6. Minısítéses ellenırzı kártyák

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "6. Minısítéses ellenırzı kártyák"

Átírás

1 6. Miısítéses elleırzı kártyák Sokszor elıfordul, hogy a termék-egyedek miıségét em tudjuk mérhetı meyiségekkel jellemezi, csak megfelelı/em megfelelı kategóriákba sorolhatjuk ıket, és a hibás darabokat, vagy az elıforduló hibákat számláljuk le. Ezt evezzük miısítéses elleırzések. Egyes esetekbe a termék jellege olya, hogy csak így kategorizálhatuk, l. va-e az alkatrésze sorja, va-e szí-elcsúszás a yomtatásál. Más esetekbe lehete ugya méri a jellemzıt, de léyegese olcsóbb csak miısítei egy idomszerrel (agyobb-e a geometriai mérete az elıírtál vagy em). Az is lehetséges, hogy egy termék többféle, egyekét mérhetı tulajdoságát szitetizáljuk miısítéssé. Ilyekor legegyszerőbb esetbe azt veszik föl adatkét, hogy a vizsgált darab közül háy volt em-megfelelı, ill. a selejt aráyát. Ebbıl készül az -kártya és a - kártya. Az is lehet, hogy a vizsgált egységbe tartozó (l. 5 darab, vagy egy doboz, vagy egy a alatt gyártott) valameyi termék-egyede elıforduló hibák száma az adat (ckártya), vagy a termék valamilye egységé (l. egységyi felülete) elıforduló hibák száma (u-kártya). A miısítéses elleırzı kártyákat evezik selejt- ill. hiba-kártyákak is. A gyártásközi elleırzés célja itt is az, hogy megállaítsuk, az eloszlás aramétere (biomiális eloszlás eseté, Poisso-eloszlás eseté λ) em változott-e meg az elôzetes adatfelvételhez kéest. Az elızetes adatfelvétel célja az, hogy az eloszlás tíusát meghatározzuk, és aramétereit becsüljük. A miısítéses elleırzı kártyák készítését és alkalmazását az MSZ 46/3-57 magyar szabváy írja elı. E köyvbe csak a Shewhart-tíusú kártyákkal foglalkozuk, de megjegyezzük, hogy a miısítéses jellemzıkre is lehet CUSUM és más elleırzı kártyákat is készítei (Motgomery, 99) kártya Itt a vizsgált jellemzı a selejtaráy, a hibás darabok száma az egész sokaság elemeiek számához viszoyítva. Ha em az összes termék-éldáyt vizsgáljuk meg, csak mitát veszük belılük, akkor becslése a mitabeli selejtaráy, vagyis a talált selejtes darabok D számáak és a mita elemszámáak háyadosa: ɵ D Azt, hogy az elemő mitába véletle kiválasztással háy selejteset találuk, a biomiális eloszlás írja le (ld. az. fejezetbe). A selejtes darabok D számáak várható értéke és variaciája: E D, 78

2 ( ) Var D. Mithogy általába em visszatevéses mitavételt végezek, a biomiális eloszlás csak akkor alkalmazható, ha a mita elemszáma léyegese kisebb a sokaság elemszámáál ( < N ). A selejtes darabok számára voatkozó Shewhart-kártya az ú. -kártya. Közévoala vagy aak becslése, a beavatkozási határokat a ±3σ koveció szerit szokás vei: CL, UCL + 3, LCL 3, m ɵ i i ahol m m i D m i (ha mide mita elemő). Ha az alsó beavatkozási határra egatív érték adódik a kéletbıl, helyette zérust veszük. Ha a biomiális eloszlású valószíőségi változót (a k selejtszámot) ormális eloszlásúval közelítjük, u k ( ), és a ±3σ kovecióval kiszámított beavatkozási határokhoz az elsıfajú hiba valószíősége.7. Ameyire a biomiális eloszlás eltér a ormális eloszlástól, ayira tér el az elsıfajú hiba téyleges α valószíősége a ormális eloszlás eseté a ±3σ határokhoz tartozó.7-tôl. Az elızetes adatfelvétel célja itt is a folyamat araméteréek (-ek) a becslése, egyúttal a folyamat stabilitásáak vizsgálata. Akkor fogadjuk el a becsült aramétert (és az eek alajá számolt beavatkozási határokat), ha a folyamat kézbetartottak (stabilak) mutatkozik. Ezt ugyaúgy, mit a méréses esetbe, elleırzı kártya felvételével elleırizzük, mert ekkor a miták egymásutáiságába rejlı iformációt is haszosítjuk. A kártyá az egyes mitákhoz tartozó értékeket, vagyis a selejtes darabok számát ábrázoljuk a mita sorszáma (vagy a mitavétel idıotja) függvéyébe. A otok meetéek vizsgálatára itt is haszálhatuk ru teszteket (3.4. ot), de a méréses esetbe megismertek közül csak azokat, amelyek em igéylik ormális eloszlás feltételezését (vagyis csak a em-araméteres róbákat), ugyais em átlag-értékeket ábrázoluk, tehát a cetrális határeloszlási tétel sem teszi adataikat közel ormális eloszlásúvá. Ha kiugró érték (vagy más redelleesség) va, az ok azoosítása utá a hozzá tartozó otokat elhagyjuk, és a aramétereket (CL, UCL, LCL ) újra kiszámoljuk. Ha em találuk okot, kétfélekée döthetük: 79

3 Kihagyjuk így is a otokat, ekkor azt kockáztatjuk, hogy az idokoltál szőkebbek leszek a beavatkozási határok. Nem hagyjuk ki a kérdéses otokat, ez azzal járhat, hogy a helyesél szélesebbek leszek a beavatkozási határok; ha elég sok otra alaozzuk a becslést, az eltérés em lesz túlságosa agy. A folyamat taulmáyozása sorá szükség lehet arra, hogy az adatfelvétel két szakaszát összehasolítsuk, vagyis azt a ullhiotézist vizsgáljuk, hogy a selejtszám (selejtaráy) a két szakaszba azoos. Ha egy-egy mita összehasolítása a feladat, a otba leírtak szerit járuk el. Ott a biomiális eloszlású valószíőségi változót ormális eloszlásúval közelítettük, a helyettesítı ormális eloszlás variaciáját az ismeretle araméter mitabeli becslésébıl számoltuk. Ha a két szakasz több mitából áll, a több mitából kiszámolható átlagos selejtaráy a cetrális határeloszlási tétel értelmébe akkor is jó közelítéssel ormális eloszlású, ha az egy mita selejtaráya még em lee elég közel a ormális eloszláshoz ( kicsi vagy agy, em elég agy). Ráadásul itt a variaciát sem kell az ismeretle araméter mitabeli becslésébıl számoluk, haem több ismétlés lévé, taasztalati szóráségyzetet haszálhatuk. Ekkor viszot em u-, haem t-róbát végzük. Jelölje az elsı szakasz átlagos selejtaráyát I, a másodikét II, ekkor a ullhiotézis és ellehiotézis: H : E E ; H : E E. I II I II A róbastatisztika: t I s I II s + II. 6-. élda Legye a miták elemszáma, az elsı szakaszba vett mita átlagos selejtaráya., a selejtaráy korrigált taasztalati szóráségyzete.; a második szakaszba vett 8 mita átlagos selejtaráya.8, a selejtaráy korrigált taasztalati szóráségyzete.85. Dötsük el.5-os szite, hogy a selejtaráy a két szakaszba azoos-e! ; H : E E H : E E t I II I II I s I II s + II

4 A szabadsági fokszámhoz és α.5 szigifikaciaszithez tartozó kritikus érték a függelék III. táblázatából.. Mivel a róbastatisztika talált értéke ez alatt va, elfogadjuk a ullhiotézist, mely szerit a két szakaszba a selejtaráy csak a véletle igadozás miatt külöbözik. 6-. élda Egy gée gyártott csaágygolyókból félórákét 5 elemő mitákat veszük. A 6-. táblázat mutatja a selejtes (em megfelelı mérető) darabok számát (): 6-. táblázat idıot 8: 8:3 9: 9:3 : :3 : : idıot : :3 3: 3:3 4: 4:3 5: 5: Készítsük -kártyát az adatokból, feltételezve, hogy elızetes adatfelvételél katuk ıket! A kártya araméterét az adatokból kell becsüli. Ez az átlagos selejtszám 4.65-ek adódik, ez lesz a közévoal helye. Az átlagos selejtaráy:. 95. A fölsı beavatkozási határ UCL Az alsó beavatkozási határra -.5 adódék, helyette zérust veszük. A kártya a 6-. ábrá látható Mita. 8

5 6-. ábra. -kártya a 6-. éldához, a STATISTICA rogrammal A gyártásközi elleırzésél az elızetes adatfelvételél kaott araméterekkel (CL, UCL, LCL ) éítjük föl az -kártyát. Ha elıírt értéke áll redelkezésre, a fötebbi kéletekbe azt helyettesítjük. Ez, mit a méréses elleırzı kártyákál, azért kockázatos, mert esetleg akkor is istabilak miısítjük a folyamatot, ha stabil, csak em az elıírt a araméter, haem aál agyobb vagy kisebb a téyleges selejtaráy. A miták elemszámát célszerőe agyra szokták választai, külöbe agyo bizoytalaok leéek a statisztikai következtetések. Pyzdek szerit ökölszabály, hogy >5 legye, így ha l..3, >5/.366.7, vagyis legalább 67 elemő mitát kell vei. Arra is törekszeek, hogy a em-megfelelı darabok elıfordulási valószíősége jeletıs legye, mert csak ekkor kauk értékelhetı iformációt a hibás darabok 4 4 aráyáról. Pl. ha.3, 4 elemő mitából aak valószíősége, hogy em fordul elı hibás darab, ugyaez 8 elemő mitáál Vagyis 4 elemő mitákál esetbıl átlagosa harmicszor fordula elı, hogy egyetle hibás sics, 8 elem eseté mitából csak kb. 9 esetbe fordul elı, hogy ics bee hibás élda 8 Miimálisa háy elemő mitákat kell veük, ha azt akarjuk, hogy 99% valószíőséggel találjuk legalább hibás darabot, vagyis P(D>).99, ameyibe.3? A biomiális eloszlás összefüggéseivel számoluk. P( D > ) P( D ) l. 5. l. 97 Tehát a szükséges mitaelemszám 5. Ameyibe a sokaságbeli selejtaráy kicsi, a ormális eloszlás közelítı összefüggésével számolva az alsó beavatkozási határra egatív szám adódik, ezt zérusra igazítjuk. Ha azt akarjuk, hogy az alsó beavatkozási határ zérus fölött legye, a következı feltételek kell teljesülie: LCL 3 >.

6 Ebbıl a szükséges mitaelemszám: ( ) 9 > élda Meyi az ahhoz szükséges miimálisa szükséges mitaelemszám az elıbbi.3 eseté, hogy az alsó beavatkozási határ zérus fölött legye? 9 > További szemot a mita agyságáak megválasztására az adott selejtaráykülöbséghez tartozó másodfajú hiba agysága. Szokás éldául vizsgáli [Duca (974), idézi Motgomery, 99,.6], mekkora miták kelleek, ha azt akarjuk, hogy 5% biztosággal észrevegyük a zavar felléése utái elsı mitavételél a agyságú változást (övekedést) -be (vagyis az ekkora eltéréshez tartozó másodfajú hiba elkövetéséek valószíősége.5 legye). A 6-. ábra szerit a fölsı beavatkozási határ ekkor meg kell, hogy egyezzék az ellehiotézis szeriti értékkel. (Vigyázat, ez az elıírás már meghatározza az elsıfajú hiba megegedett valószíőségét!) 3 ( ), ahoa ( ) 9. β.5 α ill. α 6-. ábra. A β. 5 valószíőségő másodfajú hiba szemléltetése 6-5. élda 83

7 Háy elemő mitákat kell ahhoz veük, hogy a változást követı elsı mitavételél 5%-os valószíőséggel észrevegyük, hogy a selejtaráy 5%-ról %-ra ıtt (.5 és.)? , tehát legalább 7 elemő mitákra va szükség élda Számítsuk ki az -kártya aramétereit 4 elemő mitákra és.5 selejtaráyra a ±3σ koveció szerit (vagyis a biomiális eloszlás ormális eloszlással való közelítésével)! A kártya közévoala: CL 4. 5, UCL LCL Ha egész értékre kerekítük, ezt a közévoaltól elfelé kell tei. UCL 34 azt jeleti, hogy beavatkozásra va szükség, ha x 34, de x 33-ál még em. LCL 6 azt jeleti, hogy a folyamat stabilitására voatkozó ullhiotézist akkor utasítjuk el, ha x 6 és elfogadjuk, ha x > 6. Számítsuk ki a másodfajú hiba valószíőségét és az átlagos sorozathosszt arra az esetre, ha. ill..5, vagyis aak valószíőségét, hogy e vegyük észre, ha a selejtaráy kétszeresére ıtt ill. felére csökket! β P 6 < x < 34 β UCL F u UCL F ulcl Φ Φ LCL ( ) ( ) A Φ itt most az u-eloszlás (stadardizált ormális eloszlás) eloszlásfüggvéyét jelöli. Mithogy diszkrét eloszlást (a biomiális eloszlást) helyettesítük folytoossal, az ú. folytoossági korrekciót is alkalmazi kell. A. ellehiotézisre: β Φ ( ) Φ ( )

8 A.5 ellehiotézisre: Φ Φ β Φ Φ Φ Φ Vagyis aak valószíősége, hogy e vegyük észre, ha a selejtaráy kétszeresére ıtt, csak 4%, de aak valószíősége, hogy e vegyük észre, ha a selejtaráy felére csökket, már 87%! Az átlagos sorozathossz, amely megváltozásáak észleléséhez szükséges,. eseté ARL 6., β hez ARL Számítsuk most ki a másodfajú hiba valószíőségét arra az esetre, ha.6 ill..4, vagyis aak valószíőségét, hogy e vegyük észre, ha a selejtaráy %-kal ıtt ill. csökket! β UCL F u F u UCL LCL Φ Φ A.6 ellehiotézisre: β Φ LCL ( ) ( ) ( ) Φ ( ) A.4 ellehiotézisre: β Φ Φ Φ ( ) Φ ( ) Φ Φ Vagyis aak valószíősége, hogy e vegyük észre, ha a selejtaráy %-kal ôtt, 97.7%, aak valószíősége, hogy e vegyük észre, ha a selejtaráy %- kal csökket, 99.%! Az átlagos sorozathossz, amely megváltozásáak észleléséhez szükséges, 85

9 .6 eseté ARL 43. 8, β höz ARL élda Számítsuk most ki az elsı- és másodfajú hiba valószíőségét a 6-6. éldabeli beavatkozási határokra, de a biomiális eloszlás otos kéleteivel! A 6-. táblázat (amelyet a STATISTICA rogrammal állítottuk elı) tartalmazza a 4 elemő mitára az egyes k selejtszámokhoz tartozó eloszlásfüggvéy-értékeket vagy kumulált valószíőségeket (vagyis aak valószíőségét, hogy a selejtszám k-ál kisebb, vagy azzal egyeértékő). A táblázat elıállításáak megértéséhez a.5 araméter-értékhez feltütettük az egyes k selejtaráyok elıfordulási valószíőségét, vagyis a sőrőségfüggvéy értékét. Emlékeztetıül: F ( ) P( D k) k. Például: (. 5) ; és mivel (. 5) (. 5) (. 5) (. 5), 4 F k , k (. 5) ; F k k 86

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum) Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa

Részletesebben

4. A méréses ellenırzı kártyák szerkesztése

4. A méréses ellenırzı kártyák szerkesztése 4. A méréses ellenırzı kártyák szerkesztése A kártyákat háromféle módon alkalmazhatjuk. Az elızetes adatfelvétel során a fı feladat az eloszlás paramétereinek (µ és σ ) becslése a további ellenırzésekhez.

Részletesebben

A matematikai statisztika elemei

A matematikai statisztika elemei A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 10. A statisztika alapjai Debrecei Egyetem, 2015 Dr. Bérczes Attila, Bertók Csaád A diasor tartalma 1 Bevezetés 2 Statisztikai függvéyek Defiíció, empirikus várható érték Empirikus

Részletesebben

A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet A biostatisztika alapfogalmai, kofideciaitervallum Dr. Boda Krisztia PhD SZTE ÁOK Orvosi Fizikai és Orvosi Iformatikai Itézet Mitavétel ormális eloszlásból http://www.ruf.rice.edu/~lae/stat_sim/idex.html

Részletesebben

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai 05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:

Részletesebben

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke

Részletesebben

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai

Részletesebben

10. Mintavételi tervek minısítéses ellenırzéshez

10. Mintavételi tervek minısítéses ellenırzéshez 10. Mintavételi tervek minısítéses ellenırzéshez Az átvételi ellenırzés akkor minısítéses, ha a mintában a selejtes elemek számát ill. a hibák számát vizsgáljuk, és ebbıl vonunk le következtetést a tételbeli

Részletesebben

Statisztika 1. zárthelyi dolgozat március 21.

Statisztika 1. zárthelyi dolgozat március 21. Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

Minőségirányítási rendszerek 8. előadás 2013.05.03.

Minőségirányítási rendszerek 8. előadás 2013.05.03. Miőségiráyítási redszerek 8. előadás 2013.05.03. Miőségtartó szabályozás Elleőrző kártyák miősítéses jellemzőkre Két esete: A termékre voatkozó adat: - valamely jellemző alapjá megfelelő em megfelelő:

Részletesebben

Statisztika 1. zárthelyi dolgozat március 18.

Statisztika 1. zárthelyi dolgozat március 18. Statisztika. zárthelyi dolgozat 009. március 8.. Ismeretle m várható értékű, szórású ormális eloszlásból a következő hatelemű mitát kaptuk:, 48 3, 3, 83 0,, 3, 97 a) Számítsuk ki a mitaközepet és a tapasztalati

Részletesebben

Statisztika október 27.

Statisztika október 27. Statisztika 2011. október 27. Külöbség valószíőségszámítás és statisztika között Kísérlet: 4-szer dobuk fel egy érmét. Megszámoljuk a fejek számát. Valszám: Ismert a fejdobás valószíősége. Milye valószíőséggel

Részletesebben

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük.

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük. Statisztikai módszerek. BMEGEVGAT01 Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudomáyi Egyetem Gépészméröki Kar Hidrodiamikai Redszerek Taszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

III. Képességvizsgálatok

III. Képességvizsgálatok Képességvizsgálatok 7 A folyamatképesség vizsgálata A 3 fejezetben láttuk, hogy ahhoz, hogy egy folyamat jellemzıjét a múltbeli viselkedése alapján egy jövıbeni idıpontra kiszámíthassuk (pontosabban, hogy

Részletesebben

1. A radioaktivitás statisztikus jellege

1. A radioaktivitás statisztikus jellege A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a

Részletesebben

BIOSTATISZTIKA ÉS INFORMATIKA. Leíró statisztika

BIOSTATISZTIKA ÉS INFORMATIKA. Leíró statisztika BIOSTATISZTIKA ÉS INFORMATIKA Leíró statisztika Első közelítésbe a statisztikai tevékeységeket égy csoportba sorolhatjuk, de ezek között ics éles határ:. adatgyűjtés, 2. az adatok áttekithetővé tétele,

Részletesebben

2. egy iskola tanulói, a változók: magasságuk cm-ben, súlyuk (tömegük) kilóban; 3. egy iskola tanulói, a változó: tanulmányi átlaguk;

2. egy iskola tanulói, a változók: magasságuk cm-ben, súlyuk (tömegük) kilóban; 3. egy iskola tanulói, a változó: tanulmányi átlaguk; Statisztika Tegyük fel, hogy va egy halmazuk, és tekitsük egy vagy több valószíűségi változót, amelyek a halmaz mide elemé felveszek valamilye értéket. A halmazt populációak vagy sokaságak evezzük. Példák:

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

Matematika B4 I. gyakorlat

Matematika B4 I. gyakorlat Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

Ingatlanfinanszírozás és befektetés

Ingatlanfinanszírozás és befektetés Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:

Részletesebben

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz

Részletesebben

Kidolgozott feladatok a nemparaméteres statisztika témaköréből

Kidolgozott feladatok a nemparaméteres statisztika témaköréből Kidolgozott feladatok a emparaméteres statisztika témaköréből A tájékozódást mideféle szíkódok segítik. A feladatok eredeti szövege zöld, a megoldások fekete, a figyelmeztető, magyarázó elemek piros szíűek.

Részletesebben

Statisztika Elıadások letölthetık a címrıl

Statisztika Elıadások letölthetık a címrıl Statisztika Elıadások letölthetık a http://www.cs.elte.hu/~arato/stat*.pdf címrıl Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább 1-α valószínőséggel

Részletesebben

MINİSÉGBIZTOSÍTÁS 6. ELİADÁS Március 19. Összeállította: Dr. Kovács Zsolt egyetemi tanár

MINİSÉGBIZTOSÍTÁS 6. ELİADÁS Március 19. Összeállította: Dr. Kovács Zsolt egyetemi tanár MINİSÉGBIZTOSÍTÁS Özeállította: Dr. Kovác Zolt egyetemi taár 6. ELİADÁS 011. Márciu 19. NyME FMK Terméktervezéi é Gyártátechológiai Itézet http://tgyi.fmk.yme.hu NYME FMK TGYI 006.08.8. 1. fólia Kézült

Részletesebben

Populáció nagyságának felmérése, becslése

Populáció nagyságának felmérése, becslése http:/zeus.yf.hu/~szept/kuzusok.htm Populáció agyságáak felméése, becslése Becsült paaméteek: N- az adott populáció teljes agysága (egyed, pá, stb) D- dezitás (sűűség), egységyi felülete/téfogata számított

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika

Részletesebben

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje.

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje. 24. tétel valószíűségszámítás elemei. valószíűség kiszámításáak kombiatorikus modellje. GYORISÁG ÉS VLÓSZÍŰSÉG meyibe az egyes adatok a sokaságo belüli részaráyát adjuk meg (törtbe vagy százalékba), akkor

Részletesebben

Zavar (confounding): akkor lép fel egy kísérletben, ha a kísérletet végző nem tudja megkülönböztetni az egyes faktorokat.

Zavar (confounding): akkor lép fel egy kísérletben, ha a kísérletet végző nem tudja megkülönböztetni az egyes faktorokat. Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet végző em tudja megkülöbözteti az egyes faktorokat. Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet

Részletesebben

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés 7. el adás Becslések és mita elemszámok 7-1. fejezet Áttekités 7-1 Áttekités 7- A populáció aráy becslése 7-3 A populáció átlag becslése: σismert 7-4 A populáció átlag becslése: σem ismert 7-5 A populáció

Részletesebben

1. előadás: Bevezetés. Irodalom. Számonkérés. Cél. Matematikai statisztika előadás survey statisztika MA szakosoknak. A matematikai statisztika tárgya

1. előadás: Bevezetés. Irodalom. Számonkérés. Cél. Matematikai statisztika előadás survey statisztika MA szakosoknak. A matematikai statisztika tárgya Matematikai statisztika előadás survey statisztika MA szakosokak 206/207 2. félév Zempléi Adrás. előadás: Bevezetés Irodalom, követelméyek A félév célja Matematikai statisztika tárgya Törtéet Alapfogalmak

Részletesebben

A statisztika részei. Példa:

A statisztika részei. Példa: STATISZTIKA Miért tauljuk statisztikát? Mire haszálhatjuk? Szakirodalom értő és kritikus olvasásához Mit állít egyáltalá a cikk? Korrektek-e a megállaítások? Vizsgálatok (kísérletek és felmérések) tervezéséhez,

Részletesebben

Minőségellenőrzés. Miről lesz szó? STATISZTIKAI FOLYAMATSZABÁLYOZÁS (SPC) Minőségszabályozás. Mikor jó egy folyamat? Ellenőrzés Szabályozás

Minőségellenőrzés. Miről lesz szó? STATISZTIKAI FOLYAMATSZABÁLYOZÁS (SPC) Minőségszabályozás. Mikor jó egy folyamat? Ellenőrzés Szabályozás STATISZTIKAI FOLYAMATSZABÁLYOZÁS (SPC) Erdei János Miről lesz szó? Mit értünk folyamatok stabilitásán, szabályozottságán? Mit jelent a folyamatképesség, és hogyan mérhetjük azt? Hogyan vehetjük észre a

Részletesebben

Kísérletek tervezése és értékelése

Kísérletek tervezése és értékelése STATISZTIKAI ALAPOK I. STATISZTIKAI ALAPOK Adatok ábrázolása Yogi Berra: "You ca observe a lot by watchig." I. STATISZTIKAI ALAPOK Mérési adatok ábrázolása: Pot ábrázolás (Dotplot) Dotplot for Y 9 3 Y

Részletesebben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,

Részletesebben

3.1. A Poisson-eloszlás

3.1. A Poisson-eloszlás Harmadik fejezet Nevezetes valószíűségi változók Valamely valószíűségi változóhoz kapcsolódó kérdésekre akkor tuduk potos választ adi, ha a változó eloszlása ismert, vagy megközelítőleg ismert. Ebbe a

Részletesebben

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit!

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit! Sorozatok 20. október 5. Határozza meg a következ sorozatok határértékeit!. Zh feladat:vizsgálja meg mootoitás és korlátosság szerit az alábbi sorozatot! a + ha ; 2; 5 Mootoitás eldötéséhez vizsgáljuk

Részletesebben

A PÉNZ IDİÉRTÉKE. Egy jövıbeni pénzösszeg jelenértéke:

A PÉNZ IDİÉRTÉKE. Egy jövıbeni pénzösszeg jelenértéke: A PÉNZ IDİÉRTÉKE A péz értéke többek között az idı függvéye. Ha idıbe késıbb jutuk hozzá egy jövedelemhez, akkor elveszítjük aak lehetıségét, hogy az eltelt idıbe azt befektessük, azaz elesük aak hozamától,

Részletesebben

Tartalom. Kezdeti szimulációs technikák. Tipikus kérdések. A bootstrap módszer. Bevezetés A független, azonos eloszlású eset:

Tartalom. Kezdeti szimulációs technikák. Tipikus kérdések. A bootstrap módszer. Bevezetés A független, azonos eloszlású eset: Tartalom A bootstrap módszer Zempléi Adrás TTK, Valószíőségelméleti és Statisztika Taszék 2010. október 21 Bevezetés A függetle, azoos eloszlású eset: emparaméteres paraméteres eset Alkalmazások a rétegzett

Részletesebben

A brexit-szavazás és a nagy számok törvénye

A brexit-szavazás és a nagy számok törvénye Mûhely Medvegyev Péter kadidátus, a Corvius Egyetem egyetemi taára E-mail: peter.medvegyev@uicorvius.hu A brexit-szavazás és a agy számok törvéye A 016. év, de vélhetőe az egész évtized legfotosabb politikai

Részletesebben

Kockázatalapú szabályozó kártyák tervezése, kiválasztása és folyamatra illesztése

Kockázatalapú szabályozó kártyák tervezése, kiválasztása és folyamatra illesztése Kockázatalapú szabályozó kártyák tervezése, kiválasztása és folyamatra illesztése Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése konvergencia program

Részletesebben

specific (assignable) cause: azonosítható, tettenérhető (veszélyes) hiba megváltozott a folyamat

specific (assignable) cause: azonosítható, tettenérhető (veszélyes) hiba megváltozott a folyamat ELLENŐRZŐ KÁRTYÁK méréses mősítéses commo cause: véletle gadozás secfc (assgable) cause: azoosítható, tetteérhető (veszélyes) hba megváltozott a folyamat Mősítéses elleőrző kártyák 41 Mősítéses elleőrző

Részletesebben

véletlen : statisztikai törvényeknek engedelmeskedik (Mi az ami közös a népszavazásban, a betegségek gyógyulásában és a fiz. kém. laborban?

véletlen : statisztikai törvényeknek engedelmeskedik (Mi az ami közös a népszavazásban, a betegségek gyógyulásában és a fiz. kém. laborban? BEVEZETÉS A statisztika teljese laikusokak: agy mukával gyűjtött adatok vizsgálata, abból következtetések levoása ( statistical iferece ) (Egy kicsit sok hűhó semmiért azaz Much ado about othig.) Mi is

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

A stabilitás vizsgálata: ellenőrző kártyák

A stabilitás vizsgálata: ellenőrző kártyák A miőségszabályozás felaata upper atural tolerace limit ige ige STABIL? em upper specificatio limit (fölső tűréshatár) KÉPES? em lower atural tolerace limit lower specificatio limit (alsó tűréshatár) Méréses

Részletesebben

Minőségmenedzsment (módszerek) BEDZSULA BÁLINT

Minőségmenedzsment (módszerek) BEDZSULA BÁLINT Minőségmenedzsment (módszerek) BEDZSULA BÁLINT Bedzsula Bálint gyakornok Menedzsment és Vállalatgazdaságtan Tanszék Q. épület A.314. bedzsula@mvt.bme.hu http://doodle.com/bedzsula.mvt Az előző előadás

Részletesebben

1. elıadás: Bevezetés. Számonkérés. Irodalom. Valószínőségszámítás helye a tudományok között. Cél

1. elıadás: Bevezetés. Számonkérés. Irodalom. Valószínőségszámítás helye a tudományok között. Cél 1 Valószíőségszámítás 1 elıadás alk.mat és elemzı szakosokak 2013/2014 1. félév Zempléi Adrás zemplei@ludes.elte.hu http://www.cs.elte.hu/~zemplei/ 1. elıadás: Bevezetés Irodalom, követelméyek A félév

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Bootstrap (Efron, 1979)

Bootstrap (Efron, 1979) Bootstrap (Efro, 979) 4. elıadás 204. március 3. Bootstrap módszerek, többdimeziós extrém-érték eloszlások illeszkedésvizsgálata Újramitavételezési eljárás, a becsléseik szórásáak vizsgálatára, modell-illeszkedés

Részletesebben

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 5. Megjegyzések. A tétel feltételei gyegíthetőek: elég, ha a függetle, azoos eloszlású változók várható értéke véges.

Részletesebben

Áringadozások elıadás Kvantitatív pénzügyek szakirány 2012/13 2. félév

Áringadozások elıadás Kvantitatív pénzügyek szakirány 2012/13 2. félév Árigadozások elıadás Kvatitatív pézügyek szakiráy 01/13. félév Heti óra elıadás + óra gyakorlat Elıadás: fıleg modellek, elemzési módszerek Gyakorlat: R programmal, alkalmazások Számokérés 50%: beadadó

Részletesebben

6. feladatsor. Statisztika december 6. és 8.

6. feladatsor. Statisztika december 6. és 8. 6. feladatsor Statisztika 200. december 6. és 8.. Egy = 0 szervert tartalmazó kiszolgáló mide szervere mide pillaatba 0 < p < valószíűséggel foglalt, a foglaltságok szerverekét függetleek. Tehát a foglaltak

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

Villamos gépek tantárgy tételei

Villamos gépek tantárgy tételei Villamos gépek tatárgy tételei 7. tétel Mi a szerepe az áram- és feszültségváltókak? Hogya kapcsolódak a hálózathoz, milye előírások voatkozak a biztoságos üzemeltetésükre, kiválasztásukál milye adatot

Részletesebben

kritikus érték(ek) (critical value).

kritikus érték(ek) (critical value). Hipotézisvizsgálatok (hypothesis testig) A statisztikáak egyik célja lehet a populáció tulajdoságaiak, ismeretle paramétereiek a becslése. A másik tipikus cél: valamely elmélet, hipotézis empirikus bizoyítása

Részletesebben

földtudományi BSc (geológus szakirány) Matematikai statisztika elıadás, 2014/ félév 6. elıadás

földtudományi BSc (geológus szakirány) Matematikai statisztika elıadás, 2014/ félév 6. elıadás Matematikai statisztika elıadás, földtudományi BSc (geológus szakirány) 2014/2015 2. félév 6. elıadás Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább

Részletesebben

8. A mérıeszközök képességvizsgálata 1

8. A mérıeszközök képességvizsgálata 1 8. A mérıeszközök képességvizsgálata 1 A vizsgálat célja annak megállapítása, hogy a használt mérıeszköz elég kis hibával használható-e ahhoz, hogy vele a folyamatról információt szerezzünk. Az AIAG (Automotive

Részletesebben

Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2.

Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Statisztika Hipotézisvizsgálat Székely Balázs 2010. december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Előadás vázlat 1 Itervallumbecslések

Részletesebben

Az új építőipari termelőiár-index részletes módszertani leírása

Az új építőipari termelőiár-index részletes módszertani leírása Az új építőipari termelőiár-idex részletes módszertai leírása. Előzméyek Az elmúlt évekbe az építőipari árstatisztikába egy új, a korábba haszálatos költségalapú áridextől eltérő termelői ár alapú idexmutató

Részletesebben

KÍSÉRLETTERVEZÉS ÉS ÉRTÉKELÉS A MIKROBIOLÓGIAI GYAKORLATBAN

KÍSÉRLETTERVEZÉS ÉS ÉRTÉKELÉS A MIKROBIOLÓGIAI GYAKORLATBAN KÍSÉRLETTERVEZÉS ÉS ÉRTÉKELÉS A MIKROBIOLÓGIAI GYAKORLATBAN DR. REICHART OLIVÉR 005. Budapest Lektorálta: Zukál Edre Tartalom BEVEZETÉS 3. VALÓSZÍNŰSÉGSZÁMÍTÁSI ALAPOK 5.. Kombiatorikai alapösszefüggések

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik. Számsorozatok 2015. december 22. 1. Alapfeladatok 1. Feladat: Határozzuk meg az a 2 + 7 5 2 + 4 létezik. sorozat határértékét, ha Megoldás: Mivel egy tört határértéke a kérdés, ezért vizsgáljuk meg el

Részletesebben

Valószín ségszámítás és statisztika gyakorlat Programtervez informatikus szak, esti képzés

Valószín ségszámítás és statisztika gyakorlat Programtervez informatikus szak, esti képzés Valószí ségszámítás és statisztika gyakorlat Programtervez iformatikus szak, esti képzés.) Egy érmével dobuk. Ha az eredméy fej, akkor még egyszer dobuk, ha írás, akkor még kétszer. a.) Mik leszek a kísérletet

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

17. Folyamatszabályozás módszerei

17. Folyamatszabályozás módszerei 17. Folyamatszabályozás módszerei 200. Egyéb módszerek A folyamatszabályozás alapjai Minőségképesség-elemzés Mérőeszköz-képességelemzés Ellenőrzőkártyák Bedzsula Bálint 249 215. Mérőeszköz-képességelemzés

Részletesebben

16. Az AVL-fa. (Adelszon-Velszkij és Landisz, 1962) Definíció: t kiegyensúlyozott (AVL-tulajdonságú) t minden x csúcsára: Pl.:

16. Az AVL-fa. (Adelszon-Velszkij és Landisz, 1962) Definíció: t kiegyensúlyozott (AVL-tulajdonságú) t minden x csúcsára: Pl.: 6. Az AVL-fa Adelszo-Velszkij és Ladisz, 96 Defiíció: t kiegyesúlyozott AVL-tulajdoságú t mide x csúcsára: bal x jobb x. Pl.: A majdem teljes biáris fa AVLtulajdoságú. Az AVL-fára, mit speciális alakú

Részletesebben

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +... . Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk

Részletesebben

10-6. ábra. Az áttérési szabályok rendszere (Papp L., Róth P., Németh L., 1992)

10-6. ábra. Az áttérési szabályok rendszere (Papp L., Róth P., Németh L., 1992) Hasonlítsuk össze az I., II. és III. fokozat, ill. az S1-S4 különleges fokozatok jelleggörbéit, melyeket a 10-4. és 10-5. ábra mutat. S1-tôl S4 ill. az I.-tôl a III. felé haladva a nagy selejtarányú tétel

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

Ingatlanok értékelése hozamszámítással 1-2. 1

Ingatlanok értékelése hozamszámítással 1-2. 1 Piaci érték: Igatlaok értékelése hozamszámítással 1-2. 1 Elıadás Igatlavagyo-értékelı és közvetítı Szakképzés, Igatlakezelı Szakképzés A-. modul Az az ár, amelyért az igatla méltá- yosa,, magájogi szerzıdés

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

Statisztika (jegyzet)

Statisztika (jegyzet) Statisztika (jegyzet) Csiszár Vill 009. május 6.. Statisztikai mez A statisztika egyik ága a leíró statisztika. Ekkor a meggyelt adatokat áttekithet formába ábrázoljuk, pl. hisztogrammal (oszlopdiagrammal),

Részletesebben

kismintás esetekben vagy olyanokban, melyeknél a tanulóalgoritmust tesztadatokon szeretnénk

kismintás esetekben vagy olyanokban, melyeknél a tanulóalgoritmust tesztadatokon szeretnénk ÚJRAMINTAVÉTELEZÉSI ELJÁRÁSOK A jackkife (zsebkés) és bootstrap (cipőhúzó a saját kallatyújáál fogva) eljárások agol elevezése is arra utal, hogy itt ad hoc eljárásokról va szó, melyek azoba agyo haszosak

Részletesebben

Dr. BALOGH ALBERT. A folyamatképesség és a folyamatteljesítmény statisztikái (ISO 21747)

Dr. BALOGH ALBERT. A folyamatképesség és a folyamatteljesítmény statisztikái (ISO 21747) Dr. BAOGH ABERT A folyamatkéesség és a folyamatteljesítméy statistikái ISO 747 Folyamat sabályoott, ha csak véletle okú váltoásokat hibákat tartalma. Sabályoatla, ha aoosítható okú redseres váltoásokat

Részletesebben

Matematikai alapok és valószínőségszámítás. Normál eloszlás

Matematikai alapok és valószínőségszámítás. Normál eloszlás Matematikai alapok és valószínőségszámítás Normál eloszlás A normál eloszlás Folytonos változók esetén az eloszlás meghatározása nehezebb, mint diszkrét változók esetén. A változó értékei nem sorolhatóak

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Statisztika

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Statisztika Statisztika A statisztika adatok gyűjtésével, redszerezésével, illetve adatsorok elemzésével, szemléltetésével foglalkozik. Adatok redszerezése DEFINÍCIÓ: (Populáció) Populációak (statisztikai sokaságak)

Részletesebben

AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL

AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL 36 MIXCONTROL AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL Subert Istvá deformáció-elleálló keverékvázat lehet létrehozi. Kiidulási feltétel az alkalmazás helyéek

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

Kalkulus II., második házi feladat

Kalkulus II., második házi feladat Uger Tamás Istvá FTDYJ Név: Uger Tamás Istvá Neptu: FTDYJ Web: http://maxwellszehu/~ugert Kalkulus II, második házi feladat pot) Koverges? Abszolút koverges? ) l A feladat teljese yilvávalóa arra kívácsi,

Részletesebben

Miért érdekes? Magsugárzások. Az atommag felépítése. Az atom felépítése

Miért érdekes? Magsugárzások. Az atommag felépítése. Az atom felépítése Miért érdekes? Magsugárzások Dr Smeller László egyetemi doces Semmelweis Egyetem Biofizikai és Sugárbiológiai Itézet Radioaktív izotóok ill. sugárzások orvosi felhaszálása: - diagosztika (izotódiagosztika)

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem

Részletesebben

Eddig megismert eloszlások Jelölése Eloszlása EX D 2 X P(X = 1) = p Ind(p) P(X = 0) = 1 p. Leíró és matematikai statisztika

Eddig megismert eloszlások Jelölése Eloszlása EX D 2 X P(X = 1) = p Ind(p) P(X = 0) = 1 p. Leíró és matematikai statisztika Leíró és matematikai statisztika Matematika alapszak, matematikai elemző szakiráy Zempléi Adrás Valószíűségelméleti és Statisztika Taszék Matematikai Itézet Természettudomáyi Kar Eötvös Lorád Tudomáyegyetem

Részletesebben

Miért érdekes? Magsugárzások. Az atommag felépítése. Az atom felépítése

Miért érdekes? Magsugárzások. Az atommag felépítése. Az atom felépítése Miért érdekes? Magsugárzások Dr Smeller László egyetemi taár Semmelweis Egyetem Biofizikai és Sugárbiológiai Itézet Radioaktív izotóok ill. sugárzások orvosi felhaszálása: - diagosztika (izotódiagosztika)

Részletesebben

Populáció. Történet. Adatok. Minta. A matematikai statisztika tárgya. Valószínűségszámítás és statisztika előadás info. BSC/B-C szakosoknak

Populáció. Történet. Adatok. Minta. A matematikai statisztika tárgya. Valószínűségszámítás és statisztika előadás info. BSC/B-C szakosoknak Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 16. A matematikai statisztika tárgya Következtetések levoása adatok alapjá Ipari termelés Mezőgazdaság Szociológia

Részletesebben

A peremeloszlások. Valószínőségszámítás elıadás III. alk. matematikus szak. Példa. Valószínőségi vektorváltozók eloszlásfüggvénye.

A peremeloszlások. Valószínőségszámítás elıadás III. alk. matematikus szak. Példa. Valószínőségi vektorváltozók eloszlásfüggvénye. y Valószíőségszámítás elıaás III. alk. matematkus szak 4. elıaás, szeptember 30 A peremeloszlások (X,Y) eloszlásából (elevezés: együttes eloszlás) következtethetük az egyes változók eloszlására: P(X)P(X,Y0)+P(X,Y)+P(X,Y2)

Részletesebben

Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a mérési bizonytalanság figyelembevételével

Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a mérési bizonytalanság figyelembevételével Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a mérési bizonytalanság figyelembevételével Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése

Részletesebben

Valószín ségszámítás 2 gyakorlat Alkalmazott matematikus szakirány

Valószín ségszámítás 2 gyakorlat Alkalmazott matematikus szakirány Valószí ségszámítás gyakorlat Alkalmazott matematikus szakiráy Játékszabályok Az óráko részt kell vei, maximum 3-szor lehet hiáyozi. Aki többször hiáyzik, em ka gyakjegyet. 00 + x otot lehet szerezi a

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Biosta'sz'ka és informa'ka

Biosta'sz'ka és informa'ka Az előadás céljai Biosta'sz'ka és iforma'ka 5. előadás: Becslés és megbízhatóság 2018. október 11. Agócs Gergely Források: Heréyi L (2016): Sta4sz4ka és Iforma4ka: 14. fejezet Reiczigel J, Haros A, Solymosi

Részletesebben

f(n) n x g(n), n x π 2 6 n, σ(n) n x

f(n) n x g(n), n x π 2 6 n, σ(n) n x Számelméleti függvéyek extremális agyságredje Dr. Tóth László 2006 Bevezetés Ha számelméleti függvéyek, l. multilikatív vagy additív függvéyek agyságredjét vizsgáljuk, akkor először általába az adott függvéy

Részletesebben

Biometria gyakorló feladatok BsC hallgatók számára

Biometria gyakorló feladatok BsC hallgatók számára Biometria gyakorló feladatok BsC hallgatók számára 1. Egy üzem alkalmazottainak megoszlása az elért teljesítmény %-a szerint a következı: Norma teljesítmény % Dolgozók száma 60-80 30 81-90 70 91-100 90

Részletesebben

VÉLETLENÍTETT ALGORITMUSOK. 1.ea.

VÉLETLENÍTETT ALGORITMUSOK. 1.ea. VÉLETLENÍTETT ALGORITMUSOK 1.ea. 1. Bevezetés - (Mire jók a véletleített algoritmusok, alap techikák) 1.1. Gyorsredezés Vegyük egy ismert példát, a redezések témaköréből, méghozzá a gyorsredezés algoritmusát.

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

Hiba! Nincs ilyen stílusú szöveg a dokumentumban.-86. ábra: A példa-feladat kódolási változatai

Hiba! Nincs ilyen stílusú szöveg a dokumentumban.-86. ábra: A példa-feladat kódolási változatai közzétéve a szerző egedélyével) Öfüggő szekuder-változó csoport keresése: egy bevezető példa Ez a módszer az állapothalmazo értelmezett partíció-párok elméleté alapul. E helye em lehet céluk az elmélet

Részletesebben

Bevezetés a hipotézisvizsgálatokba

Bevezetés a hipotézisvizsgálatokba Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -

Részletesebben

AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN

AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN Molár László Ph.D. hallgató Mskolc Egyetem, Gazdaságelmélet Itézet 1. A MINTANAGYSÁG MEGHATÁROZÁSA EGYSZERŐ VÉLETLEN (EV) MINTA

Részletesebben