Minőségmenedzsment (módszerek) BEDZSULA BÁLINT
|
|
- Klaudia Hajdu
- 7 évvel ezelőtt
- Látták:
Átírás
1 Minőségmenedzsment (módszerek) BEDZSULA BÁLINT
2 Bedzsula Bálint gyakornok Menedzsment és Vállalatgazdaságtan Tanszék Q. épület A
3 Az előző előadás tartalmából
4 Amiről szó lesz ma Választ adok a következőkre: Mi az ellenőrzőkártyák működésének jellemzői? Hogyan alkalmazhatóak az ellenőrzőkártyák?
5 Feladat! Egy sörgyártó vállalatnál a sör névleges térfogatának ugyan 500mlnek kellene lennie, de a térfogat eltérését legfeljebb -10ml, ill. +5ml közötti intervallumban még elfogadják. Egy 100 elemű véletlen mintából ellenőrzik a gyártást. A minta adatai a következők: Minta db f g % % % % % 1 pont
6 Feladat! % 99,8 +3σ 99, % +2σ Minta db f g % % % % % ,25 σ 1,67 σ +1σ 0-1σ 10 N(498,5;5) 5 2 5% -2σ 1 0,5 0,2-3σ
7 Folyamatok szabályozása 209. A (vég)termék minőségellenőrzése helyett a selejt elkerülése, megelőzése a cél: Végtermék vizsgálata vagy a résztermékek ellenőrzése nem hatékony Idő- és energiapocséklás olyan termékekre, szolgáltatásokra, melyek nem megfelelőek Megelőzés stratégiája 1920-as évek Shewhart: alapgondolatok Veszélyes és véletlen hiba Megkülönböztetésükre ellenőrzőkártya
8 Ellenőrzőkártya 209. Alapgondolatai: A folyamat jellemzőinek mintavételes figyelése Segítségével elkülöníthető a normál és a veszélyes zavarhatás alatti állapot Ismert elméleti eloszlás értéktartomány, amiben adott valószínűséggel vannak az értékek Beavatkozási határon kívülre x esik veszélyes zavar UCL/FBH jelenléte CL/középvonal Döntési hibák (α, β) LCL/ABH hipotézisvizsgálat Grafikus ábrázolás felismerés 8 minta sorszáma
9 Ellenőrzőkártya 210. A fejlesztés logikai modellje: Adatgyűjtés: összegyűjtés és ábrázolható formába alakítás Szabályozás: beavatkozási határok figyelése, veszélyes zavarok esetén vizsgálat és beavatkozás Elemzés és fejlesztés: ha a folyamat szabályozott, további megfigyelés, minőségképesség vizsgálat, fejlesztés
10 Ellenőrzőkártya ntés a atkozásról A fejlesztés logikai modellje: A szabályozott jellemző és Szabályozott jellemző adatgyűjtés, a beavatkozási határok egybevetése szabályozás, képzéseelemzés fázisai Döntés a beavatkozásról A szabályozott jellemző és a beavatkozási határok egybevetése Szabályozott jellemző képzése ás a technológiai törvényszerűségeinek eretében Beavatkozás a technológiai folyamat belső törvényszerűségeinek ismeretében Ember Anyag Módszer Technológiai és/vagy termékjellemző mérése Technológiai és/vagy termékjellemző mérése Gép Eszköz Környezet
11 Ellenőrzőkártya 210. x FTH FBH CL/középvonal ABH ATH minta sorszáma
12 Ellenőrzőkártya 210. x FTH/USL FBH/UCL CL/középvonal ABH/LCL ATH/LSL ZAVAR TERMÉK BEAVATKOZÁS veszélyes veszélyes véletlen véletlen veszélyes veszélyes nem megfelelő megfelelő megfelelő megfelelő megfelelő nem megfelelő szükséges szükséges nem szükséges nem szükséges szükséges szükséges minta sorszáma
13 Ellenőrzőkártya 210. A kártyák működésének elvi alapjai CL (Center Line): középvonal UCL/LCL (Upper/Lower Control Limit): felső/alsó beavatkozási határ (FBH/ABH) számoljuk! USL/LSL (Upper/Lower Specification Limit): felső/alsó specifikációs/tűréshatár (FTH/ATH) adott!
14 Ellenőrzőkártya Alkalmazásának lépései: A kártya alkalmazásának előkészítése Adatgyűjtés a folyamat paramétereinek becslésére Az ellenőrzőkártyá(k) elkészítése Beavatkozási határok kiszámítása Értelmezés a folyamatszabályozás szempontjából Gyártásközi ellenőrzés
15 Ellenőrzőkártya 211. Az ellenőrzőkártyák használatának előnyei: Az ellenőrzőkártya növeli a termelékenységet Az ellenőrzőkártya hatásos a nem megfelelőség megelőzésében Az ellenőrzőkártya megakadályozza a felesleges folyamat (gép) állítgatásokat Az ellenőrzőkártya információt ad a folyamat (gép) állapotáról Az ellenőrzőkártya információt szolgáltat a folyamatképesség elemzésekhez
16 Ellenőrzőkártya 212. Ellenőrzőkártyák fajtái Méréses kártyák egyedi érték kártya átlag, médián kártya szórás, terjedelem kártya Minősítéses kártyák np-kártya (selejtszám) c-kártya (hibaszám) p-kártya (selejtarány) u-kártya (fajlagos hibaszám) Egyéb speciális kártyák
17 Ellenőrzőkártya 211. Kártyák tervezése meghatározzuk a mintavételezés módját és a beavatkozási határokat Elvi menete: Szükséges alapadatok: A célállapot statisztikai jellemzői A döntési hibák (α, β) β-hoz tartozó alternatív (zavar) állapot statisztikai jellemzői Számolandó: n mintaszám ABH, FBH beavatkozási határok
18 Ellenőrzőkártya 211. Kártyák tervezése Gyakorlati menete: Szükséges alapadatok: A célállapot statisztikai jellemzői Elsőfajú hiba (α) Mintaszám (n) β-hoz kapcsolódó alternatív (zavar) állapot statisztikai jellemzői Számolandó: ABH, FBH beavatkozási határok Másodfajú hiba (β) 3 -ás modell
19 Méréses ellenőrzőkártyák 212. Mért értékek alapján Hasznos, mert: széles körben alkalmazhatók; nagyobb információtartalom; mérési költség alacsonyabb lehet; méréses adatokkal egy folyamat teljesítménye elemezhető és a fejlődés mennyiségileg meghatározható. Páronként használjuk őket az ingadozás mértéke és a középérték helyzete (normális eloszlás két paramétere: μ;σ) átlag-terjedelem kártya
20 Átlag-terjedelem kártya 213. Átlag és terjedelem: x = 1 n j=1 n x j R = x max x min Átlag (helyzeti középérték): van-e a folyamatban olyan veszélyes zavar, amely a folyamat beállását érdemben megváltoztatja? Terjedelem (a szórás egy mértéke, n=2 azonos): van-e olyan veszélyes zavar, amely a folyamat nagyobb mértékű ingadozását okozza?
21 Átlag-terjedelem kártya 213. Átlag-kártya szerkesztése: középvonal: CL x = x = 1 m i x i az i. minta átlaga, m a minták száma a ±3σ határok alapján u α/2 =3, terjedelemből: UCL x = LCL x = x + 3 R d 2 n = x 3 R d 2 n = x i x + A 2 R x A 2 R
22 Átlag-terjedelem kártya 213. Terjedelem-kártya szerkesztése: CL R = R = 1 m i R i a beavatkozási határok ±3σ esetén: UCL R = R + 3 σ R = R + 3 d 3 R d 2 = = R d 3 d 2 = D 4 R LCL R = R 3 σ R = D 3 R
23 Átlag-terjedelem kártya Szükséges paraméterek:
24 Átlag-terjedelem kártya Példa: Pörköltkávé-adagoló automata töltötte csomagokból fél óránként 5 elemű mintát veszünk és megmérjük a tömegüket! i mintaelem átlag R átl Kemény Sándor: Statisztikai minőség- (megfelelőség-) szabályozá
25 Átlag-terjedelem kártya Példa: x = 249,955 R = 2,333 Átlag-kártya paraméterei: CL x = x = 249,955 UCL LCL x = x = x + A 2 R = 249, ,577 2,333 = 251,301 x A 2 R = 249,955 0,577 2,333 = 248,609 Kemény Sándor: Statisztikai minőség- (megfelelőség-) szabályozás
26 Kemény Sándor: Statisztikai minőség- (megfelelőség-) szabályozás Átlag-terjedelem kártya Példa: x = 249,955 R = 2,333 Terjedelem- kártya paraméterei: CL R = R = 2,333 UCL R = D 4 R = 2,114 2,333 = 4,932 LCL R = D 3 R = 0 2,333 = 0
27 Kemény Sándor: Statisztikai minőség- (megfelelőség-) szabályozás Átlag-terjedelem kártya Példa: + Értékelés! 12. dia
28 Átlag-terjedelem kártya Példa: Egy boradagoló automata töltötte palackokból a nyolcórás műszak alatt félóránként 3 elemű mintát veszünk és megmérjük a betöltött térfogatukat. A gyártósor mellől az alábbi eredményeket kaptuk (az első 5 minta): x = 750,0 R = 1,0 Minta x cm 3 750,6 749,6 749,8 749,8 749,6 R cm 3 0,8 1,2 0,6 1,4 0,8 Készítsen méréses ellenőrzőkártyát az adatok segítségével! (számoljon 1 tizedes jegy pontossággal!)
29 Átlag-terjedelem kártya Példa: adottak:
30 Átlag-terjedelem kártya Példa: átlag-kártya: CL x = x = 750,0 UCL x = x + A 2 R = ,023 1 = 751 LCL x A 2 R = 750 1,023 1 = 749 x = UCL=751 CL=750 LCL=749 + Értékelés! 12. dia
31 Átlag-terjedelem kártya Példa: terjedelem-kártya: CL R = R = 1 UCL R = D 4 R = 2,574 1 = 2,574 LCL R = D 3 R = 0 1 = 0 UCL=2,6 CL=1 LCL=0 + Értékelés! 12. dia
32 Feladat! Egy csokoládéadagoló automata töltötte formákból a nyolcórás műszak alatt félóránként 4 elemű mintát veszünk és megmérjük a betöltött csokoládé tömegét. A formákat a megrendelő 101g ±2g intervallumon fogadja el. A gyártósor mellől az alábbi eredményeket kaptuk (az első 5 mintavétel): Minta x g 101,2 101,0 101,4 101,8 102,0 R g 0,8 1,2 0,6 1,4 0,8 1 pont Előzetes vizsgálatok alapján tudjuk, hogy x = 101,0 és R = 1,0.
33 Feladat! átlag-kártya: USL=103,0 UCL=101,7 CL=101,0 LCL=100,3 USL=99,0 terjedelem-kártya: UCL=2,3 CL=1,0 LCL=0,0
34 Minősítéses kártyák 212. Mérhető mennyiség helyett megfelelő/nem megfelelő kategóriák Minősítéses ellenőrzés: a hibás darabokat vagy a hibákat számoljuk Jelentőségük: széles területen használhatóak könnyű adatszerzés (már meglévő és új esetén is) segítségével fókuszálhatjuk a komolyabb vizsgálatokat
35 Selejthányad kártya 213. Selejthányad: p = összes észlelt selejtes darab összes vizsgált darab A selejtes darabok aránya (selejthányad): veszélyes hiba zavarásának következtében a folyamat túl sok hibás terméket állít-e elő egy adott időszak alatt?
36 Selejthányad kártya 213. Selejthányad kártya szerkesztése: középvonal: átlagos selejtarány CL p = p beavatkozási határ a ±3σ koncenció alapján: UCL p = LCL p = p + 3 p 1 n p 3 p 1 n p p
37 Selejthányad kártya Selejthányad kártya szerkesztése: beavatkozási határ alcsoportok eltérő elemszáma esetén két lehetőség: 1. minden alcsoportra külön számoljuk a vizsgálat darabszámok alapján (lépcsősen változnak); 2. kiszámítunk egy átlagos vizsgált elemszámot, és ezzel határozzuk meg a határokat. összes vizsgált darab n = alcsoportok száma
38 Kemény Sándor: Statisztikai minőség- (megfelelőség-) szabályozá Selejthányad kártya Példa: Egy gépen gyártott csapágyakból félóránként mintát vesznek. Az alábbi táblázat mutatja az első 10 vizsgálat eredményét: alcsoport megvizsgált selejtes darabok száma darabok száma selejthányad ,56% ,42% ,41% ,00% ,53% ,11% ,00% ,95% ,33% ,11% ,44%
39 Selejthányad kártya Példa: p = 7,5% n = = 74,7 (eltérő elemszám 2. eset!) Selejthányad kártya paraméterei: CL p = p = 0,075 UCL p = p + 3 p 1 n p = 0, , ,075 74,7 = 0,165 LCL p = p 3 p 1 n p = 0, ,032 = 0,021 < 0 Kemény Sándor: Statisztikai minőség- (megfelelőség-) szabályozás
40 Kemény Sándor: Statisztikai minőség- (megfelelőség-) szabályozás Selejthányad kártya Példa: P:,07497 (,07497); Sigma:,03047 (,03047); n: 74,7 0,165 0, ,000 + Értékelés! 12. dia
41 Ellenőrzőkártya mintázatok FTH FBH CL ABH ATH x A B C C B A
42 Kemény Sándor: Statisztikai minőség- (megfelelőség-) szabályozás Ellenőrzőkártya mintázatok Western Electric szabályai a véletlenszerű viselkedés ellenőrzésére: Kemény Sándor: Statisztikai minőség- (megfelelőség-) szabályozás
43 Kemény Sándor: Statisztikai minőség- (megfelelőség-) szabályozás SPC következő szint GTK mester szabadon választható tantárgy Minőségmenedzsment módszerek (SPC) BMEGT20MN34 - Erdei János
44 Összefoglalás és mint-a kérdések Hogyan használná egy adatgyűjtő lapot (milyen információkat rögzítene)? Mire használná az alábbi módszert adatgyűjtő lap /? Nevezze meg a folyamatra ható zavarok típusait, röviden jellemezze azokat (1 mondat) és azonosítsa az ábra szakaszait! Mit jelent a szabályozottság és a képesség fogalma a minőségmenedzsmentben? (szemléltesse ábrával is!) Ismertesse és röviden jellemezze a minőségképességelemzés célját, típusait, módszereit! Ismertesse a minőségképesség-indexek típusait, adja meg az alábbi esetben a konkrét értékeket! Értékelje az adott minőségképesség, ill. korrigált minőségképesség-indexszel jellemezhető folyamatot!
45 Összefoglalás és mint-a kérdések Jellemezze a gyártási folyamatot, melynek végtermékeiből az alábbi mintát vettük! (Gauss-papír segítségével ránézésre!) Mi az R&R vizsgálat lényege, melyek az ingadozás forrásai? Röviden mutassa be a folyamatok szabályozása megközelítést! Mi az ellenőrzőkártyák használatának alapgondolata és melyek a segítségükkel megvalósítható fejlesztés fázisai? Milyen 2 fő típusuk van, mi az alapvető különbségük? Melyek az ellenőrzőkártya jellemző típusai, hozzon rájuk 1-1 példát? Készítsen egy ellenőrzőkártyát az alábbi adatok segítségével, értelmezze az ábrát!
46 Összefoglalás Köszönöm a figyelmet!
47 Visszajelzés! 10. ea.
17. Folyamatszabályozás módszerei
17. Folyamatszabályozás módszerei 200. Egyéb módszerek A folyamatszabályozás alapjai Minőségképesség-elemzés Mérőeszköz-képességelemzés Ellenőrzőkártyák Bedzsula Bálint 249 215. Mérőeszköz-képességelemzés
RészletesebbenMinőségellenőrzés. Miről lesz szó? STATISZTIKAI FOLYAMATSZABÁLYOZÁS (SPC) Minőségszabályozás. Mikor jó egy folyamat? Ellenőrzés Szabályozás
STATISZTIKAI FOLYAMATSZABÁLYOZÁS (SPC) Erdei János Miről lesz szó? Mit értünk folyamatok stabilitásán, szabályozottságán? Mit jelent a folyamatképesség, és hogyan mérhetjük azt? Hogyan vehetjük észre a
RészletesebbenMinőségmenedzsment (módszerek) BEDZSULA BÁLINT
Minőségmenedzsment (módszerek) BEDZSULA BÁLINT Bedzsula Bálint gyakornok Menedzsment és Vállalatgazdaságtan Tanszék Q. épület A.314. bedzsula@mvt.bme.hu http://doodle.com/bedzsula.mvt Az előző előadás
RészletesebbenBudapesti Műszaki és Gazdaságtudományi Egyetem
Budapesti Műszaki és Gazdaságtudományi Egyetem Gazdaság- és Társadalomtudományi Kar Üzleti Tudományok Intézet Menedzsment és Vállalatgazdaságtan Tanszék MINŐSÉGMENEDZSMENT ALAPJAI 11. előadás Folyamatszabályozás
RészletesebbenKockázatalapú szabályozó kártyák tervezése, kiválasztása és folyamatra illesztése
Kockázatalapú szabályozó kártyák tervezése, kiválasztása és folyamatra illesztése Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése konvergencia program
RészletesebbenTájékoztató. Normális (Gauss-) eloszlás. Következtetés hibái. Mintavételi alapelvek. Minőségmenedzsment módszerek (SPC) 3σmás szabály.
Minőségmenedzsment módszerek (SPC) Erdei János Tájékoztató Előadó: Erdei János Tematika: Minőségmenedzsment módszerek Folyamatszabályozás logikája, eszközei, mintavételes átvételi minőség-ellenőrzés alapjai
RészletesebbenKockázatalapú változó paraméterű szabályozó kártya kidolgozása a mérési bizonytalanság figyelembevételével
Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a mérési bizonytalanság figyelembevételével Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése
RészletesebbenStatistical Process Control (SPC), Statisztikai Folyamatszabályozás
Statistical Process Control (), Statisztikai Folyamatszabályozás 1 2 2 A statisztikai folyamatszabályozás () koncepcióját először Dr Walter Shewhart fejlesztette ki a Bell laboratóriumokban, az 1920-as
Részletesebben17. Folyamatszabályozás módszerei
17. Folyamatszabályozás módszerei 200. Egyéb módszerek A folyamatszabályozás alapjai Minőségképesség-elemzés Mérőeszköz-képességelemzés Ellenőrzőkártyák Bedzsula Bálint 247 Adatgyűjtő lap 200. A probléma
RészletesebbenMINŐSÉGÜGYI STATISZTIKAI MÓDSZEREK. Dr. Drégelyi-Kiss Ágota ÓE BGK
MINŐSÉGÜGYI STATISZTIKAI MÓDSZEREK Dr. Drégelyi-Kiss Ágota ÓE BGK e-mail: dregelyi.agota@bgk.uni-obuda.hu 1 STATISZTIKA CÉLJA Sokaság Következtetés bizonytalansága Véletlenszerű és reprezentatív mintavétel
Részletesebben4. A méréses ellenırzı kártyák szerkesztése
4. A méréses ellenırzı kártyák szerkesztése A kártyákat háromféle módon alkalmazhatjuk. Az elızetes adatfelvétel során a fı feladat az eloszlás paramétereinek (µ és σ ) becslése a további ellenırzésekhez.
RészletesebbenHanthy László Tel.: 06 20 9420052
Hanthy László Tel.: 06 20 9420052 Néhány probléma a gyártási folyamatok statisztikai szabályzásával kapcsolatban Miben kellene segíteni az SPC alkalmazóit? Hanthy László T: 06(20)9420052 Megválaszolandó
RészletesebbenKockázatkezelés a rezgésdiagnosztikában többváltozós szabályozó kártya segítségével
Kockázatkezelés a rezgésdiagnosztikában többváltozós szabályozó kártya segítségével Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése konvergencia program
RészletesebbenMINİSÉGSZABÁLYOZÁS. Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia
MINİSÉGSZABÁLYOZÁS A GÉPIPARBAN Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia ISO 9000:2008 A STATISZTIKAI MÓDSZEREK HASZNÁLATÁRÓL A statisztikai módszerek
RészletesebbenDefine Measure Analyze Improve Control. F(x), M(ξ),
5.5.5. Six Sigma Minőségmenedzsment Statisztikai folyamatszabályozási (SPC) rendszer Erdei János Egy fegyelmezett és erősen mennyiségi szemléletű folyamatfejlesztési megközelítés, amely a gyártási, szolgáltatási
Részletesebben6. Előadás. Vereb György, DE OEC BSI, október 12.
6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás
RészletesebbenNagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
Részletesebbenbiometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
RészletesebbenHat Szigma Zöldöves Tanfolyam Tematikája
Hat Szigma Zöldöves Tanfolyam Tematikája Megjegyzések: A tanfolyamon haszáljuk: - Minitab statisztikai (demo) és - Companion by Minitab projektek menedzselésére szolgáló (demo) szoftvert, átadunk: - egy
RészletesebbenKockázatok és mérési bizonytalanság kezelése a termelésmenedzsment területén
Kockázatok és mérési bizonytalanság kezelése a termelésmenedzsment területén Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és ködtetése konvergencia program Projekt
RészletesebbenIII. Képességvizsgálatok
Képességvizsgálatok 7 A folyamatképesség vizsgálata A 3 fejezetben láttuk, hogy ahhoz, hogy egy folyamat jellemzıjét a múltbeli viselkedése alapján egy jövıbeni idıpontra kiszámíthassuk (pontosabban, hogy
RészletesebbenStatisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Részletesebben[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
RészletesebbenHipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
RészletesebbenKosztyán Zsolt Tibor Katona Attila Imre
Kockázatalapú többváltozós szabályozó kártya kidolgozása a mérési bizonytalanság figyelembe vételével Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és ködtetése konvergencia
RészletesebbenIATF 16949:2016 szabvány fontos kapcsolódó kézikönyvei (5 Core Tools):
APQP IATF 16949:2016 szabvány fontos kapcsolódó kézikönyvei (5 Core Tools): PPAP (Production Part Approval Process) Gyártás jóváhagyási folyamat APQP (Advanced Product Quality Planning and Control Plans)
RészletesebbenVéletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
RészletesebbenKontrol kártyák használata a laboratóriumi gyakorlatban
Kontrol kártyák használata a laboratóriumi gyakorlatban Rikker Tamás tudományos igazgató WESSLING Közhasznú Nonprofit Kft. 2013. január 17. Kis történelem 1920-as években, a Bell Laboratórium telefonjainak
RészletesebbenBiomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
RészletesebbenMinőségelmélet kommunikációs dosszié MINŐSÉGELMÉLET. Anyagmérnök mesterképzés (MsC) Tantárgyi kommunikációs dosszié
MINŐSÉGELMÉLET Anyagmérnök mesterképzés (MsC) Tantárgyi kommunikációs dosszié MISKOLCI EGYETEM Műszaki Anyagtudományi Kar Energia- és Minőségügyi Intézet Minőségügyi Intézeti Kihelyezett Tanszék MISKOLC,
RészletesebbenSTATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
RészletesebbenGVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet
GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő
RészletesebbenMatematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása
Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból
RészletesebbenHipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
RészletesebbenSTATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
RészletesebbenMintavételes átvételi ellenőrzés
Mintavételes átvételi ellenőrzés öntés a tétel átvételéről vagy visszautasításáról beszállítótól érkezett tétel másik részlegből érkezett tétel kiszállítandó tétel Nem paraméterbecslés, hanem hipotézisvizsgálat
Részletesebben1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
RészletesebbenMÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI
MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk
RészletesebbenBevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
RészletesebbenMéréstechnika II. Mérési jegyzőkönyvek FSZ képzésben részt vevők részére. Hosszméréstechnikai és Minőségügyi Labor Mérési jegyzőkönyv
Méréstechnika II. ek FSZ képzésben részt vevők részére Összeállította: Horváthné Drégelyi-Kiss Ágota Kis Ferenc Lektorálta: Galla Jánosné 009 Tartalomjegyzék. gyakorlat Mérőhasábok, mérési eredmény megadása.
RészletesebbenMérési hibák 2006.10.04. 1
Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség
RészletesebbenMINİSÉGBIZTOSÍTÁS 12. ELİADÁS Május 9. Összeállította: Dr. Kovács Zsolt egyetemi tanár
MINİSÉGBIZTOSÍTÁS Összeállította: Dr. Kovács Zsolt egyetemi tanár 12. ELİADÁS 2011. Május 9. NyME FMK Terméktervezési és Gyártástechnológiai Intézet http://tgyi.fmk.nyme.hu NYME FMK TGYI 2006.08.28. 1.
RészletesebbenYou created this PDF from an application that is not licensed to print to novapdf printer (
4.6 4. 4.8 4.4 4.0 4.6 4. 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 Run: Run: Run: Run: 4 Run: 5 Run: 6 4.6 4. 4.8 4.4 4.0 4.6 4. 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5
RészletesebbenPopulációbecslések és monitoring
Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány
RészletesebbenAnyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Mérési adatok feldolgozása Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Statisztika 1/ 22 Mérési eredmények felhasználása Tulajdonságok hierarchikus
RészletesebbenTartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE
Tartalomjegyzék 5 Tartalomjegyzék Előszó I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE 1. fejezet: Kontrollált kísérletek 21 1. A Salk-oltás kipróbálása 21 2. A porta-cava sönt 25 3. Történeti kontrollok 27 4. Összefoglalás
RészletesebbenHipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
RészletesebbenBiometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
Részletesebbenföldtudományi BSc (geológus szakirány) Matematikai statisztika elıadás, 2014/ félév 6. elıadás
Matematikai statisztika elıadás, földtudományi BSc (geológus szakirány) 2014/2015 2. félév 6. elıadás Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább
RészletesebbenSTATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba
Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum
RészletesebbenKiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.
Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak
RészletesebbenKísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján
RészletesebbenBudapesti kihelyezett Six Sigma képzés
Partner a változásban Budapesti kihelyezett Six Sigma képzés 2018. ősz Green Belt képzési tematika Draft tájékoztató 2 1 GB képzés tematika: a tartalmi elemek fő fejezetei A képzés jellemzően az alábbiakban
RészletesebbenPopulációbecslések és monitoring
Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány
Részletesebben10. 11. Előadás A folyamatok szabályozása statisztikai alapon
10. 11. Előadás A folyamatok szabályozása statisztikai alapon 10. - Képességi és beállítottsági mutatók 11. - Szabályozókártyák BMF RKK BTRI Minőségirányítási Intézeti Tanszél 1 Folyamatok szabályozása
RészletesebbenTARTALOMJEGYZÉK. 1. téma Átlagbecslés (Barna Katalin) téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23
TARTALOMJEGYZÉK 1. téma Átlagbecslés (Barna Katalin).... 7 2. téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23 3. téma Összefüggések vizsgálata, korrelációanalízis (Dr. Molnár Tamás)... 73 4. téma Összefüggések
RészletesebbenFüggetlenségvizsgálat, Illeszkedésvizsgálat
Varga Beatrix, Horváthné Csolák Erika Függetlenségvizsgálat, Illeszkedésvizsgálat 4. előadás Üzleti statisztika A sokaság/minta több ismérv szerinti vizsgálata A statisztikai elemzés egyik ontos eladata
RészletesebbenMinőségirányítási rendszerek 1. előadás
Minőségirányítási rendszerek 1. előadás 2013.02.15. Dr. Szabó Gábor Csaba, valamint Dr. Topár József (BME GTK Menedzsment és Vállaltgazdaságtan Tanszék) előadásfóliáinak felhasználásával összeállította
RészletesebbenTermelés- és szolgáltatásmenedzsment
Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Előrejelzési módszerek 14. Az előrejelzési modellek felépítése
RészletesebbenFolyadékszcintillációs spektroszkópia jegyz könyv
Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés
RészletesebbenBiostatisztika VIII. Mátyus László. 19 October
Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.
RészletesebbenAdatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
RészletesebbenElemi statisztika fizikusoknak
1. oldal Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu Az adatok leírása, megismerése és összehasonlítása 2-1 Áttekintés 2-2 Gyakoriság eloszlások 2-3 Az adatok
RészletesebbenNYF-MMFK Műszaki Alapozó és Gépgyártástechnológia Tanszék gépészmérnöki szak III. évfolyam
Tantárgy neve: INFORMATIKÁVAL TÁMOGATOTT MINŐSÉGMENEDZSMENT Tantárgy kódja: GM 2503 Meghirdetés féléve: 5. Össz-óraszám (elm. + gyak.): 28 5. 14 1 1 14 14 Összesen: 14 14 Előfeltétel (tantárgyi kód): GM
RészletesebbenHipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
RészletesebbenStatisztika Elıadások letölthetık a címrıl
Statisztika Elıadások letölthetık a http://www.cs.elte.hu/~arato/stat*.pdf címrıl Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább 1-α valószínőséggel
RészletesebbenA Statisztika alapjai
A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati
RészletesebbenKettőnél több csoport vizsgálata. Makara B. Gábor
Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10
RészletesebbenMSA - mérőrendszer elemzés (MSA - measurement systems analysis)
Mi értünk mérőrendszer alatt? MSA - mérőrendszer elemzés (MSA - measurement systems analysis) Ahhoz, hogy valamilyen termék, folyamatparamétert értékelni, összehasonlítani tudjunk pl.: elvárt értékkel,
RészletesebbenHipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58
u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ
RészletesebbenKettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet
Kettőnél több csoport vizsgálata Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet Gyógytápszerek (kilokalória/adag) Három gyógytápszer A B C 30 5 00 10 05 08 40 45 03 50 35 190 Kérdések: 1. Van-e
RészletesebbenSTATISZTIKAI ALAPOK. Statisztikai alapok_eloszlások_becslések 1
STATISZTIKAI ALAPOK Statisztikai alapok_eloszlások_becslések 1 Pulzus példa Egyetemista fiatalokból álló csoport minden tagjának (9 fő) megmérték a pulzusát (PULSE1), majd kisorsolták ki fusson és ki nem
RészletesebbenKísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement
RészletesebbenWIL-ZONE TANÁCSADÓ IRODA
WIL-ZONE TANÁCSADÓ IRODA Berényi Vilmos vegyész, analitikai kémiai szakmérnök akkreditált minőségügyi rendszermenedzser regisztrált vezető felülvizsgáló Telefon és fax: 06-33-319-117 E-mail: info@wil-zone.hu
RészletesebbenA mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv
Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési
Részletesebben2013.03.11. Az SPC alapjai. Az SPC alapjai SPC 5. 5. Az SPC (Statistic Process Control) módszer. Dr. Illés Balázs
SPC 5 5. Az SPC (Statistic Process Control) módszer Dr. Illés Balázs BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM ELEKTRONIKAI TECHNOLÓGIA TANSZÉK Az SPC alapjai SPC (Statistical Process Controll) =
Részletesebben10. Mintavételi tervek minısítéses ellenırzéshez
10. Mintavételi tervek minısítéses ellenırzéshez Az átvételi ellenırzés akkor minısítéses, ha a mintában a selejtes elemek számát ill. a hibák számát vizsgáljuk, és ebbıl vonunk le következtetést a tételbeli
RészletesebbenMinőség-képességi index (Process capability)
Minőség-képességi index (Process capability) Folyamatképesség 68 12. példa Egy gyártási folyamatban a minőségi jellemző becsült várható értéke µ250.727 egység, a variancia négyzetgyökének becslése σ 1.286
RészletesebbenSPC egyszerően, olcsón, eredményesen
SPC egyszerően, olcsón, eredményesen Rába Tivadar Six Sigma Black Belt BorgWarner Turbo System April 7, 2007 1 Mi az SPC? Miért pont SPC? Tán Show Program for Costumer? Szakértık Statisztikai folyamat
RészletesebbenNormális eloszlás tesztje
Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra
RészletesebbenBiometria gyakorló feladatok BsC hallgatók számára
Biometria gyakorló feladatok BsC hallgatók számára 1. Egy üzem alkalmazottainak megoszlása az elért teljesítmény %-a szerint a következı: Norma teljesítmény % Dolgozók száma 60-80 30 81-90 70 91-100 90
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
RészletesebbenMatematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók
Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz
RészletesebbenKÖVETKEZTETŐ STATISZTIKA
ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak
RészletesebbenMATEMATIKA HETI 5 ÓRA
EURÓPAI ÉRETTSÉGI 2008 MATEMATIKA HETI 5 ÓRA IDŐPONT : 2008. június 5 (reggel) A VIZSGA IDŐTARTAMA: 4 óra (240 perc) MEGENGEDETT ESZKÖZÖK: Európai képletgyűjtemény Nem programozható, nem grafikus számológép
RészletesebbenAz SPC (statisztikai folyamatszabályozás) ingadozásai
A TERMELÉSI FOLYAMAT MINÕSÉGKÉRDÉSEI, VIZSGÁLATOK 2.3 Az SPC (statisztikai folyamatszabályozás) ingadozásai Tárgyszavak: statisztikai folyamatszabályozás; Shewhart-féle szabályozókártya; többváltozós szabályozás.
RészletesebbenStatisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék
Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 17. Outline 1 Leíró statisztikák 2 Középértékek Példa 3 Szóródási mutatók Példa 4 Néhány megjegyzés a grafikonokról 5 Számítások
RészletesebbenIskolai jelentés. 10. évfolyam szövegértés
2008 Iskolai jelentés 10. évfolyam szövegértés Az elmúlt évhez hasonlóan 2008-ban iskolánk is részt vett az országos kompetenciamérésben, diákjaink matematika és szövegértés teszteket, illetve egy tanulói
RészletesebbenTöbb valószínűségi változó együttes eloszlása, korreláció
Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...
RészletesebbenI. GÉPKÉPESSÉG-VIZSGÁLAT
I. GÉPKÉPESSÉG-VIZSGÁLAT Jelen esettanulmány [1] felhasználásával készült. A minőség és megbízhatóság kapcsolatrendszerének értelmezésénél említettük, hogy a termelő berendezések esetében a két fogalom
RészletesebbenMódszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!
BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22
RészletesebbenSTATISZTIKAI ALAPOK. Statisztikai alapok_eloszlások_becslések 1
STATISZTIKAI ALAPOK Statisztikai alapok_eloszlások_becslések 1 Pulzus példa Egyetemista fiatalokból álló csoport minden tagjának (9 fő) megmérték a pulzusát (PULSE1), majd kisorsolták ki fusson és ki nem
RészletesebbenStatisztika I. 11. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek
RészletesebbenStatisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
RészletesebbenTöbbváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
RészletesebbenMatematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
RészletesebbenMINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti:
1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 100% 90% 80% 70% 60% 50% 2010 2011 40% 30% 20% 10% 0% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% a) Nevezze
RészletesebbenMINŐSÉGMENEDZSMENT ALAPJAI. 7. előadás Folyamatfejlesztési modellek és módszerek 1. (minőségmenedzsment módszerek) Bedzsula Bálint
MINŐSÉGMENEDZSMENT ALAPJAI 7. előadás Folyamatfejlesztési modellek és módszerek 1. (minőségmenedzsment módszerek) bedzsula@mvt.bme.hu Amiről szó lesz ma Választ adok a következőkre: Mi jellemzi a minőségmenedzsment
RészletesebbenTPM egy kicsit másképp Szollár Lajos, TPM Koordinátor
TPM egy kicsit másképp Szollár Lajos, TPM Koordinátor 2013.06.18 A TPM A TPM a Total Productive Maintenance kifejezés rövidítése, azaz a teljes, a gyártásba integrált karbantartást jelenti. A TPM egy állandó
Részletesebben