Kockázatkezelés a rezgésdiagnosztikában többváltozós szabályozó kártya segítségével
|
|
- Miklós Juhász
- 6 évvel ezelőtt
- Látták:
Átírás
1 Kockázatkezelés a rezgésdiagnosztikában többváltozós szabályozó kártya segítségével Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése konvergencia program Projekt megvalósulása: Dr. Kosztyán Zsolt Tibor, Katona Attila Kvantitatív Módszerek Intézeti Tanszék Az Európai Unió és a Magyar Állam támogatásával nyújtott összes támogatás: Ft.
2 Tartalom Bevezetés Statisztikai folyamatszabályozó kártyák Bizonytalanság elemzés Egydimenziós kockázatalapú kártyák kialakítása Többdimenziós kockázatalapú kártyák kialakítása 2
3 A módszertani kutatócsoport kutatási területei Módszerek fejlesztése Projektmenedzsment támogatása Dr. Kosztyán Zsolt Tibor Németh Anikó Kurbucz Marcell Tamás Termelés- és karbantartásmenedzsment támogatása Dr. Kosztyán Zsolt Tibor Hegedűs Csaba Katona Attila Imre 3
4 A statisztikai folyamatszabályozás SPC (Statistical Process Control) Cél: A minőség színvonalának biztosítása A módszer alapja: Folyamatok statisztikai jellemzőinek vizsgálata m (g) 8,2 8,1 8 7,9 7,8 7,7 7,6 Minta átlag LCL UCL Előnye: Legelterjedtebb alkalmazás 7,5 8, n 8,1 Eszközei: Ellenőrző kártyák Hátrány: Mérési bizonytalanság figyelmen kívül hagyása m(g) 8 7,9 7,8 7,7 7,6 Átlag értékek MAi UCL LCL 7, n 4
5 Dekompozíció 5
6 Dekompozíció 5
7 A mérési bizonytalanság 0,25 p m i m i m i p m i m iβ A vizsgált változó értéke 0,2 0,15 0,1 0,05 p p m i p p m i p m i α Mintavételi csoport sorszáma 6
8 Megfelelőség értékelés Megfelelőség értékelésekor: Mérési bizonytalanság Pénzügyi kockázat α Fedezeti értékek Megfelelő Döntés Nem megfelelő Tény Megfelelő Nem megfelelő π 11 =r 11 -c 11 π 10 =r 10 -c 10 π 01 =r 01 -c 01 π 00 =r 00 -c 00 β μ 1 β μ 0 π=fedezeti érték r=bevétel c=kiadás α/2 α/2 7
9 Bizonytalanság figyelembevétele és redukciója Figyelembevétel helyesen Figyelembevétel helytelenül Bizonytalanság figyelmen kívül hagyása 8
10 Egydimenziós kockázatalapú kártyacsalád kialakítása Ellenőrző kártyák Megbízhatóság alapú Azonos mintaelemszám, azonos mintavételi időköz Különböző mintaelemszám/ különböző mintavételi időköz Azonos mintaelemszám, azonos mintavételi időköz Kockázatalapú Különböző mintaelemszám/ különböző mintavételi időköz Normáleloszlás p, np, x, s, r, CUSUM, EWMA, u, c, MA CUSUM, x, EWMA, MA, p, np, s RB x RBMA,RBCUSUM Normálistól eltérő eloszlástípus x, CUSUM, R, EWMA, MA x, CUSUM, EWMA, MA RBMA, RBEWMA RBMA, RBEWMA 9
11 Bizonytalanságok kezelése A termék megfelelőségét a méreteinek tűréshatárokhoz viszonyított elhelyezkedése szabja meg. A mérési eredményekre alapozott döntéseink hibásak lehetnek: A jó terméket selejtezzük le. (elsőfajú hiba) y i y i (k) A rossz terméket engedjük tovább. (másodfajú hiba) y i (1) y i (2) Nem megfelelő Megfelelő Ezek a hibák költségekkel járnak t 10
12 Bizonytalanságok kezelése A Mérési termék pontjainkat megfelelőségét helyettesítjük a méreteinek tartományokkal, tűréshatárokhoz amelyek nagyságát viszonyított a mérőműszer elhelyezkedése szórása és a szabja döntési meg. költségek határozzák meg. y i y i (k) A k U és k L értékek optimalizálandóak adott döntési és selejtezési költségek mellett. y i (1) y i (2) Nem megfelelő Megfelelő t 10
13 Bizonytalanságok kezelése A Mérési termék pontjainkat megfelelőségét helyettesítjük a méreteinek tartományokkal, tűréshatárokhoz amelyek nagyságát viszonyított a mérőműszer elhelyezkedése szórása és a szabja döntési meg. költségek határozzák meg. y i y i (k) A k U és k L értékek optimalizálandóak adott döntési és selejtezési költségek mellett. y i (1) y i (2) Nem megfelelő Megfelelő t 10
14 Bizonytalanságok kezelése A Mérési termék pontjainkat megfelelőségét helyettesítjük a méreteinek tartományokkal, tűréshatárokhoz amelyek nagyságát viszonyított a mérőműszer elhelyezkedése szórása és a szabja döntési meg. költségek határozzák meg. 8 A k U és k L értékek optimalizálandóak adott döntési és selejtezési költségek mellett. y i Gáz töltettömeg (g) 7,95 7,9 7,85 7,8 7,75 y i (k) y i (2) y i (1) Nem megfelelő Megfelelő K USL K LSL K LSL K USL Mintavételi csoport sorszáma t 10
15 Felmerült kérdések Lehet-e a kártyákat kvázi-stacioner esetben használni? Kell-e folyamatosan mérni? Mikor, hányszor vegyünk mintát? 11
16 Adaptív módszer a mintavételezésre H+k 12
17 Adaptív módszer a mintavételezésre H+k 12
18 Adaptív módszer a mintavételezésre H+k 12
19 Adaptív módszer a mintavételezésre H+k 12
20 Adaptív módszer a mintavételezésre H+k 12
21 Adaptív módszer a mintavételezésre H+k 12
22 Adaptív módszer a mintavételezésre H+k 12
23 Adaptív módszer a mintavételezésre H+k 12
24 Adaptív módszer a mintavételezésre H+k 12
25 Adaptív módszer a mintavételezésre H+k 12
26 Adaptív módszer a mintavételezésre H+k 12
27 Adaptív módszer a mintavételezésre H+k 12
28 Adaptív módszer a mintavételezésre H+k 12
29 Adaptív módszer a mintavételezésre Teljesítőképesség H+k 12
30 Többdimenziós szabályozókártyák kialakítása kihívások Mért paraméterek korrelációja Mérési bizonytalanság korrelációja Normalitási feltételek nemteljesülése Korrelálatlanság Függetlenség 13
31 RBT 2 T 2 12 Megbízhatóság alapú T 2 kártya 10 T2 T 2 értékek T2(mérési bizonytalan sággal) UCL Mintavétel sorszáma A módszer alkalmazásával számított beavatkozási határ 14
32 RBT 2 RBT 2 12 Kockázatalapú T 2 kártya 10 T2 T 2 értékek T2(mérési bizonytalan sággal) UCL RBT 2 =Risk-Based T 2 Mintavétel sorszáma A módszer alkalmazásával számított beavatkozási határ 14
33 Többváltozós kockázatalapú kártyak kialakítása Adatgyűjtés Eloszlástípus Átlag Szórás Mérési bizonytalanság Specifikációs határok Mintavétel költsége 15
34 Többváltozós kockázatalapú kártyak kialakítása Adatgyűjtés 15
35 Többváltozós kockázatalapú kártyak kialakítása Adatgyűjtés Megbízhatóság alapú T 2 kártya T2 Kártyatervezés T 2 értékek T2(mé rési bizony talansá ggal) Mintavétel sorszáma 15
36 Többváltozós kockázatalapú kártyak kialakítása Adatgyűjtés Kártyatervezés Költség értékek meghatározása Költség értékek Tény Megfelelő Nem megfelelő Döntés Megfelelő Nem megfelelő c 11 c 10 c 01 c 00 15
37 Többváltozós kockázatalapú kártyak kialakítása Adatgyűjtés 12 Kockázatalapú T 2 kártya Kártyatervezés Költség értékek meghatározása T 2 értékek Mintavétel sorszáma T2 Beavatkozási határ módosítása 15
38 Többváltozós kockázatalapú kártyak kialakítása Adatgyűjtés 12 Kockázatalapú T 2 kártya Kártyatervezés Költség értékek meghatározása T 2 értékek Mintavétel sorszáma kt2 Beavatkozási határ módosítása Új beavatkozási határ 15
39 Gyakorlati alkalmazhatóság bemutatása Példa: szivattyú rezgésének 3 dimenzióban mért sebessége 4 Idősorok összehasonlítása 3,5 Mért értékek 3 2,5 2 1,5 Az illesztett függvény paramétereit folyamatosan felül kell vizsgálni Idősor 1 Idősor 2 Idősor 3 1. Idősorra illesztett görbe 2. Idősorra illesztett görbe 3. Idősorra illesztett görbe 1 0, Mérés sorszáma 16
40 Gyakorlati alkalmazhatóság bemutatása 17
41 Gyakorlati alkalmazhatóság bemutatása Az első és másodfajú hibák számának alakulása a módszer alkalmazása során Mérési bizonytalanság figyelembe vétele nélkül Mérési bizonytalanság figyelembe vételével 0 Elsőfajú hibák száma Másodfajú hibák száma 19
42 Köszönjük a megtisztelő figyelmet! Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése konvergencia program 20
Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a mérési bizonytalanság figyelembevételével
Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a mérési bizonytalanság figyelembevételével Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése
RészletesebbenKockázatok és mérési bizonytalanság kezelése a termelésmenedzsment területén
Kockázatok és mérési bizonytalanság kezelése a termelésmenedzsment területén Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és ködtetése konvergencia program Projekt
RészletesebbenKockázatalapú szabályozó kártyák tervezése, kiválasztása és folyamatra illesztése
Kockázatalapú szabályozó kártyák tervezése, kiválasztása és folyamatra illesztése Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése konvergencia program
RészletesebbenKosztyán Zsolt Tibor Katona Attila Imre
Kockázatalapú többváltozós szabályozó kártya kidolgozása a mérési bizonytalanság figyelembe vételével Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és ködtetése konvergencia
RészletesebbenHipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
RészletesebbenMinőségellenőrzés. Miről lesz szó? STATISZTIKAI FOLYAMATSZABÁLYOZÁS (SPC) Minőségszabályozás. Mikor jó egy folyamat? Ellenőrzés Szabályozás
STATISZTIKAI FOLYAMATSZABÁLYOZÁS (SPC) Erdei János Miről lesz szó? Mit értünk folyamatok stabilitásán, szabályozottságán? Mit jelent a folyamatképesség, és hogyan mérhetjük azt? Hogyan vehetjük észre a
RészletesebbenMinőségmenedzsment (módszerek) BEDZSULA BÁLINT
Minőségmenedzsment (módszerek) BEDZSULA BÁLINT Bedzsula Bálint gyakornok Menedzsment és Vállalatgazdaságtan Tanszék Q. épület A.314. bedzsula@mvt.bme.hu http://doodle.com/bedzsula.mvt Az előző előadás
RészletesebbenMinőségmenedzsment (módszerek) BEDZSULA BÁLINT
Minőségmenedzsment (módszerek) BEDZSULA BÁLINT Bedzsula Bálint gyakornok Menedzsment és Vállalatgazdaságtan Tanszék Q. épület A.314. bedzsula@mvt.bme.hu http://doodle.com/bedzsula.mvt Az előző előadás
Részletesebben17. Folyamatszabályozás módszerei
17. Folyamatszabályozás módszerei 200. Egyéb módszerek A folyamatszabályozás alapjai Minőségképesség-elemzés Mérőeszköz-képességelemzés Ellenőrzőkártyák Bedzsula Bálint 249 215. Mérőeszköz-képességelemzés
RészletesebbenDesign of a risk-based control chart with variable. Pannon Egyetem, Kvantitatív Módszerek Intézeti Tanszék. Le Bélier Formaöntöde Zrt.
Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a statisztikai folyamatszabályozásban Design of a risk-based control chart with variable parameters in statistical process control Dr. Kosztyán
Részletesebben[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
Részletesebbenbiometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
RészletesebbenAnyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Mérési adatok feldolgozása Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Statisztika 1/ 22 Mérési eredmények felhasználása Tulajdonságok hierarchikus
RészletesebbenHipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
RészletesebbenDr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.
Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati
RészletesebbenNEMZETKÖZI KONFERENCIA KIADVÁNYA
" KARBANTARTÁS SZEREPE AZ ÜZLETI FOLYAMATOK ÚJRAGONDOLÁSÁBAN" NEMZETKÖZI KONFERENCIA KIADVÁNYA 2014. június 2-3 Veszprém Szerkesztő: Dr. Balogh Ágnes Lektorálta: Dr. Gaál Zoltán ISBN 978-963-396-012-7
Részletesebben4. A méréses ellenırzı kártyák szerkesztése
4. A méréses ellenırzı kártyák szerkesztése A kártyákat háromféle módon alkalmazhatjuk. Az elızetes adatfelvétel során a fı feladat az eloszlás paramétereinek (µ és σ ) becslése a további ellenırzésekhez.
RészletesebbenGazdálkodás- és Szervezéstudományok Doktori Iskola. Katona Attila Imre. Kockázatalapú statisztikai folyamatszabályozás
PANNON EGYETEM Gazdálkodás- és Szervezéstudományok Doktori Iskola Katona Attila Imre Kockázatalapú statisztikai folyamatszabályozás című doktori (Ph.D) értekezés tézisgyűjteménye Témavezető: Dr. habil.
RészletesebbenGVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet
GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő
RészletesebbenSTATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
RészletesebbenSTATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
RészletesebbenKOCKÁZATALAPÚ DÖNTÉSEK TÁMOGATÁSA A MÉRÉSI BIZONYTALANSÁG FIGYELEMBEVÉTELÉVEL HEGEDŰS CSABA 1
KOCKÁZATALAPÚ DÖNTÉSEK TÁMOGATÁSA A MÉRÉSI BIZONYTALANSÁG FIGYELEMBEVÉTELÉVEL HEGEDŰS CSABA 1 Összefoglalás: A tevékenységirányításban a döntések nagy része mérési eredményekre épül, azonban ezek a döntések
RészletesebbenHanthy László Tel.: 06 20 9420052
Hanthy László Tel.: 06 20 9420052 Néhány probléma a gyártási folyamatok statisztikai szabályzásával kapcsolatban Miben kellene segíteni az SPC alkalmazóit? Hanthy László T: 06(20)9420052 Megválaszolandó
RészletesebbenAz SPC (statisztikai folyamatszabályozás) ingadozásai
A TERMELÉSI FOLYAMAT MINÕSÉGKÉRDÉSEI, VIZSGÁLATOK 2.3 Az SPC (statisztikai folyamatszabályozás) ingadozásai Tárgyszavak: statisztikai folyamatszabályozás; Shewhart-féle szabályozókártya; többváltozós szabályozás.
RészletesebbenBevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
RészletesebbenSTATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba
Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum
RészletesebbenMatematikai geodéziai számítások 6.
Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre
RészletesebbenTöbbváltozós lineáris regressziós modell feltételeinek tesztelése I.
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós
RészletesebbenA mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra
A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra Vörös Zsuzsanna NÉBIH RFI tervezési referens 2013. április 17. Egy kis felmérés nem kor Következtetések: 1. a jelenlevők nemi megoszlása:
RészletesebbenGazdálkodás- és Szervezéstudományok Doktori Iskola
PANNON EGYETEM Gazdálkodás- és Szervezéstudományok Doktori Iskola Hegedűs Csaba Kockázatalapú döntések támogatása a megfelelőség értékelésében a mérési bizonytalanság figyelembevételével című doktori (Ph.D)
RészletesebbenMódszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!
BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22
RészletesebbenMatematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
RészletesebbenTöbbváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
RészletesebbenMatematikai geodéziai számítások 6.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi
RészletesebbenBAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett
RészletesebbenStatisztika I. 12. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 1. előadás Előadó: Dr. Ertsey Imre Regresszió analízis A korrelációs együttható megmutatja a kapcsolat irányát és szorosságát. A kapcsolat vizsgálata során a gyakorlatban ennél messzebb
RészletesebbenTermelés- és szolgáltatásmenedzsment
Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Előrejelzési módszerek 14. Az előrejelzési modellek felépítése
RészletesebbenA mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv
Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési
RészletesebbenSTATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel
RészletesebbenKontrol kártyák használata a laboratóriumi gyakorlatban
Kontrol kártyák használata a laboratóriumi gyakorlatban Rikker Tamás tudományos igazgató WESSLING Közhasznú Nonprofit Kft. 2013. január 17. Kis történelem 1920-as években, a Bell Laboratórium telefonjainak
RészletesebbenStatisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
RészletesebbenA kockázatkezelés az államháztartási belső kontrollrendszer vonatkozásában
A kockázatkezelés az államháztartási belső kontrollrendszer vonatkozásában Előadó: Ivanyos János Trusted Business Partners Kft. ügyvezetője Magyar Közgazdasági Társaság Felelős Vállalatirányítás szakosztályának
RészletesebbenMINŐSÉGÜGYI STATISZTIKAI MÓDSZEREK. Dr. Drégelyi-Kiss Ágota ÓE BGK
MINŐSÉGÜGYI STATISZTIKAI MÓDSZEREK Dr. Drégelyi-Kiss Ágota ÓE BGK e-mail: dregelyi.agota@bgk.uni-obuda.hu 1 STATISZTIKA CÉLJA Sokaság Következtetés bizonytalansága Véletlenszerű és reprezentatív mintavétel
RészletesebbenStatisztikai folyamatszabályozás Minitab szoftverrel
Statisztikai folyamatszabályozás Minitab szoftverrel A Minitab általános statisztikai szoftvert elsősorban statisztikai feladatok megoldására (oktatásra és minőségfejlesztésre) használják, és másodsorban
RészletesebbenDefine Measure Analyze Improve Control. F(x), M(ξ),
5.5.5. Six Sigma Minőségmenedzsment Statisztikai folyamatszabályozási (SPC) rendszer Erdei János Egy fegyelmezett és erősen mennyiségi szemléletű folyamatfejlesztési megközelítés, amely a gyártási, szolgáltatási
RészletesebbenMatematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása
Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból
RészletesebbenKockázatkezelés és biztosítás 1. konzultáció 2. rész
Kockázatkezelés és biztosítás 1. konzultáció 2. rész Témák 1) A kockázatkezelés eszközei 2) A kockázatkezelés szakmai területei 3) A kockázatelemzés nem holisztikus technikái 4) Kockázatfinanszírozás 5)
Részletesebbeny ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
RészletesebbenSzámítógépes döntéstámogatás. Statisztikai elemzés
SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre
RészletesebbenNagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
RészletesebbenStatistical Process Control (SPC), Statisztikai Folyamatszabályozás
Statistical Process Control (), Statisztikai Folyamatszabályozás 1 2 2 A statisztikai folyamatszabályozás () koncepcióját először Dr Walter Shewhart fejlesztette ki a Bell laboratóriumokban, az 1920-as
Részletesebben1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
RészletesebbenKísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján
RészletesebbenStatisztika elméleti összefoglaló
1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11
RészletesebbenHipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58
u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ
RészletesebbenBiomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
RészletesebbenModellezési Kockázat. Kereskedelmi Banki Kockázatmodellezés. Molnár Márton Modellezési Vezető (Kockázatkezelés)
Modellezési Kockázat Kereskedelmi Banki Kockázatmodellezés Molnár Márton Modellezési Vezető (Kockázatkezelés) Modellek Kockázata Adathibák Szabályozói elvárások figyelmen kívül hagyása Becslési Bizonytalanság
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
RészletesebbenStatisztikai alapfogalmak a klinikai kutatásban. Molnár Zsolt PTE, AITI
Statisztikai alapfogalmak a klinikai kutatásban Molnár Zsolt PTE, AITI Bevezetés Research vs. Science Kutatás Tudomány Szerkezeti háttér hiánya Önkéntesek (lelkes kisebbség) Beosztottak (parancsot teljesítő
Részletesebben2013.03.11. Az SPC alapjai. Az SPC alapjai SPC 5. 5. Az SPC (Statistic Process Control) módszer. Dr. Illés Balázs
SPC 5 5. Az SPC (Statistic Process Control) módszer Dr. Illés Balázs BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM ELEKTRONIKAI TECHNOLÓGIA TANSZÉK Az SPC alapjai SPC (Statistical Process Controll) =
RészletesebbenA hallgatói preferenciák elemzése statisztikai módszerekkel
A hallgatói preferenciák elemzése statisztikai módszerekkel Kosztyán Zsolt Tibor 1, Katona Attila Imre 1, Neumanné Virág Ildikó 2, Telcs András 1 1,2 Pannon Egyetem, 1 Kvantitatív Módszerek Intézeti Tanszék,
RészletesebbenElemszám becslés. Kaszaki József Ph.D. SZTE ÁOK Sebészeti Műtéttani Intézet
Elemszám becslés Kaszaki József Ph.D. SZTE ÁOK Sebészeti Műtéttani Intézet Miért fontos? Gazdasági okok: Túl kevés elem esetén nem tudjuk kimutatni a kívánt hatást Túl kevés elem esetén olyan eredmény
RészletesebbenTöbb valószínűségi változó együttes eloszlása, korreláció
Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...
RészletesebbenKísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement
Részletesebben6. Előadás. Vereb György, DE OEC BSI, október 12.
6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás
RészletesebbenA minőség és a kockázat alapú gondolkodás kapcsolata
Mottó: A legnagyobb kockázat nem vállalni kockázatot A minőség és a kockázat alapú gondolkodás kapcsolata DEMIIN XVI. Katonai Zsolt 1 Ez a gép teljesen biztonságos míg meg nem nyomod ezt a gombot 2 A kockázatelemzés
RészletesebbenA mágneses szuszceptibilitás vizsgálata
Bán Marcell ETR atonosító BAMTACT.ELTE Beadási határidő: 2012.12.13 A mágneses szuszceptibilitás vizsgálata 1.1 Mérés elve Anyagokat mágneses térbe helyezve, a tér hatására az anygban mágneses dipólusmomentum
RészletesebbenKOCKÁZATKEZELÉS A REZGÉSDIAGNOSZTIKÁBAN TÖBBVÁLTOZÓS SZABÁLYOZÓ KÁRTYA SEGÍTSÉGÉVEL
KOCKÁZATKEZELÉS A REZGÉSDIAGNOSZTIKÁBAN TÖBBVÁLTOZÓS SZABÁLYOZÓ KÁRTYA SEGÍTSÉGÉVEL Dr. Kosztyán Zsolt Tibor, Pannon Egyetem, Kvantitatív Módszerek Intézeti Tanszék Katona Attila Imre, Pannon Egyetem,
RészletesebbenAz előadás tartalma. Debrecen 110 év hosszúságú csapadékadatainak vizsgálata Ilyés Csaba Turai Endre Szűcs Péter Ciklusok felkutatása
Miskolci Egyetem Környezetgazdálkodási Intézet Geofizikai és Térinformatikai Intézet MTA-ME Műszaki Földtudományi Kutatócsoport Debrecen 110 év hosszúságú csapadékadatainak vizsgálata Ilyés Csaba Turai
RészletesebbenVéletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
RészletesebbenA Bodrog-folyó vízkémiai adatainak elemzése egy- és kétváltozós statisztikai
A Bodrog-folyó vízkémiai adatainak elemzése egy- és kétváltozós statisztikai Készítette: Fodor András Gergő Környezettan Bsc 2010. Belső témavezető: Kovács József Külső témavezető: Tanos Péter módszerekkel
RészletesebbenVIZSGADOLGOZAT. I. PÉLDÁK (60 pont)
VIZSGADOLGOZAT (100 pont) A megoldások csak szöveges válaszokkal teljes értékűek! I. PÉLDÁK (60 pont) 1. példa (13 pont) Az egyik budapesti könyvtárban az olvasókból vett 400 elemű minta alapján a következőket
RészletesebbenNagy pontosságú rövidtávú ivóvíz fogyasztás előrejelzés Készítette: Bibok Attila PhD Hallgató MHT XXXIV. Vándorgyűlés
Budapesti Műszaki és Gazdaságtudományi Egyetem Építőmérnöki kar Vízi Közmű és Környezetmérnöki Tanszék Nagy pontosságú rövidtávú ivóvíz fogyasztás előrejelzés Készítette: Bibok Attila PhD Hallgató MHT
RészletesebbenBiometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem
Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem Előadások-gyakorlatok 2018-ban (13 alkalom) IX.12, 19, 26, X. 3, 10, 17, 24, XI. 7, 14,
RészletesebbenPopulációbecslések és monitoring
Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány
RészletesebbenMegszületett a digitális minőségügyi szakember? XXIV. Nemzeti Minőségügyi Konferencia
Megszületett a digitális minőségügyi szakember? XXIV. Nemzeti Minőségügyi Konferencia Online szavazás részletei zeetings.com/adapto XXIV. Nemzeti Minőségügyi Konferencia 2 Bevezető Szemfelszedő, Jéghordó,
RészletesebbenTájékoztató. Normális (Gauss-) eloszlás. Következtetés hibái. Mintavételi alapelvek. Minőségmenedzsment módszerek (SPC) 3σmás szabály.
Minőségmenedzsment módszerek (SPC) Erdei János Tájékoztató Előadó: Erdei János Tematika: Minőségmenedzsment módszerek Folyamatszabályozás logikája, eszközei, mintavételes átvételi minőség-ellenőrzés alapjai
RészletesebbenMódszertani hozzájárulás a Szegénység
Módszertani hozzájárulás a Szegénység Többváltozós Statisztikai Méréséhez MTA doktori értekezés főbb eredményei Hajdu ottó BCE KTK Statisztika Tanszék BME GTK Pénzügyek Tanszék Hajdu Ottó 1 Egyváltozós
Részletesebbene (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:
Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:
RészletesebbenMINİSÉGBIZTOSÍTÁS 12. ELİADÁS Május 9. Összeállította: Dr. Kovács Zsolt egyetemi tanár
MINİSÉGBIZTOSÍTÁS Összeállította: Dr. Kovács Zsolt egyetemi tanár 12. ELİADÁS 2011. Május 9. NyME FMK Terméktervezési és Gyártástechnológiai Intézet http://tgyi.fmk.nyme.hu NYME FMK TGYI 2006.08.28. 1.
Részletesebbeny ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell
Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.
RészletesebbenPopulációbecslések és monitoring
Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány
RészletesebbenHat Szigma Zöldöves Tanfolyam Tematikája
Hat Szigma Zöldöves Tanfolyam Tematikája Megjegyzések: A tanfolyamon haszáljuk: - Minitab statisztikai (demo) és - Companion by Minitab projektek menedzselésére szolgáló (demo) szoftvert, átadunk: - egy
RészletesebbenÁltalánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg
LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott
RészletesebbenA kockázatkezelő feladatai az AEGON gyakorlatában Zombor Zsolt 2013. május 30.
A kockázatkezelő feladatai az AEGON gyakorlatában Zombor Zsolt 2013. május 30. aegon.com Védelmi vonalak Kockázat 1. védelmi vonal Mindenki (Aktuáriusok) 2. védelmi vonal Kockázatkezelés, Compliance 3.
RészletesebbenSPC egyszerően, olcsón, eredményesen
SPC egyszerően, olcsón, eredményesen Rába Tivadar Six Sigma Black Belt BorgWarner Turbo System April 7, 2007 1 Mi az SPC? Miért pont SPC? Tán Show Program for Costumer? Szakértık Statisztikai folyamat
RészletesebbenGondolatok a belső auditorok felkészültségéről és értékeléséről Előadó: Turi Tibor vezetési tanácsadó, CMC az MSZT/MCS 901 szakértője
Gondolatok a belső auditorok felkészültségéről és értékeléséről Előadó: Turi Tibor vezetési tanácsadó, CMC az MSZT/MCS 901 szakértője 1 Az előadás témái Emlékeztetőül: összefoglaló a változásokról Alkalmazási
RészletesebbenFeladatok: pontdiagram és dobozdiagram. Hogyan csináltuk?
Feladatok: pontdiagram és dobozdiagram Hogyan csináltuk? Alakmutatók: ferdeség, csúcsosság Alakmutatók a ferdeség és csúcsosság mérésére Ez eloszlás centrumát (középérték) és az adatok centrum körüli terpeszkedését
RészletesebbenOPPONENSI VÉLEMÉNY. Hegedűs Csaba. című, a Pannon Egyetem Gazdálkodás- és Szervezéstudományok Doktori Iskolára benyújtott doktori disszertációjáról
OPPONENSI VÉLEMÉNY Hegedűs Csaba Kockázatalapú döntések támogatása a megfelelőség értékelésben a mérési bizonytalanság figyelembevételével című, a Pannon Egyetem Gazdálkodás- és Szervezéstudományok Doktori
RészletesebbenVarianciaanalízis 4/24/12
1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása
RészletesebbenSTATISZTIKAI MÓDSZEREK ALKALMAZÁSA SZABVÁNYOK ÁTTEKINTÉSE (ISO TC 69)
STATISZTIKAI MÓDSZEREK ALKALMAZÁSA SZABVÁNYOK ÁTTEKINTÉSE (ISO TC 69) 1. AZ ISO SZABVÁNYOK TÉRKÉPE 2. A SZABVÁNYOK BEMUTATÁSA 3. HASZNÁLATI TANÁCSOK 4. A STATISZTIKAI SZABVÁNYOK ÉS AZ ISO 9001 5. JAVASLATOK
RészletesebbenTranszformátor, Mérőtranszformátor Állapot Tényező szakértői rendszer Vörös Csaba Tarcsa Dániel Németh Bálint Csépes Gusztáv
Transzformátor, Mérőtranszformátor Állapot Tényező szakértői rendszer Vörös Csaba Tarcsa Dániel Németh Bálint Csépes Gusztáv Áttekintés A Rendszer jelentősége Állapotjellemzők MérőTranszformátor Állapot
RészletesebbenMátrix-alapú projektkockázatmenedzsment
Mátrix-alapú projektkockázatmenedzsment Hegedűs Csaba, Kosztyán Zsolt Tibor Pannon Egyetem, Kvantitatív Módszerek Intézeti Tanszék XXXII. Magyar Operációkutatási Konferencia Cegléd, 2017.06.14-16. Informatikai
RészletesebbenHipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
RészletesebbenBiomatematika 13. Varianciaanaĺızis (ANOVA)
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:
RészletesebbenYou created this PDF from an application that is not licensed to print to novapdf printer (
4.6 4. 4.8 4.4 4.0 4.6 4. 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 Run: Run: Run: Run: 4 Run: 5 Run: 6 4.6 4. 4.8 4.4 4.0 4.6 4. 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5
RészletesebbenMéréstechnika II. Mérési jegyzőkönyvek FSZ képzésben részt vevők részére. Hosszméréstechnikai és Minőségügyi Labor Mérési jegyzőkönyv
Méréstechnika II. ek FSZ képzésben részt vevők részére Összeállította: Horváthné Drégelyi-Kiss Ágota Kis Ferenc Lektorálta: Galla Jánosné 009 Tartalomjegyzék. gyakorlat Mérőhasábok, mérési eredmény megadása.
RészletesebbenFüggvények határértéke és folytonossága
Függvények határértéke és folytonossága 7. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények határértéke p. / Függvény határértéke az x 0 helyen Definíció. Legyen D R, f
RészletesebbenValidálás és bizonytalanságok a modellekben
Validálás és bizonytalanságok a modellekben Hálózattervezési Dr. Berki Zsolt Tel.: 06-20-3516879, E-mail: berki@fomterv.hu Miért modellezünk? Mert előírás Nem! "It is impossible to predict the future but
RészletesebbenKettőnél több csoport vizsgálata. Makara B. Gábor
Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10
Részletesebben