Minőségirányítási rendszerek 9. előadás
|
|
- Jázmin Szalai
- 8 évvel ezelőtt
- Látták:
Átírás
1 Minőségirányítási rendszerek 9. előadás
2 MÉRŐESZKÖZÖK MÉRÉSTECHNIKAI TULAJDONSÁGAI Mérőeszköz rendszeres hibája (Systematic Error of Measurement) alatt ugyanannak az értéknek megismételhetőségi feltételek közt elvégzett végtelen számú mérésével kapott számtani középértékének és a ténylegesnek tekinthető érték (etalon) különbségét értjük. ( Torzítás ) Torzítás
3 MÉRŐESZKÖZÖK MÉRÉSTECHNIKAI TULAJDONSÁGAI Ismételhetőség (Repeatability, Wiederholpräzision) ugyanolyan körülmények közt megismételve a mérést mennyire térnek el a mérési eredmények.
4 MÉRŐESZKÖZÖK MÉRÉSTECHNIKAI TULAJDONSÁGAI Reprodukálhatóság (Reproducibility, Vergleichpräzision) ugyanannak a méretnek más mérőszemélyek által kapott mérési eredményeinek eltérése.
5 Mérőrendszer elemzés Mérőeszköz képességvizsgálat Mérőeszköz-képesség a mérési eredmények eltérése az alkatrészek közti különbség a mérőrendszer okozta különbség mérőeszköz (ismételhetőség) reprodukálhatóság kezelő (mérő személy) kölcsönhatás a kezelő és az alkatrész között
6 Mérőrendszer elemzés Mérőeszköz képességvizsgálat Az ingadozás forrásainak felbontása σ = σ + σ mérés alkatr mérőrendszer σ = σ + σ mérőrendszer repr ism σ = σ + σ repr kezelő alk* kezelő
7 Varianciák becslése terjedelem-módszerrel Kezelő. A Kezelő: B Kezelő: C Minta A1 A A3 Terjedelem B1 B B3 Terjedelem C1 C C3 Terjedelem Átlag ABC 1,10,101,10 0,001,10,10,10 0,000,101,100,103 0,003,1017,106,107,104 0,003,106,105,101 0,005,107,108,110 0,003,1060 3,109,109,109 0,000,109,110,108 0,00,108,109,105 0,004,1083 4,110,106,105 0,005,110,106,107 0,004,106,106,106 0,000,1070 5,107,105,109 0,004,109,107,107 0,00,108,110,111 0,003,1083 6,103,103,105 0,00,105,104,106 0,00,106,103,10 0,004,1043 7,107,111,11 0,005,109,106,111 0,005,108,107,107 0,001,1087 8,106,105,106 0,001,106,108,104 0,004,106,107,108 0,00,1063 9,104,107,105 0,003,107,104,10 0,005,105,107,104 0,003, ,107,108,104 0,004,103,106,104 0,003,106,104,100 0,006,1043 Átlag x A =, R A R=0,008 A =0,08 x B =, R B R=0,003 B =0,03 x C =, R C =0,009 =0,09,105978
8 A szórások becslése a terjedelemátlagokból: Az ismétlődési hiba okozta ingadozás terjedelemátlaga: R R + R 3 + R 0, , ,009 A B C ism = = = 0,00967 n=3 d = 1,693 (táblázatból) R 0, ˆ σ = = = d 1, 693 0, 00175
9 A szórások becslése a terjedelemátlagokból: A reprodukálhatósági hiba okozta ingadozás terjedelemátlaga: Rrepr = Max.x Min.x = 0,00067 Max.x, Min.x, n=3 d = 1,693 (táblázatból) x diff x diff 0,00067 R 0, ˆ σ = = = d 1, 693 0,
10 A szórások becslése a terjedelemátlagokból: R 0, ˆ σ = = = d 1, 693 0, σ repr, korr = σ repr n σ ism ism n alk
11 A szórások becslése a terjedelemátlagokból: Az alkatrészek méreteltérésének terjedelme: R = alk R x i
12 Minta A1 A A3 Átlag B1 B B3 Átlag C1 C C3 Átlag Átlag ABC 1,10,101,10,10,10,10,10,10,101,100,103,101,1017,106,107,104,106,106,105,101,104,107,108,110,108,1060 3,109,109,109,109,109,110,108,109,108,109,105,107,1083 4,110,106,105,107,110,106,107,108,106,106,106,106,1070 5,107,105,109,107,109,107,107,108,108,110,111,110,1083 6,103,103,105,104,105,104,106,105,106,103,10,104,1043 7,107,111,11,110,109,106,111,109,108,107,107,107,1087 8,106,105,106,106,106,108,104,106,106,107,108,107,1063 9,104,107,105,105,107,104,10,104,105,107,104,105, ,107,108,104,106,103,106,104,104,106,104,100,103,1043
13 A szórások becslése a terjedelemátlagokból: Az alkatrészek méreteltérésének terjedelme: R = alk R x i R alk =, 1087, 1017 = 0, 0070 n=10 d = 3,078 (táblázatból) ˆ σ = R d 0, , 078 alk = = 0, 0074
14 Az ingadozás forrása 3 ember esetén (1) Ismételhetőség s s %R+R-ben A teljes ingadozás %-ában 0, , ,0 37,14 () Reprodukálhatóság 0,000158, ,80 0,30 (1+) R+R 3, ,00 37,44 (3) Alkatrészek között 0,0074 5, ,56 (1++3) Teljes ingadozás 8, ,00
15 Az ingadozás forrása 3 ember Ing. tart. szél. A A telj. ing. tűrésmező esetén 5,15 s %-ában %-ában (1) Ismételhetőség 0, , , ,94 45,01 9,0 () Reprodukálhatóság 0,000158, , ,50 4,05 0,81 (1+) R+R 0, , , ,18 45,30 9,06 (3) Alkatrészek 0,0074 5, , ,10 58,55 11,71 7,08 között (1++3) Teljes 0, , , ,00 74,05 14,81 ingadozás Tűrésmező 0, , ,00 P T = Pr ecision _ to _ Tolerance = 5,15 σˆ mérés FTH ATH
16 Megkülönböztethető kategóriák száma: k = σˆ σˆ alkatrész mérés Ha k< a mérőeszköz csak jó/nem jó döntéshez használható
17 : General Motors szerinti értékelés A számításokhoz felhasznált állandók értékei: Ismétlések D Ismétlések 4 száma 3 száma 3,7 k 1 4,56 3,05 3,58 Mérő személyek száma 3 k 3,65,70 Ismételhetőség (Repeatability) Mérőeszköznek tulajdonítható ingadozás (Equipment Variation; E.V.) E.V. = ( R ) ( k1 ) = (0,00967 ) ( 3,05 ) = 0, Reprodukálhatóság (Reproducibility) Mérő személynek tulajdonítható ingadozás (Appraiser Variation; A.V.) R and A.V. = ( x diff ) ( k ) = (0,00067 ) (,70 ) = 0,00071 R = Ismételhetőség és Reprodukálhatóság (Repeatability and Reproducibility; R és R) ( E.V.) + ( A.V.) = ( 0,009049) + ( 0,00071) = 0,
18 Százalékos tűrés elemzés % E.V. [( E.V.) / ( R and R) ( ))] = 100 ( 0, ) / ( 0, ) ( 0,1) = 100 Tűrés [ ( )] = 9,0% % A.V. [( A..V.) / ( R and R) ( ))] = 100 ( 0,00071 ) / ( 0, ) ( 0,1 ) = 100 Tűrés [ ( )] = 0,057 % (% E.V.) + (% A.V.) = ( 9,0% ) + ( 0,057% ) 9,077% % R and R = = Elfogadhatósági kritériumok: 10 % hiba alatt Nagyon jó mérőeszköz 10 és 30 % hiba között Az elfogadás a használat fontosságától, a mérőeszköz árától stb. függ 30 % hiba felett Nem célszerű elfogadni, mindent el kell követni a kijavítására
MINİSÉGBIZTOSÍTÁS. 8. ELİADÁS Mérıeszköz megfelelıség Mérıeszköz-képesség vizsgálat. 2011. Április 4. Összeállította: Dr. Kovács Zsolt egyetemi tanár
MINİSÉGBIZTOSÍTÁS Összeállította: Dr. Kovács Zsolt egyetemi tanár 8. ELİADÁS Mérıeszköz megfelelıség Mérıeszköz-képesség vizsgálat 011. Április 4. NyME FMK Terméktervezési és Gyártástechnológiai Intézet
MÉRÉSTECHNIKA. Előadások (2.) Galla Jánosné
1 MÉRÉSTECHNIKA Előadások (2.) 2014 Galla Jánosné 1. A hiba rendűsége Az 2. előadás témái 2. A mérési módszer hibája 3. Műszerhibák 4. A mérési hibák új megközelítése 5. A járműgyártás metrológiai többletkövetelményei
MSA - mérőrendszer elemzés (MSA - measurement systems analysis)
Mi értünk mérőrendszer alatt? MSA - mérőrendszer elemzés (MSA - measurement systems analysis) Ahhoz, hogy valamilyen termék, folyamatparamétert értékelni, összehasonlítani tudjunk pl.: elvárt értékkel,
MINŐSÉGÜGYI STATISZTIKAI MÓDSZEREK. Dr. Drégelyi-Kiss Ágota ÓE BGK
MINŐSÉGÜGYI STATISZTIKAI MÓDSZEREK Dr. Drégelyi-Kiss Ágota ÓE BGK e-mail: dregelyi.agota@bgk.uni-obuda.hu 1 STATISZTIKA CÉLJA Sokaság Következtetés bizonytalansága Véletlenszerű és reprezentatív mintavétel
17. Folyamatszabályozás módszerei
17. Folyamatszabályozás módszerei 200. Egyéb módszerek A folyamatszabályozás alapjai Minőségképesség-elemzés Mérőeszköz-képességelemzés Ellenőrzőkártyák Bedzsula Bálint 249 215. Mérőeszköz-képességelemzés
ÚJDONSÁGOK A MINITAB STATISZTIKAI SZOFTVER ÚJ KIADÁSÁNÁL (MINITAB 18)
ÚJDONSÁGOK A MINITAB STATISZTIKAI SZOFTVER ÚJ KIADÁSÁNÁL (MINITAB 18) Előadó: Lakat Károly, L.K. Quality Bt. 2017 szeptember 27 EOQ MNB Szakbizottsági ülés Minitab 18 újdonságai Session ablak megújítása
8. A mérıeszközök képességvizsgálata 1
8. A mérıeszközök képességvizsgálata 1 A vizsgálat célja annak megállapítása, hogy a használt mérıeszköz elég kis hibával használható-e ahhoz, hogy vele a folyamatról információt szerezzünk. Az AIAG (Automotive
Az R&R vizsgálatok tapasztalatai. Minősítése R&R a mindennapokban. Tóth Csaba László fizikus. Tóth László politológus. és benne egy különlegesség
Az R&R vizsgálatok tapasztalatai és benne egy különlegesség Minősítése R&R a mindennapokban Tóth Csaba László fizikus Tóth László politológus Miért végzünk R&R vizsgálatokat? Szabványkövetelmény A menedzsment
A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv
Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési
Mérési hibák 2006.10.04. 1
Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési adatok feldolgozása A mérési eredmény megadása A mérés dokumentálása A vállalati mérőeszközök nyilvántartása 2 A mérés célja: egy
SKIK Thot Quality Management Kaposvár június 8.
Megtiszteltetés, hogy újra Önök között lehetek Tóth Csaba László Szombathely, 1952 1978. KLTE, Debrecen, (fém)fizikus 1978-1997: Egyesült Izzó, Tungsram, GE Lighting Hajdúböszörmény, Budapest, K+F 1998-2000:
Geokémia gyakorlat. 1. Geokémiai adatok értelmezése: egyszerű statisztikai módszerek. Geológus szakirány (BSc) Dr. Lukács Réka
Geokémia gyakorlat 1. Geokémiai adatok értelmezése: egyszerű statisztikai módszerek Geológus szakirány (BSc) Dr. Lukács Réka MTA-ELTE Vulkanológiai Kutatócsoport e-mail: reka.harangi@gmail.com ALAPFOGALMAK:
IATF 16949:2016 szabvány fontos kapcsolódó kézikönyvei (5 Core Tools):
APQP IATF 16949:2016 szabvány fontos kapcsolódó kézikönyvei (5 Core Tools): PPAP (Production Part Approval Process) Gyártás jóváhagyási folyamat APQP (Advanced Product Quality Planning and Control Plans)
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett
STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai
Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő
6. Előadás. Vereb György, DE OEC BSI, október 12.
6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás
Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók
Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
Mérések hibája pontosság, reprodukálhatóság és torzítás
Mérések hibája pontosság, reprodukálhatóság és torzítás A kémiai mérések és számítások során számos adat felhasználásával jutunk a végeredményhez. Gyakori eset, hogy egyszerű mérési eredményekből a köztük
STATISZTIKAI ALAPOK. Statisztikai alapok_eloszlások_becslések 1
STATISZTIKAI ALAPOK Statisztikai alapok_eloszlások_becslések 1 Pulzus példa Egyetemista fiatalokból álló csoport minden tagjának (9 fő) megmérték a pulzusát (PULSE1), majd kisorsolták ki fusson és ki nem
III. Képességvizsgálatok
Képességvizsgálatok 7 A folyamatképesség vizsgálata A 3 fejezetben láttuk, hogy ahhoz, hogy egy folyamat jellemzıjét a múltbeli viselkedése alapján egy jövıbeni idıpontra kiszámíthassuk (pontosabban, hogy
MŰSZAKI TUDOMÁNY AZ ÉSZAK-KELET MAGYARORSZÁGI RÉGIÓBAN 2013
MŰSZAKI TUDOMÁNY AZ ÉSZAK-KELET MAGYAOSZÁGI ÉGIÓBAN 2013 KONFEENCIA ELŐADÁSAI Debrecen, 2013. június 4. Szerkesztette: Edited by Pokorádi László Kiadja: Debreceni Akadémiai Bizottság Műszaki Szakbizottsága
Laboratóriumok Vizsgálatainak Jártassági Rendszere MSZ EN ISO/IEC 17043:2010 szerint
ÚTLAB Közgyűlés Budapest 2012. május 14. Laboratóriumok Vizsgálatainak Jártassági Rendszere MSZ EN ISO/IEC 17043:2010 szerint BORS Tibor főmunkatárs Jártassági Vizsgálatokat Szervező Iroda Irodavezető
Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
A Wikipédiából, a szabad enciklopédiából
Pontosság és precizitás A Wikipédiából, a szabad enciklopédiából Pontosság és precizitás két ellentmondó, egymást kiegészítő fogalom a metrológiában A tudományos és a hétköznapi életben pontosság az, mennyire
Statisztika I. 10. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 10. előadás Előadó: Dr. Ertsey Imre Varianciaanalízis A különböző tényezők okozta szórás illetőleg szórásnégyzet összetevőire bontásán alapszik Segítségével egyszerre több mintát hasonlíthatunk
Minitab 16 újdonságai május 18
Minitab 16 újdonságai 2010. május 18 Minitab 16 köszöntése! A Minitab statisztikai szoftver új verziója több mint hetven újdonságot tartalmaz beleértve az erősebb statisztikai képességet, egy új menüt
Tájékoztató. Normális (Gauss-) eloszlás. Következtetés hibái. Mintavételi alapelvek. Minőségmenedzsment módszerek (SPC) 3σmás szabály.
Minőségmenedzsment módszerek (SPC) Erdei János Tájékoztató Előadó: Erdei János Tematika: Minőségmenedzsment módszerek Folyamatszabályozás logikája, eszközei, mintavételes átvételi minőség-ellenőrzés alapjai
Méréstechnika II. Mérési jegyzőkönyvek FSZ képzésben részt vevők részére. Hosszméréstechnikai és Minőségügyi Labor Mérési jegyzőkönyv
Méréstechnika II. ek FSZ képzésben részt vevők részére Összeállította: Horváthné Drégelyi-Kiss Ágota Kis Ferenc Lektorálta: Galla Jánosné 009 Tartalomjegyzék. gyakorlat Mérőhasábok, mérési eredmény megadása.
Gyártástechnológia alapjai Méréstechnika rész. Előadások (2.) 2011.
Gyártástechnológia alapjai Méréstechnika rész Előadások (2.) 2011. 1 Méréstechnika előadás 2. 1. Mérési hibák 2. A hiba rendszáma 3. A mérési bizonytalanság 2 Mérési folyamat A mérési folyamat négy fő
Populációbecslések és monitoring
Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány
STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.
STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése
Minőségellenőrzés. Miről lesz szó? STATISZTIKAI FOLYAMATSZABÁLYOZÁS (SPC) Minőségszabályozás. Mikor jó egy folyamat? Ellenőrzés Szabályozás
STATISZTIKAI FOLYAMATSZABÁLYOZÁS (SPC) Erdei János Miről lesz szó? Mit értünk folyamatok stabilitásán, szabályozottságán? Mit jelent a folyamatképesség, és hogyan mérhetjük azt? Hogyan vehetjük észre a
Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a
Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,
KÖVETKEZTETŐ STATISZTIKA
ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak
Populációbecslések és monitoring
Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány
Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE
Tartalomjegyzék 5 Tartalomjegyzék Előszó I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE 1. fejezet: Kontrollált kísérletek 21 1. A Salk-oltás kipróbálása 21 2. A porta-cava sönt 25 3. Történeti kontrollok 27 4. Összefoglalás
y ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I
Kalibrálás és mérési bizonytalanság Drégelyi-Kiss Ágota I. 120. dregelyi.agota@bgk.uni-obuda.hu Kalibrálás Azoknak a mőveleteknek az összessége, amelyekkel meghatározott feltételek mellett megállapítható
R&R vizsgálatok fejlesztése trendes jellemző mérési rendszerére. 1. Hiszterézis jelensége és vizsgálata súrlódó tengelykapcsolókon
R&R vizsgálatok fejlesztése trendes jellemző mérési rendszerére 008. 4. AGY konferencia. Gregász Tibor Fekete Beatrix (Budapesti Műszaki Főiskola RKK DTI) R&R vizsgálatok fejlesztése trendes jellemző mérési
STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba
Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum
Sorozatmérés digitális mérőórával 3.
Mechatronika, Optika és Gépészeti Informatika Tanszék kiadva: 2012.02.12. Sorozatmérés digitális mérőórával 3. A mérések helyszíne: D. épület 523-as terem. Az aktuális mérési segédletek a MOGI Tanszék
STATISZTIKAI ALAPOK. Statisztikai alapok_eloszlások_becslések 1
STATISZTIKAI ALAPOK Statisztikai alapok_eloszlások_becslések 1 Pulzus példa Egyetemista fiatalokból álló csoport minden tagjának (9 fő) megmérték a pulzusát (PULSE1), majd kisorsolták ki fusson és ki nem
Munka azonosító jele: (C1276/2016) Tranzit Food Baromfifeldolgozó és Élelmiszeripari Kft Nyírgelse, Debreceni út 1.
SZAKÉRTŐI VÉLEMÉNY élelmiszer minőségének ellenőrzéséről Munka azonosító jele: (C1276/2016) Termékek neve Sült libamell Megrendelő A vizsgálat célja Tranzit Food Baromfifeldolgozó és Élelmiszeripari Kft.
Bevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
Kettőnél több csoport vizsgálata. Makara B. Gábor
Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10
Elemi statisztika fizikusoknak
1. oldal Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu Az adatok leírása, megismerése és összehasonlítása 2-1 Áttekintés 2-2 Gyakoriság eloszlások 2-3 Az adatok
Statistical Process Control (SPC), Statisztikai Folyamatszabályozás
Statistical Process Control (), Statisztikai Folyamatszabályozás 1 2 2 A statisztikai folyamatszabályozás () koncepcióját először Dr Walter Shewhart fejlesztette ki a Bell laboratóriumokban, az 1920-as
http://mmfk.nyf.hu/min/ipar/i13.htm
1.3. A mérés Page 1 of 10 1.3. A mérés A minőség az igény kielégítés mértékét és módját jelenti, amit a tervezéskor, a gyártás során és a végterméken is ellenőrizni, igazolni kell. Ahhoz, hogy a jellemzők
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
A Markowitz modell: kvadratikus programozás
A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer
Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt
Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak
Minősítéses mérőrendszerek képességvizsgálata
Mnősítéses mérőrendszerek képességvzsgálata Vágó Emese, Dr. Kemény Sándor Budapest Műszak és Gazdaságtudomány Egyetem Kéma és Környezet Folyamatmérnök Tanszék Az előadás vázlata 1. Mnősítéses mérőrendszerek
A társadalomkutatás módszerei I.
A társadalomkutatás módszerei I. 9. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. november 10. Outline 1 1. Zh eredmények 2 Újra a hibatényezőkről 3 A mintavételi keret 4 Valószínűségi mintavételi
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
Kontrol kártyák használata a laboratóriumi gyakorlatban
Kontrol kártyák használata a laboratóriumi gyakorlatban Rikker Tamás tudományos igazgató WESSLING Közhasznú Nonprofit Kft. 2013. január 17. Kis történelem 1920-as években, a Bell Laboratórium telefonjainak
1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. A fős osztály dolgozatot írt matematikából és a következő jegyek születtek: 6 darab jeles, 9 darab jó, 8 darab közepes, darab elégséges és darab elégtelen. Készíts gyakorisági táblázatot,
brandetect riport Megfigyelt logók: Újpest FC FTC 1.félidő 0:00-15:
brandetect riport Újpest FC FTC 2014.09.21 1.félidő 0:00-15:00 Megfigyelt logók: Eredmények: Puebla ticket - OTP logo - OTP logo - Nike - Összesen Képernyőn töltött idő (mp) 178,52 67,68 174,92 63,08 484,20
A problémamegoldás lépései
A problémamegoldás lépései A cél kitűzése, a csoportmunka megkezdése egy vagy többféle mennyiség mérése, műszaki-gazdasági (például minőségi) problémák, megoldás célszerűen csoport- (team-) munkában, külső
Több valószínűségi változó együttes eloszlása, korreláció
Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...
Indikátorok alkalmazása a labordiagnosztikai eljárások minőségbiztosításában
Indikátorok alkalmazása a labordiagnosztikai eljárások minőségbiztosításában Minőségi indikátorok az analitikai szakaszban Dr. Kocsis Ibolya Semmelweis Egyetem Laboratóriumi Medicina Intézet Központi Laboratórium
Biostatisztika VIII. Mátyus László. 19 October
Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.
54 520 01 0000 00 00 Gépipari minőségellenőr Gépipari minőségellenőr
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
Vizsgálati jegyzőkönyvek általános felépítése
Vizsgálati jegyzőkönyvek általános felépítése 1. Intézményi és személyi adatok 1. Megbízó intézmény neve és címe 2. Megbízó képviselőjének neve és beosztása 3. A vizsgáló intézmény illetve laboratórium
Mérési hibák. 2008.03.03. Méréstechnika VM, GM, MM 1
Mérési hibák 2008.03.03. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség általánosított
A Markowitz modell: kvadratikus programozás
A Markowitz modell: kvadratikus programozás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2011/12 tanév, II. félév Losonczi László (DE) A Markowitz modell 2011/12 tanév,
Hat Szigma Zöldöves Tanfolyam Tematikája
Hat Szigma Zöldöves Tanfolyam Tematikája Megjegyzések: A tanfolyamon haszáljuk: - Minitab statisztikai (demo) és - Companion by Minitab projektek menedzselésére szolgáló (demo) szoftvert, átadunk: - egy
4. A méréses ellenırzı kártyák szerkesztése
4. A méréses ellenırzı kártyák szerkesztése A kártyákat háromféle módon alkalmazhatjuk. Az elızetes adatfelvétel során a fı feladat az eloszlás paramétereinek (µ és σ ) becslése a további ellenırzésekhez.
Kutatásmódszertan és prezentációkészítés
Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I
Környezeti paraméterek hatása a nemzeti etalonnal történő mérésekre
Környezeti paraméterek hatása a nemzeti etalonnal történő mérésekre Készítette: Szögi Antal és Machula Gábor XXXVII. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló 2012. április 24-26. ND-1005 közölt
Kettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet
Kettőnél több csoport vizsgálata Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet Gyógytápszerek (kilokalória/adag) Három gyógytápszer A B C 30 5 00 10 05 08 40 45 03 50 35 190 Kérdések: 1. Van-e
Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
Minőségmenedzsment (módszerek) BEDZSULA BÁLINT
Minőségmenedzsment (módszerek) BEDZSULA BÁLINT Bedzsula Bálint gyakornok Menedzsment és Vállalatgazdaságtan Tanszék Q. épület A.314. bedzsula@mvt.bme.hu http://doodle.com/bedzsula.mvt Az előző előadás
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016
Gyakorlat 8 1xANOVA Dr. Nyéki Lajos 2016 A probléma leírása Azt vizsgáljuk, hogy milyen hatása van a család jövedelmének a tanulók szövegértés teszten elért tanulmányi eredményeire. A minta 59 iskola adatait
I. GÉPKÉPESSÉG-VIZSGÁLAT
I. GÉPKÉPESSÉG-VIZSGÁLAT Jelen esettanulmány [1] felhasználásával készült. A minőség és megbízhatóság kapcsolatrendszerének értelmezésénél említettük, hogy a termelő berendezések esetében a két fogalom
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.
Vizsgáljuk elôször, hogy egy embernek mekkora esélye van, hogy a saját
376 Statisztika, valószínûség-számítás 1500. Az elsô kérdésre egyszerû válaszolni, elég egy ellenpélda, és biztosan nem lehet akkor így kiszámolni. Pl. legyen a három szám a 3; 5;. A két kisebb szám átlaga
Teljesítményparaméterek az akkreditálás és a hatósági eljárás során
Teljesítményparaméterek az akkreditálás és a hatósági eljárás során dr. Nagy Attila igazgatóhelyettes Stempelyné Antal Terézia minőségirányítási vezető Sitkei András laboratóriumi mérnök 2017. április
[Biomatematika 2] Orvosi biometria. Visegrády Balázs
[Biomatematika 2] Orvosi biometria Visegrády Balázs 2016. 03. 27. Probléma: Klinikai vizsgálatban három különböző antiaritmiás gyógyszert (ß-blokkoló) alkalmaznak, hogy kipróbálják hatásukat a szívműködés
Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
Többváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
A GDP hasonlóképpen nem tükrözi a háztartások közötti munka- és termékcseréket.
FŐBB MUTATÓK A regionális GDP adatok minősége alapvetően 3 tényezőtől függ: az alkalmazott számítási módszertől a felhasznált adatok minőségétől a vizsgált területi egység nagyságától. A TERÜLETI EGYENLŐTLENSÉGEK
NÉHÁNY FONTOS ALAPFOGALOM A MŰSZERES ANALITIKAI KÉMIÁBAN
NÉHÁNY FONTOS ALAPFOGALOM A MŰSZERES ANALITIKAI KÉMIÁBAN KALIBRÁCIÓ A kalibráció folyamata során a műszer válaszjele és a mérendő koncentrációja közötti összefüggést határozzuk meg. A kísérletileg meghatározott
Statisztika Elıadások letölthetık a címrıl
Statisztika Elıadások letölthetık a http://www.cs.elte.hu/~arato/stat*.pdf címrıl Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább 1-α valószínőséggel
Statisztika elméleti összefoglaló
1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11
Hipotézisvizsgálat az Excel adatelemző eljárásaival. Dr. Nyéki Lajos 2018
Hipotézisvizsgálat az Excel adatelemző eljárásaival Dr. Nyéki Lajos 2018 Egymintás t-próba Az egymintás T-próba azt vizsgálja, hogy különbözik-e a változó M átlaga egy megadott m konstanstól. Az a feltételezés,
Tűrés és illesztés. Készítette: Szűcs Tamás
Tűrés és illesztés Készítette: Szűcs Tamás 2016 1. A tűrés fogalma, jelölésrendszere Alapfogalmak Tűrés: egy munkadarab mérete vagy alakja bizonyos határok között eltérhet a pontos mérettől. A rajzon a
Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása
Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból
Mérési bizonytalanság becslése (vizsgálólaboratóriumok munkája során)
III. Roncsolásmentes Anyagvizsgáló Konferencia és Kiállítás Eger, 2003. április 7-11. Szóbeli előadás kézirat Előadó: Pintér László tudományos osztályvezető, Építésügyi Minőségellenőrző Innovációs Kht.
Nehézségi gyorsulás mérése megfordítható ingával
Nehézségi gyorsulás mérése megfordítható ingával (Mérési jegyzőkönyv) Hagymási Imre 2007. április 21. (hétfő délelőtti csoport) 1. A mérés elmélete A nehézségi gyorsulás mérésének egy klasszikus módja
STATISZTIKA. A Föld pályája a Nap körül. Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)
STATISZTIKA 10. Előadás Megbízhatósági tartományok (Konfidencia intervallumok) Sir Isaac Newton, 1643-1727 Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)