A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv
|
|
- Erika Péter
- 8 évvel ezelőtt
- Látták:
Átírás
1 Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési elv A mérés tudományos alapja. Például: - a hőmérséklet mérésére használt termoelektromos effektus - a villamos feszültség mérésére alkalmazott Josephson-effektus - a sebesség mérésére alkalmazott Dopplereffektus 1
2 mérési módszer A mérés elvégzéséhez szükséges, fő vonalakban leírt műveletek logikai sorrendje. mérési eljárás Egy adott mérés során a mérési módszernek megfelelő módon elvégzendő, részletesen leírt, konkrét műveletek összessége. A mérési eljárást gyakran írásban rögzítik, és magát a dokumentumot nevezik mérési eljárásnak vagy módszernek. Elég részletesnek kell lennie ahhoz, hogy a mérés minden további információ nélkül elvégezhető lehessen. mérendő mennyiség, mért mennyiség A mérés tárgyát képező konkrét mennyiség. A mérendő mennyiség jellemzéséhez további mennyiségekre, például az időre, a hőmérsékletre, nyomásra vonatkozó megállapítások is szükségesek lehetnek. Pl.: Egy vízminta gőznyomása 20 0 C-on. befolyásoló mennyiség A mérendő mennyiségtől különböző olyan mennyiség, amely hatással van a mérési eredményre. Például: - a hosszúság méréséhez használt mikrométer hőmérséklete; - a frekvencia a váltakozó elektromos feszültség amplitúdójának mérésekor; 2
3 mérőjel A mérendő mennyiséget reprezentáló és azzal függvénykapcsolatban levő mennyiség. A mérőjelet használó méréseket közvetett mérésnek nevezzük. Például: - egy nyomástávadó villamos kimenőjele; - az elektrokémiában koncentráció-különbség mérésére használt cella elektromotoros ereje; transzformált érték Adott mérendő mennyiséget reprezentáló mérőjel értéke. A mérési eredmények általános és alapvető metrológiai fogalmai és definíciói mérési eredmény A mérendő mennyiségnek tulajdonított, méréssel kapott érték. A mérési eredmény megadásakor egyértelművé kell tenni, hogy az az értékmutatásra, a korrigálatlan eredményre, a korrigált eredményre, vagy több érték átlagára vonatkozik. A mérési eredmény teljes megadása a mérési bizonytalanságra vonatkozó információt is tartalmazza. 3
4 értékmutatás (mérőeszközé) A mérendő mennyiségnek a mérőeszköz által szolgáltatott értéke. Az értékmutatás lehet a mérendő mennyiség, a mérőjel értéke, vagy a mérendő mennyiség kiszámításához szükséges valamely más mennyiség. korrigálatlan eredmény A mérési eredmény a rendszeres hiba korrekcióba vétele előtt. korrigált eredmény A mérési eredmény a rendszeres hiba korrekcióba vétele után. mérési pontosság A mérési eredménynek és a mérendő mennyiség valódi értékének a közelisége. A pontosság kvalitatív fogalom, de értéke - a valódi érték megismerhetetlensége miatt -nem ismerhető meg. 4
5 megismételhetőség Azonos mérendő mennyiség azonos feltételek között megismételt mérései során kapott eredmények közelisége. A megismételhetőségi feltételek azonos mérési módszert, azonos mérőszemélyt, azonos mérőeszközt, azonos mérési helyet, és rövid időn belüli ismétléseket jelentenek. Az eredmények szóródásának valamelyik jellemzőjével fejezhető ki. reprodukálhatóság Azonos mérendő mennyiség megváltozott feltételek mellett megismételt mérései során kapott eredmények közelisége. A specifikálásához a megismételhetőségnél felsorolt feltételek változásának specifikálása szükséges. Mennyiségileg az eredmények szóródásának valamelyik jellemzőjével fejezhető ki. tapasztalati szórás Ugyanazon mérendő mennyiség meghatározása céljából végzett n számú mérésből álló sorozat esetében az eredmények szóródását jellemző s mennyiség. mérési bizonytalanság A mérési eredményhez társított paraméter, amely a mérendő mennyiségnek megalapozottan tulajdonítható értékek szóródását jellemzi. A mérést a meghatározhatatlan mérési pontosság helyett, a mérési eredményhez társított mérési bizonytalansággal tudjuk jellemezni. 5
6 hiba (mérési hiba) A mérési eredmény mínusz a mérendő mennyiség valódi értéke. Mivel a valódi érték nem határozható meg, a valóságban a konvencionális valódi értéket kell használni. relatív hiba A mérési hiba osztva a mérendő mennyiség valódi értékével. Mivel a valódi érték nem meghatározható, a gyakorlatban helyette a konvencionális valódi értéket kell kel használni. véletlen hiba A mérési eredmény mínusz az az átlagérték, amely ugyanazon mérendő mennyiség megismételhetőségi feltételek között végzett végtelen sok mérésének eredményéül adódna. Mivel csak véges számú mérést lehet elvégezni, a véletlen hibára csak becslés adható. rendszeres hiba Az az átlagérték, amely ugyanazon mérendő mennyiség megismételhetőségi feltételek között végzett végtelen sok mérésének eredményéül adódna, mínusz a mérendő mennyiség valódi értéke. A rendszeres hiba = a hiba a véletlen hiba. A valódi értékhez hasonlóan a rendszeres hiba és annak okai sem lehetnek teljesen ismertek. 6
7 korrekció A rendszeres hiba kompenzálása céljából a korrigálatlan mérési eredményhez algebrailag hozzáadott érték. A korrekció a becsült rendszeres hiba mínusz egyszerese. Mivel a rendszeres hiba nem lehet teljesen ismert, a kompenzálás sem lehet teljes. korrekciós tényező Számtényező, amellyel a rendszeres hiba kompenzálása céljából a korrigálatlan eredményt meg kell szorozni. Mivel a rendszeres hiba nem lehet teljesen ismert, a kompenzáció sem lehet teljes. Mérési bizonytalanság A mérési bizonytalanság fogalma A mérési eredmény bizonytalansága a mérendő mennyiség értékére vonatkozó pontos ismeret hiányát fejezi ki. Az ugyan olyan körülmények között meghatározott, és ugyan olyan módon kifejezett mérési bizonytalanság értéke a mérési eredmény minőségét jellemzi. 7
8 A mérési bizonytalanság fogalma A mérést terhelő hibák mértéke a mérendő mennyiség valódi értékének megismerhetetlensége miatt nem számszerűsíthető, és így a mérési eredmény kvantitatív jellemzésére nem alkalmas. Erre a célra csak a mérési bizonytalanság alkalmazható. A bizonytalanság lehetséges forrásai A mérendő mennyiség hiányos definíciója. A mérendő mennyiség definíciójának nem kielégítő realizálása. Az etalonok és anyagminták bizonytalansága. A mérési módszerekben és eljárásokban alkalmazott közelítések és hipotézisek. A mérőműszerek véges felbontóképessége és érzékenysége. A bizonytalanság lehetséges forrásai A környezeti feltételek mérésre vonatkozó hatásával kapcsolatos nem megfelelő ismeretek. A környezeti feltételek mérésének bizonytalansága. Az analóg műszerek leolvasási hibái. A nem elég reprezentatív mintavétel. A nem megfelelő minta előkészítés. A kalibrációs függvény paramétereinek bizonytalansága. A mérési bizonytalanság meghatározása Mérési bizonytalanságként általában a standard bizonytalanságot határozzuk meg. Standard bizonytalanság: Egy mérés eredményeinek bizonytalansága szórásként kifejezve. 8
9 Standard bizonytalanság meghatározása A standard bizonytalanság becsléséhez szükséges a mérést befolyásoló összes mennyiség hatásának ismerete ill. becslése. A bizonytalanság meghatározását két különböző módon végezhetjük el: 1. a standard bizonytalanság A típusú értékelése, 2. a standard bizonytalanság B típusú értékelése. A standard bizonytalanság A típusú értékelése A bizonytalanság kiértékelésének a mérési sorozat statisztikai kiértékelésén alapuló módszere. Ennél a módszernél standard bizonytalanságnak a megismételhetőségi feltételek mellett elvégzett mérési sorozat korrigált tapasztalati szórását tekintjük: u s 1 n 1 n i 1 ( x i x) 2 A standard bizonytalanság B típusú értékelése A bizonytalanság kiértékelésének a mérési sorozatok statisztikai kiértékelésétől eltérő, más módszere. A standard bizonytalanság ilyen meghatározása tapasztalaton és általános ismereteken alapuló elmélyült szaktudást igényel. Bizonyos esetekben ez a típusú értékelés elérheti, sőt meg is haladhatja az A típusú értékelés megbízhatóságát. A standard bizonytalanság B típusú értékelése Az értékeléshez szükséges információk forrásai: Korábbi mérési adatok. A mérés során használt anyagok és műszerek viselkedésére és tulajdonságaira vonatkozó tapasztalatok, általános ismeretek. A műszer gyártójától kapott specifikáció. Kalibrálási v. más bizonylatolt adatok. Kézikönyvi adatoknak tulajdonított bizonytalanságok. 9
10 Kiterjesztett mérési bizonytalanság A kiterjesztési tényező megválasztása A mérési eredmény körüli olyan tartományt meghatározó mennyiség, amelytől elvárható, hogy a mérendő mennyiségnek ésszerűen tulajdonítható értékek eloszlásának egy nagy hányadát magában foglalja. U k u k: kiterjesztési tényező, a kiválasztott megbízhatósági szint függvénye % μ=0, σ=1 (standardizált normál eloszlás sűrűségfüggvénye) x s, k Megbízhatósági szint n % k 95 % 5 1,96 99 % 1 2,58 99,9 % 0,1 3,29 99,99 % 0,01 4 s x s A bizonytalanság megadása függvényként Az előzőekben leírt módszerekkel a mért mennyiség (x) egy-egy konkrét értékéhez tartozó bizonytalanságot tudjuk meghatározni. A bizonytalanság több ponton történő meghatározása után lehetőség van az u(x), vagy U(x) függvények pl. regresszióval történő - meghatározására. A mérési eredmény teljes megadása A mérési eredmény teljes megadását a kiterjesztett mérési bizonytalanság felhasználásával a tudjuk megtenni: x±u, m% megbízhatósági szinten. Pl.: R=280±6,2 Ω, 95% megbízhatósági szinten. 10
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett
Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I
Kalibrálás és mérési bizonytalanság Drégelyi-Kiss Ágota I. 120. dregelyi.agota@bgk.uni-obuda.hu Kalibrálás Azoknak a mőveleteknek az összessége, amelyekkel meghatározott feltételek mellett megállapítható
Gyártástechnológia alapjai Méréstechnika rész. Előadások (2.) 2011.
Gyártástechnológia alapjai Méréstechnika rész Előadások (2.) 2011. 1 Méréstechnika előadás 2. 1. Mérési hibák 2. A hiba rendszáma 3. A mérési bizonytalanság 2 Mérési folyamat A mérési folyamat négy fő
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési adatok feldolgozása A mérési eredmény megadása A mérés dokumentálása A vállalati mérőeszközök nyilvántartása 2 A mérés célja: egy
Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
etalon etalon (folytatás) Az etalonok és a kalibrálás általános és alapvető metrológiai fogalmai és definíciói
Etalonok, kalibrálás, rekalibrálás, visszavezethetőség, referencia eljárások Az etalonok és a kalibrálás általános és alapvető metrológiai fogalmai és definíciói etalon Mérték, mérőeszköz, anyagminta vagy
Előadások (1.) ÓE BGK Galla Jánosné, 2011.
Előadások (1.) 2011. 1 Metrológiai alapfogalmak Mérési módszerek Mérési folyamat Mértékegységek Etalonok 2 Metrológiai alapfogalmak 3 A mérendő (mérhető) mennyiség előírt hibahatárokon belüli meghatározása
A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell
A mérés A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell törekedni, minél közelebb kerülni a mérés során a valós mennyiség megismeréséhez. Mérési
Mérési hibák 2006.10.04. 1
Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
Gyártástechnológia alapjai Méréstechnika rész 2011.
Gyártástechnológia alapjai Méréstechnika rész 2011. 1 Kalibrálás 2 Kalibrálás A visszavezethetőség alapvető eszköze. Azoknak a műveleteknek az összessége, amelyekkel meghatározott feltételek mellett megállapítható
Mérési bizonytalanság becslése (vizsgálólaboratóriumok munkája során)
III. Roncsolásmentes Anyagvizsgáló Konferencia és Kiállítás Eger, 2003. április 7-11. Szóbeli előadás kézirat Előadó: Pintér László tudományos osztályvezető, Építésügyi Minőségellenőrző Innovációs Kht.
MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI
MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk
Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)
Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba
Anyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Mérési adatok feldolgozása Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Statisztika 1/ 22 Mérési eredmények felhasználása Tulajdonságok hierarchikus
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.
Mérés szerepe a mérnöki tudományokban Mértékegységrendszerek. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
Mérés szerepe a mérnöki tudományokban Mértékegységrendszerek Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem Alapinformációk a tantárgyról a tárgy oktatója: Dr. Berta Miklós Fizika és
Méréselmélet és mérőrendszerek
Méréselmélet és mérőrendszerek 6. ELŐADÁS KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba eredete o
Mérési hibák. 2008.03.03. Méréstechnika VM, GM, MM 1
Mérési hibák 2008.03.03. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség általánosított
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján
A mérési eredmény megadása
A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű
A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András
Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András A kockázat fogalma A kockázat (def:) annak kifejezése, hogy valami nem kívánt hatással lesz a valaki/k értékeire, célkitűzésekre. A kockázat
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
2011. ÓE BGK Galla Jánosné,
2011. 1 A mérési folyamatok irányítása Mérésirányítási rendszer (a mérés szabályozási rendszere) A mérési folyamat megvalósítása, metrológiai megerősítés (konfirmálás) Igazolás (verifikálás) 2 A mérési
6. Előadás. Vereb György, DE OEC BSI, október 12.
6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel
Mérési struktúrák
Mérési struktúrák 2007.02.19. 1 Mérési struktúrák A mérés művelete: a mérendő jellemző és a szimbólum halmaz közötti leképezés megvalósítása jel- és rendszerelméleti aspektus mérési folyamat: a leképezést
Minden mérésre vonatkozó minimumkérdések
Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása
Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból
ANYAGTECHNOLÓGIA. Kalibrálási idő meghatározása kontrollkártyás módszerrel I. Szemán József jszeman@freemail.hu. A mérésről
ANYAGTECHNOLÓGIA Kalibrálási idő meghatározása kontrollkártyás módszerrel I. Szemán József jszeman@freemail.hu Determination of calibration intervals using control chart method I. The MSZ EN ISO 9001:
Matematikai geodéziai számítások 6.
Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre
mérőeszköz mérték mérőátalakító Mérőeszközök általános és alapvető metrológiai fogalmai és definíciói
mérőeszköz Mérőeszközök általános és alapvető metrológiai fogalmai és definíciói Önmagában, vagy kiegészítő eszközökkel együtt mérésre használt eszköz. mérték Adott mennyiség egy vagy több ismert értékét
BAGME11NLF Munkavédelmi mérnökasszisztens Galla Jánosné, 2012.
BAGME11NLF Munkavédelmi mérnökasszisztens Galla Jánosné, 2012. 1 1. A mérési folyamatok irányítása 2. A mérés folyamata 2.1. Mérési módszerek 2.2. A mérési folyamat 2.3. A jelátalakítók csoportosítása
METROLÓGIA ÉS A MINŐSÉG
METROLÓGIA Tartalom I. Metrológia és a minőség II. Metrológiai alapfogalmak III. Mérésügyi törvény és rendelet koncepciói és főbb előírásai - Törvényes metrológia (mérésügy) IV. Ipari Metrológia V. Metrológia
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement
Matematikai geodéziai számítások 6.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi
Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?
1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen
ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VEGYIPAR ISMERETEK EMELT SZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK
06. OKTÓBER VEGYIPAR ISMERETEK EMELT SZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK 06. OKTÓBER. tétel Anyagvizsgálatok gyakorlat I. Viszkozitás mérése Höppler-féle viszkoziméterrel A mérés megkezdése
A mérési bizonytalanság
NEMZETI AKKREDITÁLÓ TESTÜLET Nemzeti Akkreditálási Rendszer A mérési bizonytalanság meghatározása kalibrálásnál NAR-EA-4/0 1. kiadás 003. január EA Európai Akkreditálási Együttmûködés EA-4-0 Referencia
Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
A Statisztika alapjai
A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati
Méréstechnika GM, VI BSc 1
Mérési hibák 1 Mérés jel- és rendszerelméleti modellje Mérési hibák/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség általánosított
Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg
LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott
1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
Méréselmélet MI BSc 1
Mérés és s modellezés 2008.02.15. 1 Méréselmélet - bevezetés a mérnöki problémamegoldás menete 1. A probléma kitűzése 2. A hipotézis felállítása 3. Kísérlettervezés 4. Megfigyelések elvégzése 5. Adatok
4. A mérések pontosságának megítélése
4 A mérések pontosságának megítélése 41 A hibaterjedési törvény Ha egy F változót az x 1,x,x 3,,x r közvetlenül mért adatokból számítunk ki ( ) F = F x1, x, x3,, x r (41) bizonytalanságát a hibaterjedési
Normális eloszlás tesztje
Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra
Mérés és modellezés 1
Mérés és modellezés 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni kell
Minőségirányítási rendszerek 9. előadás
Minőségirányítási rendszerek 9. előadás 013.05.03. MÉRŐESZKÖZÖK MÉRÉSTECHNIKAI TULAJDONSÁGAI Mérőeszköz rendszeres hibája (Systematic Error of Measurement) alatt ugyanannak az értéknek megismételhetőségi
1. Metrológiai alapfogalmak. 2. Egységrendszerek. 2.0 verzió
Mérés és adatgyűjtés - Kérdések 2.0 verzió Megjegyzés: ezek a kérdések a felkészülést szolgálják, nem ezek lesznek a vizsgán. Ha valaki a felkészülése alapján önállóan válaszolni tud ezekre a kérdésekre,
Többváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
Szenzorok bevezető és szükséges fogalmak áttekintése
Szenzorok bevezető és szükséges fogalmak áttekintése 1 SI alapegységek 2 SI alapegységek Definició: Az alapegység az alapmennyiség mérésének az egysége a mennyiségek adott rendszerében. Minden egyes alapegység
Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
Méréstechnika II. Mérési jegyzőkönyvek FSZ képzésben részt vevők részére. Hosszméréstechnikai és Minőségügyi Labor Mérési jegyzőkönyv
Méréstechnika II. ek FSZ képzésben részt vevők részére Összeállította: Horváthné Drégelyi-Kiss Ágota Kis Ferenc Lektorálta: Galla Jánosné 009 Tartalomjegyzék. gyakorlat Mérőhasábok, mérési eredmény megadása.
A maximum likelihood becslésről
A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának
Többváltozós lineáris regressziós modell feltételeinek tesztelése I.
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós
x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK SPM BEARINGCHECKER KÉZI CSAPÁGYMÉRŐ HASZNÁLATA /OKTATÁSI SEGÉDLET DIAGNOSZTIKA TANTÁRGYHOZ/
DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK SPM BEARINGCHECKER KÉZI CSAPÁGYMÉRŐ HASZNÁLATA /OKTATÁSI SEGÉDLET DIAGNOSZTIKA TANTÁRGYHOZ/ ÖSSZEÁLLÍTOTTA: DEÁK KRISZTIÁN 2013 Az SPM BearingChecker
Mérés és modellezés Méréstechnika VM, GM, MM 1
Mérés és modellezés 2008.02.04. 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni
A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015
A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel
Munkavédelmi mérnökasszisztens Galla Jánosné, 2012.
Munkavédelmi mérnökasszisztens Galla Jánosné, 2012. 1 Félévi követelmény: évközi jegy Az évközi jegy megszerzésének módja: A feladatok határidőre történő beadása és legalább elégséges zárthelyi dolgozatok
TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS
TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS ACCREDITATION OF TESTLab CALIBRATION AND EXAMINATION LABORATORY XXXVIII. Sugárvédelmi Továbbképző Tanfolyam - 2013 - Hajdúszoboszló Eredet Laboratóriumi
S atisztika 2. előadás
Statisztika 2. előadás 4. lépés Terepmunka vagy adatgyűjtés Kutatási módszerek osztályozása Kutatási módszer Feltáró kutatás Következtető kutatás Leíró kutatás Ok-okozati kutatás Keresztmetszeti kutatás
Statisztikai becslés
Kabos: Statisztika II. Becslés 1.1 Statisztikai becslés Freedman, D. - Pisani, R. - Purves, R.: Statisztika. Typotex, 2005. Reimann J. - Tóth J.: Valószínűségszámítás és matematikai statisztika. Tankönyvkiadó,
MÉRÉSTECHNIKA. BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) márc. 1
MÉRÉSTECHNIKA BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) 463 26 14 16 márc. 1 Méréstechnikai alapfogalmak CÉL Mennyiségek mérése Fizikai mennyiség Hosszúság L = 2 m Mennyiségi minőségi
Méréstechnikai alapfogalmak
Méréstechnikai alapfogalmak 1 Áttekintés Tulajdonság, mennyiség Mérés célja, feladata Metrológia fogalma Mérıeszközök Mérési hibák Mérımőszerek metrológiai jellemzıi Nemzetközi mértékegységrendszer Munka
Kontrol kártyák használata a laboratóriumi gyakorlatban
Kontrol kártyák használata a laboratóriumi gyakorlatban Rikker Tamás tudományos igazgató WESSLING Közhasznú Nonprofit Kft. 2013. január 17. Kis történelem 1920-as években, a Bell Laboratórium telefonjainak
Akusztikai tervezés a geometriai akusztika módszereivel
Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika
Mérési hibák Méréselmélet PE MIK MI, VI BSc 1
Mérési hibák 2008.03.10. Méréselmélet PE MIK MI, VI BSc 1 Mérés jel- és rendszerelméleti modellje Mérési hibák/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis
1. feladat Regresszióanalízis. Legkisebb négyzetek elve 2. feladat Az iskola egy évfolyamába tartozó diákok átlagéletkora 15,8 év, standard deviációja 0,6 év. A 625 fős évfolyamból hány diák fiatalabb
Biostatisztika VIII. Mátyus László. 19 October
Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze. Célja: - a sokaságot
Az SI mértékegységrendszer
PTE Műszaki és Informatikai Kar DR. GYURCSEK ISTVÁN Az SI mértékegységrendszer http://hu.wikipedia.org/wiki/si_mértékegységrendszer 1 2015.09.14.. Az SI mértékegységrendszer Mértékegységekkel szembeni
Ón-ólom rendszer fázisdiagramjának megszerkesztése lehűlési görbék alapján
Ón-ólom rendszer fázisdiagramjának megszerkesztése lehűlési görbék alapján Készítette: Zsélyné Ujvári Mária, Szalma József; 2012 Előadó: Zsély István Gyula, Javított valtozat 2016 Laborelőkészítő előadás,
Populációbecslések és monitoring
Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány
Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás
STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x
HÁLÓZATI SZINTŰ DINAMIKUS BEHAJLÁSMÉRÉS MÚLTJA JELENE II.
HÁLÓZATI SZINTŰ DINAMIKUS BEHAJLÁSMÉRÉS MÚLTJA JELENE II. MÉTA-Q Kft. Baksay János 2007. 06. 12. MAÚT ÚTÉPÍTÉSI AKADÉMIA 11. 1. FOGALOM: Teherbírás. Teherbíráson általában határ-igénybevételt értünk 2.
Mérés és adatgyűjtés
Mérés és adatgyűjtés 5. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 5. óra Verzió: 1.1 Utolsó frissítés: 2011. április 12. 1/20 Tartalom I 1 Demók 2 Digitális multiméterek
A diplomaterv keretében megvalósítandó feladatok összefoglalása
A diplomaterv keretében megvalósítandó feladatok összefoglalása Diplomaterv céljai: 1 Sclieren résoptikai módszer numerikus szimulációk validálására való felhasználhatóságának vizsgálata 2 Lamináris előkevert
Ívhegesztő áramforrások felülvizsgálata. Kristóf Csaba Tápiószele, 2018
Ívhegesztő áramforrások felülvizsgálata Kristóf Csaba Tápiószele, 2018 Tartalom Időszakos biztonsági felülvizsgálat Validálás, érvényesítő ellenőrzés (MSZ EN 50504 szerint) Verifikálás, igazoló ellenőrzés
STATISZTIKA. ( x) 2. Eloszlásf. 9. gyakorlat. Konfidencia intervallumok. átlag. 45% 40% 35% 30% 25% 20% 15% 10% 5% 0% (cm)
Normális eloszlás sűrűségfüggvénye STATISZTIKA 9. gyakorlat Konfidencia intervallumok f σ π ( µ ) σ ( ) = e /56 p 45% 4% 35% 3% 5% % 5% % 5% Normális eloszlás sűrűségfüggvénye % 46 47 48 49 5 5 5 53 54
A mintavételezéses mérések alapjai
A mintavételezéses mérések alapjai Sok mérési feladat során egy fizikai mennyiség időbeli változását kell meghatároznunk. Ha a folyamat lassan változik, akkor adott időpillanatokban elvégzett méréssel
Matematikai alapok és valószínőségszámítás. Normál eloszlás
Matematikai alapok és valószínőségszámítás Normál eloszlás A normál eloszlás Folytonos változók esetén az eloszlás meghatározása nehezebb, mint diszkrét változók esetén. A változó értékei nem sorolhatóak
ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test
A mágneses szuszceptibilitás vizsgálata
Bán Marcell ETR atonosító BAMTACT.ELTE Beadási határidő: 2012.12.13 A mágneses szuszceptibilitás vizsgálata 1.1 Mérés elve Anyagokat mágneses térbe helyezve, a tér hatására az anygban mágneses dipólusmomentum
y ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
Teljesítményparaméterek az akkreditálás és a hatósági eljárás során
Teljesítményparaméterek az akkreditálás és a hatósági eljárás során dr. Nagy Attila igazgatóhelyettes Stempelyné Antal Terézia minőségirányítási vezető Sitkei András laboratóriumi mérnök 2017. április
Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1
Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása
Feladatok: pontdiagram és dobozdiagram. Hogyan csináltuk?
Feladatok: pontdiagram és dobozdiagram Hogyan csináltuk? Alakmutatók: ferdeség, csúcsosság Alakmutatók a ferdeség és csúcsosság mérésére Ez eloszlás centrumát (középérték) és az adatok centrum körüli terpeszkedését
Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58
u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ
Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége
Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége Autovalidálási folyamatok Lókiné Farkas Katalin Az autovalidálás elméleti alapjai Az előző eredménnyel való összehasonlítás
NÉHÁNY FONTOS ALAPFOGALOM A MŰSZERES ANALITIKAI KÉMIÁBAN
NÉHÁNY FONTOS ALAPFOGALOM A MŰSZERES ANALITIKAI KÉMIÁBAN KALIBRÁCIÓ A kalibráció folyamata során a műszer válaszjele és a mérendő koncentrációja közötti összefüggést határozzuk meg. A kísérletileg meghatározott