma és vzsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 841 02 Közút közlekedésüzemvtel-ellátó Tájékoztató A vzsgázó az első lapra írja fel
ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test
Gyakorló feladatok a Kísérletek tervezése és értékelése c. tárgyból Lineáris regresszió, ismétlés nélküli mérések
Gakorló feladatok a Kísérletek tervezése és értékelése c. tárgból Lneárs regresszó, smétlés nélkül mérések 1. példa Az alább táblázat eg kalbrácós egenes felvételekor mért adatokat tartalmazza: x 1.8 3
Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
Labormérések minimumkérdései a B.Sc képzésben
Labormérések mmumkérdése a B.Sc képzésbe 1. Ismertesse a levegő sűrűség meghatározásáak módját a légyomás és a levegő hőmérséklet alapjá! Adja meg a képletbe szereplő meységek jeletését és mértékegységét!
Anyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Mérési adatok feldolgozása Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Statisztika 1/ 22 Mérési eredmények felhasználása Tulajdonságok hierarchikus
Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától
Sztochasztkus tartalékolás és a tartalék függése a kfutás háromszög dőperódusától Faluköz Tamás Vtéz Ildkó Ibola Kozules: r. Arató Mklós ELTETTK Budapest IBNR kfutás háromszög IBNR: curred but ot reported
A paramétereket kísérletileg meghatározott yi értékekre támaszkodva becsülik. Ha n darab kisérletet (megfigyelést, mérést) végeznek, n darab
öbbváltozós regresszók Paraméterbecslés-. A paraméterbecslés.. A probléma megfogalmazása A paramétereket kísérletleg meghatározott y értékekre támaszkodva becsülk. Ha darab ksérletet (megfgyelést, mérést
Statisztikai adatok elemzése
Statszta adato elemzése Gazdaságstatszta A soaság jellemzése özépértéeel Eloszlásjellemző A soaság jellemzésée szempotja A soaság jellemzésée szempotja: A soaság tpus értéée meghatározása. Az adato ülöbözőségée
Regresszió. Fő cél: jóslás Történhet:
Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján
Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás.
Statsztka próbák Paraméteres. A populácó paraméteret becsüljük, ezekkel számolunk.. Az alapsokaság eloszlására van kkötés. Nem paraméteres Nncs lyen becslés Nncs kkötés Ugyanazon problémára sokszor megvan
ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június
ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.-08//A/KMR-009-0041pályázat projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudomány Tanszékén az ELTE Közgazdaságtudomány Tanszék, az MTA Közgazdaságtudomány
Matematika B4 I. gyakorlat
Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a
Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék
Adatfeldolgozás, adatértékelés Dr. Szűcs Péter, Dr. Madarász Tamás Mskolc Egyetem, Hdrogeológa Mérökgeológa Taszék A vzsgált köryezet elemek, lletve a felszí alatt közeg megsmerése céljából számtala külöböző
A peremeloszlások. Valószínőségszámítás elıadás III. alk. matematikus szak. Példa. Valószínőségi vektorváltozók eloszlásfüggvénye.
y Valószíőségszámítás elıaás III. alk. matematkus szak 4. elıaás, szeptember 30 A peremeloszlások (X,Y) eloszlásából (elevezés: együttes eloszlás) következtethetük az egyes változók eloszlására: P(X)P(X,Y0)+P(X,Y)+P(X,Y2)
Példa: Egy üzletlánc boltjainak forgalmára vonatkozó adatok 1999. október hó: (adott a vastagon szedett!) S i g i z i g i z i
. konzult. LEV. 013. ápr. 5. MENNYISÉGI ISMÉRV szernt ELEMZÉS Tk. 3-8., 88-90. oldal, kmarad: 70., 74. oldal A mennység smérv (X) lehet: dszkrét és folytonos. A rangsor a mennység smérv értékenek monoton
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
Populáció nagyságának felmérése, becslése
http:/zeus.yf.hu/~szept/kuzusok.htm Populáció agyságáak felméése, becslése Becsült paaméteek: N- az adott populáció teljes agysága (egyed, pá, stb) D- dezitás (sűűség), egységyi felülete/téfogata számított
biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat
Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke
2. METROLÓGIA ÉS HIBASZÁMíTÁS
. METROLÓGIA ÉS HIBASZÁMíTÁS. Metrológa alapfogalmak A metrológa a mérések tudomáya, a mérésekkel kapcsolatos smereteket fogja össze. Méréssel egy objektum valamlye tulajdoságáról számszerű értéket kapuk.
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
Dr. Tóth Zsuzsanna Eszter Dr. Jónás Tamás Erdei János. Gazdaságstatisztika. II. rész A matematikai statisztika alapjai
Budapest Műszak és Gazdaságtudomáy Egyetem Gazdaság- és Társadalomtudomáy Kar Üzlet Tudomáyok Itézet Meedzsmet és Vállalatgazdaságta Taszék Dr. Tóth Zsuzsaa Eszter Dr. Jóás Tamás Erde Jáos Gazdaságstatsztka
A sokaság elemei közül a leggyakrabban előforduló érték. diszkrét folytonos
Középérték Középérték A középérték a statisztikai adatok tömör számszerű jellemzése. helyzeti középérték: módusz medián számított középérték: számtani átlag kronológikus átlag harmonikus átlag mértani
Adatsorok jellegadó értékei
Adatsorok jellegadó értéke Varga Ágnes egyetem tanársegéd varga.ag14@gmal.com Terület és térnformatka kvanttatív elemzés módszerek BCE Geo Intézet Terület elemzés forgatókönyve vacsora hasonlat Terület
Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Regresszió-számítás. 2. előadás. Kvantitatív statisztikai módszerek. Dr.
Gazdaságtudomán Kar Gazdaságelmélet és Módszertan Intézet Regresszó-számítás. előadás Kvanttatív statsztka módszerek Dr. Varga Beatr Gazdaságtudomán Kar Gazdaságelmélet és Módszertan Intézet Korrelácós
MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE
MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE Molár László egyetem taársegéd 1. BEVEZETÉS A statsztkusok a mtaagyság meghatározására számos módszert dolgoztak
STATISZTIKA II. kötet
Szeged Tudomáyegyetem Gazdaságtudomáy Kar Petres Tbor Tóth László STATISZTIKA II. kötet Szerzők: Dr. Petres Tbor, PhD egyetem doces Statsztka és Demográfa Taszék Tóth László PhD-hallgató Gazdaságtudomáy
) ( s 2 2. ^t = (n x 1)s n (s x+s y ) x +(n y 1)s y n x+n y. +n y 2 n x. n y df = n x + n y 2. n x. s x. + s 2. df = d kritikus.
Kétmtás t-próba ^t ȳ ( s +( s + + df + vag ha, aor ^t ȳ (s +s Welch-próba ^d ȳ s + s ( s + s df ( s ( s + d rtus t s (α, +t s (α, s + s Kofdecatervallum ét mta átlagáa ülöbségére SE s ( + s ( ±t (α,df
Információs rendszerek elméleti alapjai. Információelmélet
Iformácós redszerek elmélet alaja Iformácóelmélet A forrás kódolása csatora jelekké 6.4.5. Molár Bált Beczúr Adrás NMMMNNMNfffyyxxfNNNNxxMNN verzazazthatóvsszaálímdeveszteségcsaakkorfüggvéykódolásaakódsorozat:eredméyekódolássorozatváltozó:forás
EGY FÁZISÚ TÖBBKOMPONENS RENDSZEREK: BEVEZETÉS
EGY FÁZIÚ ÖBBOMPONEN RENDZERE: BEEZEÉ ERMODINMII ÁLOZÓ Eg: egy komoes egy fázs (olt egy komoes több fázs s Általáos eset: több komoes több fázs öztes eset: több komoes egy fázs Ezek az elegyek szta fázs
specific (assignable) cause: azonosítható, tettenérhető (veszélyes) hiba megváltozott a folyamat
ELLENŐRZŐ KÁRTYÁK méréses mősítéses commo cause: véletle gadozás secfc (assgable) cause: azoosítható, tetteérhető (veszélyes) hba megváltozott a folyamat Mősítéses elleőrző kártyák 41 Mősítéses elleőrző
A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai
05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:
BEVEZETÉS AZ SPSS ALAPJAIBA. (Belső használatra)
BEVEZETÉS AZ SPSS ALAPJAIBA (Belső haszálatra) TARTALOMJEGYZÉK. Statsztka alapfogalmak..... Sokaság...4.2. Ismérvek és mérés skálák...6.3. Statsztka sorok...7 2. SPSS alapfogalmak...9 3. Alapvető statsztka
Továbblépés. Általános, lineáris modell. Példák. Jellemzık. Matematikai statisztika 12. elıadás,
Matematikai statisztika. elıadás, 9.5.. Továbblépés Ha nem fogadható el a reziduálisok korrelálatlansága: Lehetnek fel nem tárt periódusok De más kapcsolat is fennmaradhat az egymáshoz közeli megfigyelések
Ökonometria. /Elméleti jegyzet/
Ökoometra /Elmélet jegyzet/ Ökoometra /Elmélet jegyzet/ Szerző: Nagy Lajos Debrece Egyetem Gazdálkodástudomáy és Vdékfejlesztés Kar (1.,., 3., 4., 5., 6., és 9. fejezet) Balogh Péter Debrece Egyetem Gazdálkodástudomáy
A matematikai statisztika elemei
A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................
Méréstani összefoglaló
PÉCSI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR FIZIKAI INTÉZET Méréstai összefoglaló (köryezettudomáyi szakos hallgatók laboratóriumi mérési gyakorlataihoz) Összeállította: Dr. Német Béla Pécs 2008 1 Bevezetés
Korreláció- és regressziószámítás
Korrelácó- és regresszószámítás sztochasztkus kapcsolat léyege az, hogy a megfgyelt sokaság egységeek egyk smérv szert mlyeségét, hovatartozását smerve levoható ugya bzoyos következtetés az egységek másk
Reakciómechanizmusok leírása. Paraméterek. Reakciókinetikai bizonytalanságanalízis. Bizonytalanságanalízis
Megbízható kémiai modellek kifejlesztése sok mérési adat egyidejő feldolgozása alajá uráyi amás www.turayi.eu ELE Kémiai Itézet Reakciókietikai Laboratórium Eddig dolgoztak eze a témá: (témavezetık: uráyi
Regresszió és korreláció
Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 01.11.1 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés
Statisztikai hipotézisvizsgálatok
Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy
LOGO. Kvantum-tömörítés. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar
LOGO Kvatum-tömörítés Gyögyösi László BME Villamosméröki és Iformatikai Kar Iformációelméleti alaok összefoglalása A kódolási eljárás Az iformáció átadás hűsége és gazdaságossága a kódolástól függ Az iformáció
Statisztika Elıadások letölthetık a címrıl
Statisztika Elıadások letölthetık a http://www.cs.elte.hu/~arato/stat*.pdf címrıl Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább 1-α valószínőséggel
6. Minısítéses ellenırzı kártyák
6. Miısítéses elleırzı kártyák Sokszor elıfordul, hogy a termék-egyedek miıségét em tudjuk mérhetı meyiségekkel jellemezi, csak megfelelı/em megfelelı kategóriákba sorolhatjuk ıket, és a hibás darabokat,
Kényszereknek alávetett rendszerek
Kéyszerekek alávetett redszerek A koordátákak és sebességekek előírt egyeleteket kell kelégítee a mozgás olyamá. (Ezeket a eltételeket, egyeleteket s ayag kölcsöhatások bztosítják, de ezek a kölcsöhatások
24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje.
24. tétel valószíűségszámítás elemei. valószíűség kiszámításáak kombiatorikus modellje. GYORISÁG ÉS VLÓSZÍŰSÉG meyibe az egyes adatok a sokaságo belüli részaráyát adjuk meg (törtbe vagy százalékba), akkor
Horváth Alice. Éles valószínűségi korlátok műszaki és aktuáriusi alkalmazásokkal
Horáth Alce Éles alószíűség korlátok műszak és aktuárus alkalmazásokkal doktor értekezés témaezető: Bakó Adrás DSc egyetem taár Széchey Istá Egyetem Ifrastrukturáls Redszerek Modellezése és Fejlesztése
Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága
Azoos évleges értékű, htelesített súlyokból alkotott csoportok együttes mérés bzoytalasága Zeleka Zoltá* Több mérés feladatál alkalmazak súlyokat. Sokszor ezek em egyekét, haem külöböző társításba kombácókba
1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél
Valószíűségszámítás 1 előadás mat. BSc alk. mat. szakráyosokak 2016/2017 1. félév Zemplé Adrás zemple@ludes.elte.hu http://zemple.elte.hu/ 1. előadás: Bevezetés Irodalom, követelméyek A félév célja Valószíűségszámítás
Vektorok által generált altér, lineáris összefüggőség, függetlenség, generátorrendszer, bázis, dimenzió
Vektorok által geerált altér lieáris összefüggőség függetleség geerátorredszer ázis dimezió Ee a része általáosítjuk a téreli ektorokra már megismert haszos fogalmakat. A legfotosa hogy ármely ektortére
Cserjésné Sutyák Ágnes *, Szilágyiné Biró Andrea ** ismerete mellett több kísérleti és empirikus képletet fel-
ACÉLOK KÉMIAI LITY OF STEELS THROUGH Cserjésé Sutyák Áges *, Szilágyié Biró Adrea ** beig s s 1. E kutatás célja, hogy képet meghatározásáak kísérleti és számítási móiek tosságáról, és ezzel felfedjük
MINİSÉGBIZTOSÍTÁS 6. ELİADÁS Március 19. Összeállította: Dr. Kovács Zsolt egyetemi tanár
MINİSÉGBIZTOSÍTÁS Özeállította: Dr. Kovác Zolt egyetemi taár 6. ELİADÁS 011. Márciu 19. NyME FMK Terméktervezéi é Gyártátechológiai Itézet http://tgyi.fmk.yme.hu NYME FMK TGYI 006.08.8. 1. fólia Kézült
Eddig megismert eloszlások Jelölése Eloszlása EX D 2 X P(X = 1) = p Ind(p) P(X = 0) = 1 p. Leíró és matematikai statisztika
Leíró és matematikai statisztika Matematika alapszak, matematikai elemző szakiráy Zempléi Adrás Valószíűségelméleti és Statisztika Taszék Matematikai Itézet Természettudomáyi Kar Eötvös Lorád Tudomáyegyetem
Minősítéses mérőrendszerek képességvizsgálata
Mnősítéses mérőrendszerek képességvzsgálata Vágó Emese, Dr. Kemény Sándor Budapest Műszak és Gazdaságtudomány Egyetem Kéma és Környezet Folyamatmérnök Tanszék Az előadás vázlata 1. Mnősítéses mérőrendszerek
Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1
Mérés adatok feldolgozása 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel
Backtrack módszer (1.49)
Backtrack módszer A backtrack módszer kombatorkus programozás eljárás, mely emleárs függvéy mmumát keres feltételek mellett, szsztematkus kereséssel. A módszer előye, hogy csak dszkrét változókat kezel,
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!
GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az