Statistical Process Control (SPC), Statisztikai Folyamatszabályozás
|
|
- Krisztina Nemes
- 5 évvel ezelőtt
- Látták:
Átírás
1 Statistical Process Control (), Statisztikai Folyamatszabályozás 1
2 2 2
3 A statisztikai folyamatszabályozás () koncepcióját először Dr Walter Shewhart fejlesztette ki a Bell laboratóriumokban, az 1920-as években Ezeket fejlesztette tovább Dr W Edwards Deming, aki a II világháborút követően a japán iparban is bemutatta az technikáját A japán vállalatok általi kezdeti sikeres alkalmazás után az -t mára számos szervezet alkalmazza világszerte, mivel elsőrangú termékminőség-fejlesztési eszköz a folyamat eltéréseinek csökkentésére 3 3
4 Dr Shewhart a folyamat eltéréseknek két fő forrását azonosította: A normál eltérés elkerülhetetlen a folyamatok során A művelethez szükséges input tényezők soha nem lesznek teljes mértékben megegyezőek Mindig előfordul valamilyen variáció az anyagban, eszközben, módszerben, gépben vagy a környezeti hatásban Ezek a tényezők hosszútávon stabilak és kiszámíthatóak Ha a folyamatunkban csak normál eltérés található, akkor a műveletünk megismételhető A speciális, vagy más néven ellenőrizetlen eltérés olyan hatás eredménye, amely a folyamat eredmények csak egy részét érinti Szakaszosak és kiszámíthatatlanok A speciális okokat a kontroll határokon kívüli pontok vagy a hibahatáron belüli valamilyen nem véletlen mintázat jellemzi Attól függetlenül, hogy azonosítanánk és felismernénk a speciális okokat, azok kiszámíthatatlan módon befolyásolják a folyamat eredményét, ezáltal hatnak a folyamat stabilitására A folyamat eredmény eloszlása a speciális okok miatt lehet káros és akár lehet előnyös is Ha a tűréshatáron kívüli eredményt okoznak, akkor meg kell értenünk a probléma kiváltó okát és meg 4 kell szüntetnünk azt Ugyancsak azonosítanunk kell a pozitív hatásokat is annak érdekében, hogy a szabványos folyamatunk részévé tegyük 4
5 5 5
6 Ezt az eloszlást jellemezheti: - Hely (tipikus vagy "közép" érték) - Terjedelem ( "szélesség" értékek a legkisebbtől a legnagyobbig) - Alakzat (a variáció mintája - függetlenül attól, hogy szimmetrikus, ferde, stb) Az eloszlás különbözhet: hely terjedelem formában 6 6
7 Az értékteremtés helyén elsősorban a speciális variációkból származó eltérés elhárítása zajlik Rendszerint a folyamat felügyelettel megbízott emberek végzik Tipikusan a problémák 15%-át tudják megoldani Példa a speciális probléma megoldására: 7 7
8 Rendszerszintű megoldások szükségesek a normál eltérés csökkentésére, amelyek tipikusan a problémák maradék 85%-át teszik ki Példa a normál elosztás korrekciójára: 8 8
9 A folyamatképességünk értékeléséhez két fogalmat kell értékelnünk 1, A folyamatképesség 2, A folyamat szabályozottsága A folyamat képesség értékelése során a variáció változását értékeljük A felső- és az alsóhatárérték terjedelmét hasonlítjuk össze a variációk terjedelmével Figyelembe kell venni azonban a folyamat középértékének a tűrésmező közepétől való eltolódását, azaz korrigálni kell az alap képességindexet A folyamat szabályozottsága, azt mutatja meg, hogy a folyamat teljes kimenetele hogyan viszonyul a követelményekhez (a specifikációk határozzák meg), függetlenül a folyamat változásától 9 9
10 (Statistical Process Control): Statisztikai folyamatszabályozás / folyamatirányítás a hibamegelőző stratégia egyik eszköze; a folyamat statisztikai jellemzőit használja fel a stabilitás és a folyamatképesség biztosításához; szabályozókártyák, ill egyéb adatgyűjtők alkalmazásával figyelemmel kíséri, elemzi a folyamatokat, biztosítja a folyamatok változékonyságának minimálisra csökkentését Az alapgondolata: a folyamat szabályozott jellemzőinek mintavételes figyelésével elkülöníthető a folyamat kívánt minőségi szintű normál állapota a nem megengedett minőségi szintű, veszélyes zavarhatás alatti állapottól 10 célja: A gyártási folyamat figyelése és szabályozása úgy, hogy matematikai módszerek segítségével akkor tudjunk beavatkozni a folyamatba, amikor még nem késő, hogy használhatatlan termék ne kerüljön ki a folyamatból Olyan kiváló minőségű termékek kerüljenek ki a piacra, amelyekkel a vevő a termék minden gyártási paraméterében elégedett Az bevezetésének egyik feltétele, hogy a vizsgált paraméter értékei normál eloszlást mutassanak módszere: 10 Előre meghatározott időnként a gyártási folyamatból kivett minták alapján minősítjük a folyamatot és ezzel előre tudjuk jelezni, hogy a folyamat továbbra is stabil, vagy netán elvesztette stabilitását és beavatkozásra van szükség
11 Statisztikai jellemzők: Átlag: a mért értékek összege, osztva a darabszámmal; a méréssorozat tagjainak összessége osztva a mérések számával Medián: a középső mért érték Szórás: a méréssorozat tagjainak távolsága az átlagértéktől; a terjedelem átlaga Terjedelem: az adott sokaság legnagyobb és legkisebb értékének különbsége Gyakoriság: az esemény bekövetkezésének a száma Relatív gyakoriság: a bekövetkezések aránya a sorozat hosszához viszonyítva 11 11
12 Minőségképesség vizsgálatokat érdemes végezni: új termék fejlesztésekor új technológia bevezetésekor berendezés nagyjavítása után vezetők vagy vevők kérésére rendszeres időközönként 12 12
13 Minőségképesség vizsgálat: 13 13
14 Minőségképesség vizsgálat: Alkalmasság = a tűrés (T) és a normál eloszlás hatszoros szórásának (6 s) a viszonya: (Gépképesség: Cm ; Mérőeszköz-képesség: C md ) Ha C P < 1 Ha 1 < C P < 133 Ha 133 < C P a folyamat alkalmatlan, azonnali intézkedés szükséges; a folyamatban a legkisebb eltolódás is jelentős nem megfelelőséget okozhat; a folyamat általában biztonságos, legalább erre kell törekedni 14 14
15 Minőségképesség vizsgálat: Folyamatképesség / gépképesség: a folyamat megfelelő terméket állít elő A folyamatképesség mértéke figyelembe veszi mind a folyamat szóródását, mind a folyamat központosságát FTH = Felső tűréshatár, ATH = Alsó tűréshatár, s = szórás, = becsült szórás (táblázatból) Ha az ingadozás középpontja nem esik a tűrésmező közepére, akkor korrigált minőségképesség indexeket számolunk: m = ingadozás középpontja A két mutató közül a kisebbik jelzi jól a folyamat tényleges képességét (process capability), más néven gyártási képességét: 15 C pk = min {C PU, C PL } 15
16 Minőségképesség vizsgálat: Stabilitás: a folyamat statisztikai jellemzői (pl: várható érték, szórás) időben állandóak A folyamatot akkor nevezzük stabilnak, vagy statisztikailag kézbentartottnak (in statistical control), ha ez az ingadozás véletlenszerű, időben állandó, nincsenek jól felismerhető és megnevezhető okai A véletlen ingadozás határai ilyenkor normális eloszlás esetén a 3 szabállyal adhatók meg, mivel egy normális eloszlású valószínűségű változó (9973 %) valószínűséggel a várható értéke körüli, 3 szélességű intervallumban vesz föl értékeket Ezeket a határokat a természetes ingadozás alsó és felső határának (UNTL: upper natural tolerance limit; LNTL: lower natural tolerance limit) nevezzük 16 16
17 Quality Control Chart Ellenőrző/szabályozó kártyák segítségével ellenőrizhetjük és értékelhetjük a folyamatot Kétféle szabályozókártya típust használunk A folyamat maga diktálja, hogy milyen típusú kártyát érdemes használni Ha az eljárásból származó adatok diszkrét természetűek (például go/no-go, elfogadható/selejt), akkor a diagram attribútum típusát használjuk Ha a folyamatból származó adatok mérhetőek (pl átmérő, hossz), akkor a mért változót tüntetjük fel a szabályozó kártyán Gyakorlatban ez ma már szinte kivétel nélkül számítógép segítségével, valós időben (real time) módon működik 17 17
18 Quality Control Chart (A) Megfelelő skálázás A skálázásnak olyan részletesnek kell lennie, hogy a folyamat természetes variációja könnyen leolvasható legyen (B) FTH, ATH (UCL, LCL) Felső és alsó határérték a speciális eltérések érzékeléséhez (B) Középérték (Centerline) A középérték szolgál a specifikus eltérés trendszerű érzékelésére A minta mutatja meg az eltérési folyamat jellegét (C) Adatcsoport, időegység (Subgroup sequence 1 timeline) Jelzi az adatgyűjtés szekvenciáját, ezáltal lehetőséget ad az eltérés mintázatok időhöz/gyártási szekvenciához való kapcsolásához (D) Szabályozási mezőn kívüli értékek jelzése A szabályozási mezőn kívüli értékeket külön jelzéssel kell ellátni (E) Esemény napló (Event Log) A szabályozási kártya adatainak gyűjtésén és elemzésén kívül hasznos egyéb információkat is gyűjteni Az így rögzített eseménysor lehetővé teszi, hogy a megtaláljuk az eltérések forrását Hasznos, ha rögzítjük a szabályozási határérték betartásának érdekében tett intézkedéseket 18 18
19 Quality Control Chart A kártyákon többféle határ feltüntethető, leggyakrabban a tűréshatárokat, szabályozási határokat, ellenőrzési határokat, figyelmeztetési határokat használják Nem szükséges az összes határ feltüntetése, csak a szabályozáshoz szükségeseké A határokat úgy kell megválasztani, hogy a határokon kívül eső adatok az eloszlás megváltozását jelezzék Túl kicsi határok hamis riasztást eredményeznek, a túl nagyok pedig nem jeleznek Tűréshatár: Műszaki tervben meghatározott érték, csak az adott termékre vonatkozik Szabályozási határ: Folyamat természetes ingadozásának a határa Széles körben alkalmazott határ Az a legnagyobb, vagy legkisebb érték, amelyek között a mért értékek a legnagyobb valószínűséggel fekszenek, ha a folyamat szabályozott Beavatkozási határ: Az a legnagyobb, 19 vagy legkisebb érték, amelynél ha a mért értékek túllépik, a folyamat helyesbítésére, a folyamatváltozásért felelős okok felderítésére van szükség 19
20 20 20
21 Quality Control Chart 21 21
22 22 22
23 23 23
24 24 24
25 Köszönöm a figyelmet! 25 25
IATF 16949:2016 szabvány fontos kapcsolódó kézikönyvei (5 Core Tools):
APQP IATF 16949:2016 szabvány fontos kapcsolódó kézikönyvei (5 Core Tools): PPAP (Production Part Approval Process) Gyártás jóváhagyási folyamat APQP (Advanced Product Quality Planning and Control Plans)
Minőségmenedzsment (módszerek) BEDZSULA BÁLINT
Minőségmenedzsment (módszerek) BEDZSULA BÁLINT Bedzsula Bálint gyakornok Menedzsment és Vállalatgazdaságtan Tanszék Q. épület A.314. bedzsula@mvt.bme.hu http://doodle.com/bedzsula.mvt Az előző előadás
MINŐSÉGÜGYI STATISZTIKAI MÓDSZEREK. Dr. Drégelyi-Kiss Ágota ÓE BGK
MINŐSÉGÜGYI STATISZTIKAI MÓDSZEREK Dr. Drégelyi-Kiss Ágota ÓE BGK e-mail: dregelyi.agota@bgk.uni-obuda.hu 1 STATISZTIKA CÉLJA Sokaság Következtetés bizonytalansága Véletlenszerű és reprezentatív mintavétel
Minőségellenőrzés. Miről lesz szó? STATISZTIKAI FOLYAMATSZABÁLYOZÁS (SPC) Minőségszabályozás. Mikor jó egy folyamat? Ellenőrzés Szabályozás
STATISZTIKAI FOLYAMATSZABÁLYOZÁS (SPC) Erdei János Miről lesz szó? Mit értünk folyamatok stabilitásán, szabályozottságán? Mit jelent a folyamatképesség, és hogyan mérhetjük azt? Hogyan vehetjük észre a
Minőségmenedzsment (módszerek) BEDZSULA BÁLINT
Minőségmenedzsment (módszerek) BEDZSULA BÁLINT Bedzsula Bálint gyakornok Menedzsment és Vállalatgazdaságtan Tanszék Q. épület A.314. bedzsula@mvt.bme.hu http://doodle.com/bedzsula.mvt Az előző előadás
Hanthy László Tel.: 06 20 9420052
Hanthy László Tel.: 06 20 9420052 Néhány probléma a gyártási folyamatok statisztikai szabályzásával kapcsolatban Miben kellene segíteni az SPC alkalmazóit? Hanthy László T: 06(20)9420052 Megválaszolandó
17. Folyamatszabályozás módszerei
17. Folyamatszabályozás módszerei 200. Egyéb módszerek A folyamatszabályozás alapjai Minőségképesség-elemzés Mérőeszköz-képességelemzés Ellenőrzőkártyák Bedzsula Bálint 249 215. Mérőeszköz-képességelemzés
4. A méréses ellenırzı kártyák szerkesztése
4. A méréses ellenırzı kártyák szerkesztése A kártyákat háromféle módon alkalmazhatjuk. Az elızetes adatfelvétel során a fı feladat az eloszlás paramétereinek (µ és σ ) becslése a további ellenırzésekhez.
Kontrol kártyák használata a laboratóriumi gyakorlatban
Kontrol kártyák használata a laboratóriumi gyakorlatban Rikker Tamás tudományos igazgató WESSLING Közhasznú Nonprofit Kft. 2013. január 17. Kis történelem 1920-as években, a Bell Laboratórium telefonjainak
Budapesti Műszaki és Gazdaságtudományi Egyetem
Budapesti Műszaki és Gazdaságtudományi Egyetem Gazdaság- és Társadalomtudományi Kar Üzleti Tudományok Intézet Menedzsment és Vállalatgazdaságtan Tanszék MINŐSÉGMENEDZSMENT ALAPJAI 11. előadás Folyamatszabályozás
Minőség-képességi index (Process capability)
Minőség-képességi index (Process capability) Folyamatképesség 68 12. példa Egy gyártási folyamatban a minőségi jellemző becsült várható értéke µ250.727 egység, a variancia négyzetgyökének becslése σ 1.286
Az SPC (statisztikai folyamatszabályozás) ingadozásai
A TERMELÉSI FOLYAMAT MINÕSÉGKÉRDÉSEI, VIZSGÁLATOK 2.3 Az SPC (statisztikai folyamatszabályozás) ingadozásai Tárgyszavak: statisztikai folyamatszabályozás; Shewhart-féle szabályozókártya; többváltozós szabályozás.
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
17. Folyamatszabályozás módszerei
17. Folyamatszabályozás módszerei 200. Egyéb módszerek A folyamatszabályozás alapjai Minőségképesség-elemzés Mérőeszköz-képességelemzés Ellenőrzőkártyák Bedzsula Bálint 247 Adatgyűjtő lap 200. A probléma
III. Képességvizsgálatok
Képességvizsgálatok 7 A folyamatképesség vizsgálata A 3 fejezetben láttuk, hogy ahhoz, hogy egy folyamat jellemzıjét a múltbeli viselkedése alapján egy jövıbeni idıpontra kiszámíthassuk (pontosabban, hogy
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a mérési bizonytalanság figyelembevételével
Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a mérési bizonytalanság figyelembevételével Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Kockázatkezelés a rezgésdiagnosztikában többváltozós szabályozó kártya segítségével
Kockázatkezelés a rezgésdiagnosztikában többváltozós szabályozó kártya segítségével Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése konvergencia program
MINİSÉGSZABÁLYOZÁS. Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia
MINİSÉGSZABÁLYOZÁS A GÉPIPARBAN Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia ISO 9000:2008 A STATISZTIKAI MÓDSZEREK HASZNÁLATÁRÓL A statisztikai módszerek
Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI
MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk
A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv
Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési
Kockázatok és mérési bizonytalanság kezelése a termelésmenedzsment területén
Kockázatok és mérési bizonytalanság kezelése a termelésmenedzsment területén Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és ködtetése konvergencia program Projekt
Iskolai jelentés. 10. évfolyam szövegértés
2008 Iskolai jelentés 10. évfolyam szövegértés Az elmúlt évhez hasonlóan 2008-ban iskolánk is részt vett az országos kompetenciamérésben, diákjaink matematika és szövegértés teszteket, illetve egy tanulói
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett
Microsoft Excel 2010. Gyakoriság
Microsoft Excel 2010 Gyakoriság Osztályközös gyakorisági tábla Nagy számú mérési adatokat csoportokba (osztályokba) rendezése -> könnyebb áttekintés Osztályokban szereplő adatok száma: osztályokhoz tartozó
A leíró statisztikák
A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók
Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz
Kutatásmódszertan és prezentációkészítés
Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I
STATISZTIKAI MÓDSZEREK ALKALMAZÁSA SZABVÁNYOK ÁTTEKINTÉSE (ISO TC 69)
STATISZTIKAI MÓDSZEREK ALKALMAZÁSA SZABVÁNYOK ÁTTEKINTÉSE (ISO TC 69) 1. AZ ISO SZABVÁNYOK TÉRKÉPE 2. A SZABVÁNYOK BEMUTATÁSA 3. HASZNÁLATI TANÁCSOK 4. A STATISZTIKAI SZABVÁNYOK ÉS AZ ISO 9001 5. JAVASLATOK
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.
STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
Define Measure Analyze Improve Control. F(x), M(ξ),
5.5.5. Six Sigma Minőségmenedzsment Statisztikai folyamatszabályozási (SPC) rendszer Erdei János Egy fegyelmezett és erősen mennyiségi szemléletű folyamatfejlesztési megközelítés, amely a gyártási, szolgáltatási
KÖVETKEZTETŐ STATISZTIKA
ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak
STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai
Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari
Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
Bevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel
SPC egyszerően, olcsón, eredményesen
SPC egyszerően, olcsón, eredményesen Rába Tivadar Six Sigma Black Belt BorgWarner Turbo System April 7, 2007 1 Mi az SPC? Miért pont SPC? Tán Show Program for Costumer? Szakértık Statisztikai folyamat
Gyártástechnológia alapjai Méréstechnika rész. Előadások (2.) 2011.
Gyártástechnológia alapjai Méréstechnika rész Előadások (2.) 2011. 1 Méréstechnika előadás 2. 1. Mérési hibák 2. A hiba rendszáma 3. A mérési bizonytalanság 2 Mérési folyamat A mérési folyamat négy fő
Segítség az outputok értelmezéséhez
Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
A sokaság elemei közül a leggyakrabban előforduló érték. diszkrét folytonos
Középérték Középérték A középérték a statisztikai adatok tömör számszerű jellemzése. helyzeti középérték: módusz medián számított középérték: számtani átlag kronológikus átlag harmonikus átlag mértani
Lövedékálló védőmellény megfelelőségének elemzése lenyomatmélységek (traumahatás) alapján
Lövedékálló védőmellény megfelelőségének elemzése lenyomatmélységek (traumahatás) alapján Eur.Ing. Frank György c. docens az SzVMSzK Szakmai Kollégium elnöke SzVMSzK mérnök szakértő (B5) A lövedékálló
Kosztyán Zsolt Tibor Katona Attila Imre
Kockázatalapú többváltozós szabályozó kártya kidolgozása a mérési bizonytalanság figyelembe vételével Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és ködtetése konvergencia
Mérési hibák 2006.10.04. 1
Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség
VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA
VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események
MSA - mérőrendszer elemzés (MSA - measurement systems analysis)
Mi értünk mérőrendszer alatt? MSA - mérőrendszer elemzés (MSA - measurement systems analysis) Ahhoz, hogy valamilyen termék, folyamatparamétert értékelni, összehasonlítani tudjunk pl.: elvárt értékkel,
Minőségirányítási rendszerek 9. előadás
Minőségirányítási rendszerek 9. előadás 013.05.03. MÉRŐESZKÖZÖK MÉRÉSTECHNIKAI TULAJDONSÁGAI Mérőeszköz rendszeres hibája (Systematic Error of Measurement) alatt ugyanannak az értéknek megismételhetőségi
Normális eloszlás tesztje
Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra
You created this PDF from an application that is not licensed to print to novapdf printer (
4.6 4. 4.8 4.4 4.0 4.6 4. 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 Run: Run: Run: Run: 4 Run: 5 Run: 6 4.6 4. 4.8 4.4 4.0 4.6 4. 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5
Függetlenségvizsgálat, Illeszkedésvizsgálat
Varga Beatrix, Horváthné Csolák Erika Függetlenségvizsgálat, Illeszkedésvizsgálat 4. előadás Üzleti statisztika A sokaság/minta több ismérv szerinti vizsgálata A statisztikai elemzés egyik ontos eladata
Iskolai jelentés. 10. évfolyam szövegértés
2010 Iskolai jelentés 10. évfolyam szövegértés Szövegértési-szövegalkotási kompetenciaterület A fejlesztés célja Kommunikáció-központúság Tevékenység centrikusság Rendszeresség Differenciáltság Partnerség
Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus
Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév 1. A várható érték és a szórás transzformációja 1. Ha egy valószínűségi változóhoz hozzáadunk ötöt, mínusz ötöt, egy b konstanst,
Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás
STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x
Erdei János. Minőség- és megbízhatóság menedzsment. villamosmérnöki kar menedzsment mellékszakirány
Budapesti Műszaki- és Gazdaságtudományi Egyetem Gazdaság- és Társadalomtudományi Kar Ipari Menedzsment és Vállalkozásgazdaságtan Tanszék Erdei János egyetemi adjunktus Minőség- és megbízhatóság menedzsment
ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN!
A1 A2 A3 (8) A4 (12) A (40) B1 B2 B3 (15) B4 (11) B5 (14) Bónusz (100+10) Jegy NÉV (nyomtatott nagybetűvel) CSOPORT: ALÁÍRÁS: ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! 2011. december 29. Általános tudnivalók:
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement
STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.
STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése
Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.
Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.
Kockázatkezelés és biztosítás 1. konzultáció 2. rész
Kockázatkezelés és biztosítás 1. konzultáció 2. rész Témák 1) A kockázatkezelés eszközei 2) A kockázatkezelés szakmai területei 3) A kockázatelemzés nem holisztikus technikái 4) Kockázatfinanszírozás 5)
Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt
Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak
1/8. Iskolai jelentés. 10.évfolyam matematika
1/8 2009 Iskolai jelentés 10.évfolyam matematika 2/8 Matematikai kompetenciaterület A fejlesztés célja A kidolgozásra kerülő programcsomagok az alább felsorolt készségek, képességek közül a számlálás,
A mérési eredmény megadása
A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű
Sorozatmérés digitális mérőórával 3.
Mechatronika, Optika és Gépészeti Informatika Tanszék kiadva: 2012.02.12. Sorozatmérés digitális mérőórával 3. A mérések helyszíne: D. épület 523-as terem. Az aktuális mérési segédletek a MOGI Tanszék
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
Kockázatalapú szabályozó kártyák tervezése, kiválasztása és folyamatra illesztése
Kockázatalapú szabályozó kártyák tervezése, kiválasztása és folyamatra illesztése Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése konvergencia program
Vizsgáljuk elôször, hogy egy embernek mekkora esélye van, hogy a saját
376 Statisztika, valószínûség-számítás 1500. Az elsô kérdésre egyszerû válaszolni, elég egy ellenpélda, és biztosan nem lehet akkor így kiszámolni. Pl. legyen a három szám a 3; 5;. A két kisebb szám átlaga
Biometria gyakorló feladatok BsC hallgatók számára
Biometria gyakorló feladatok BsC hallgatók számára 1. Egy üzem alkalmazottainak megoszlása az elért teljesítmény %-a szerint a következı: Norma teljesítmény % Dolgozók száma 60-80 30 81-90 70 91-100 90
A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András
Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András A kockázat fogalma A kockázat (def:) annak kifejezése, hogy valami nem kívánt hatással lesz a valaki/k értékeire, célkitűzésekre. A kockázat
x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
Többváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
Tájékoztató. Normális (Gauss-) eloszlás. Következtetés hibái. Mintavételi alapelvek. Minőségmenedzsment módszerek (SPC) 3σmás szabály.
Minőségmenedzsment módszerek (SPC) Erdei János Tájékoztató Előadó: Erdei János Tematika: Minőségmenedzsment módszerek Folyamatszabályozás logikája, eszközei, mintavételes átvételi minőség-ellenőrzés alapjai
Kettőnél több csoport vizsgálata. Makara B. Gábor
Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10
6. Előadás. Vereb György, DE OEC BSI, október 12.
6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
Több valószínűségi változó együttes eloszlása, korreláció
Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...
FOLYAMATSZABÁLYOZÁS a Wescast Hungary-nél
FOLYAMATSZABÁLYOZÁS a Wescast Hungary-nél Dózsa Zoltán folyamat fejlesztési szakértő 2006. November 23 (EOQ-MNB Hat Szigma Szakbizottság ülésére) Tartalom Bemutatkozás Személyes Cég Termék A Wescast termelő
Statisztika I. 10. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 10. előadás Előadó: Dr. Ertsey Imre Varianciaanalízis A különböző tényezők okozta szórás illetőleg szórásnégyzet összetevőire bontásán alapszik Segítségével egyszerre több mintát hasonlíthatunk
AZ SPC gyakorlati kérdései és alkalmazási tapasztalatai
AZ SPC gyakorlati kérdései és alkalmazási tapasztalatai Kemény Sándor BME Vegyipari Műveletek Tanszék kemeny@mail.bme.hu EOQ 006. szept. 1. 1 A gyakorlatban minden másképpen van? Helmholtz: Nincs praktikusabb
Matematikai alapok és valószínőségszámítás. Normál eloszlás
Matematikai alapok és valószínőségszámítás Normál eloszlás A normál eloszlás Folytonos változók esetén az eloszlás meghatározása nehezebb, mint diszkrét változók esetén. A változó értékei nem sorolhatóak
Képfeldolgozás. 1. el adás. A képfeldolgozás m veletei. Mechatronikai mérnök szak BME, 2008
Képfeldolgozás 1. el adás. A képfeldolgozás m veletei Mechatronikai mérnök szak BME, 2008 1 / 61 Alapfogalmak transzformációk Deníció Deníció Geometriai korrekciókra akkor van szükség, ha a képr l valódi
I. GÉPKÉPESSÉG-VIZSGÁLAT
I. GÉPKÉPESSÉG-VIZSGÁLAT Jelen esettanulmány [1] felhasználásával készült. A minőség és megbízhatóság kapcsolatrendszerének értelmezésénél említettük, hogy a termelő berendezések esetében a két fogalom
Többváltozós lineáris regressziós modell feltételeinek tesztelése I.
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján
Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás
Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre
Populációbecslések és monitoring
Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék
Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 17. Outline 1 Leíró statisztikák 2 Középértékek Példa 3 Szóródási mutatók Példa 4 Néhány megjegyzés a grafikonokról 5 Számítások
Mi az adat? Az adat elemi ismeret. Az adatokból információkat
Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás