Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a mérési bizonytalanság figyelembevételével
|
|
- Róbert Pap
- 6 évvel ezelőtt
- Látták:
Átírás
1 Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a mérési bizonytalanság figyelembevételével Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése konvergencia program Projekt megvalósulása: Dr. habil. Kosztyán Zsolt Tibor, Katona Attila Kvantitatív Módszerek Intézeti Tanszék Az Európai Unió és a Magyar Állam támogatásával nyújtott összes támogatás: Ft.
2 Tartalom Bevezetés Bizonytalanság, valószínűség, kockázat Bizonytalanság elemzés Statisztikai folyamatszabályozó kártyák Állandóparaméteres kockázatalapú kártyák kialakítása Változó paraméteres kockázatalapú kártyák kialakítása 2
3 A döntés kockázata Bizonytalanság Valószínűség A valószínűséget általában meg lehet határozni, a bizonytalanságot csak jellemezni lehet. A döntés kockázata a döntés miatt bekövező esemény valószínűségével, bizonytalanságával súlyozott (általában költség) hatás. 3
4 A mérési bizonytalanság 0,25 0,2 A vizsgált változó értéke 0,15 0,1 0, Mintavételi csoport sorszáma 4
5 A mérési bizonytalanság 0,25 m i m i p m i A vizsgált változó értéke 0,2 0,15 0,1 0,05 p p m i p p m i p m i Mintavételi csoport sorszáma 4
6 A mérési bizonytalanság 0,25 p m i m i m i p m i m i A vizsgált változó értéke 0,2 0,15 0,1 0,05 p p m i p p m i p m i Mintavételi csoport sorszáma 4
7 A mérési bizonytalanság 0,25 p m i m i m i p m i m iβ A vizsgált változó értéke 0,2 0,15 0,1 0,05 p p m i p p m i p m i Mintavételi csoport sorszáma 4
8 A mérési bizonytalanság 0,25 p m i m i m i p m i m iβ A vizsgált változó értéke 0,2 0,15 0,1 0,05 p p m i p p m i p m i α Mintavételi csoport sorszáma 4
9 Megfelelőség értékelés 5
10 Megfelelőség értékelés Megfelelőség értékelésekor: Mérési bizonytalanság Pénzügyi kockázat 5
11 Megfelelőség értékelés Megfelelőség értékelésekor: Mérési bizonytalanság Pénzügyi kockázat Fedezeti értékek 5
12 Megfelelőség értékelés Megfelelőség értékelésekor: Mérési bizonytalanság Pénzügyi kockázat Fedezeti értékek Döntés 5
13 Megfelelőség értékelés Megfelelőség értékelésekor: Mérési bizonytalanság Pénzügyi kockázat Fedezeti értékek Megfelelő Döntés 5
14 Megfelelőség értékelés Megfelelőség értékelésekor: Mérési bizonytalanság Pénzügyi kockázat Fedezeti értékek Megfelelő Döntés Nem megfelelő 5
15 Megfelelőség értékelés Megfelelőség értékelésekor: Mérési bizonytalanság Pénzügyi kockázat Fedezeti értékek Megfelelő Döntés Nem megfelelő Tény 5
16 Megfelelőség értékelés Megfelelőség értékelésekor: Mérési bizonytalanság Pénzügyi kockázat Fedezeti értékek Megfelelő Döntés Nem megfelelő Tény Megfelelő 5
17 Megfelelőség értékelés Megfelelőség értékelésekor: Mérési bizonytalanság Pénzügyi kockázat Fedezeti értékek Megfelelő Döntés Nem megfelelő Tény Megfelelő Nem megfelelő 5
18 Megfelelőség értékelés Megfelelőség értékelésekor: Mérési bizonytalanság Pénzügyi kockázat Fedezeti értékek Megfelelő Döntés Nem megfelelő Tény Megfelelő Nem megfelelő π 11 =r 11 -c 11 π 10 =r 10 -c 10 π 01 =r 01 -c 01 π 00 =r 00 -c 00 μ 0 π=fedezeti érték r=bevétel c=kiadás 5
19 Megfelelőség értékelés Megfelelőség értékelésekor: Mérési bizonytalanság Pénzügyi kockázat α Fedezeti értékek Megfelelő Döntés Nem megfelelő Tény Megfelelő Nem megfelelő π 11 =r 11 -c 11 π 10 =r 10 -c 10 π 01 =r 01 -c 01 π 00 =r 00 -c 00 μ 1 μ 0 π=fedezeti érték r=bevétel c=kiadás α/2 α/2 5
20 Megfelelőség értékelés Megfelelőség értékelésekor: Mérési bizonytalanság Pénzügyi kockázat α Fedezeti értékek Megfelelő Döntés Nem megfelelő Tény Megfelelő Nem megfelelő π 11 =r 11 -c 11 π 10 =r 10 -c 10 π 01 =r 01 -c 01 π 00 =r 00 -c 00 β μ 1 β μ 0 π=fedezeti érték r=bevétel c=kiadás α/2 α/2 5
21 Bizonytalanság figyelembevétele és redukciója 6
22 Bizonytalanság figyelembevétele és redukciója Bizonytalanság figyelmen kívül hagyása 6
23 Bizonytalanság figyelembevétele és redukciója Figyelembevétel helytelenül Bizonytalanság figyelmen kívül hagyása 6
24 Bizonytalanság figyelembevétele és redukciója Figyelembevétel helyesen Figyelembevétel helytelenül Bizonytalanság figyelmen kívül hagyása 6
25 Bizonytalanság figyelembevétele és redukciója Figyelembevétel helyesen Figyelembevétel helytelenül Bizonytalanság figyelmen kívül hagyása 6
26 Bizonytalanság figyelembevétele és redukciója Figyelembevétel helyesen Figyelembevétel helytelenül Bizonytalanság figyelmen kívül hagyása 6
27 Bizonytalanság figyelembevétele és redukciója 6
28 A statisztikai folyamatszabályozás SPC (Statistical Process Control) Cél: A minőség színvonalának biztosítása A módszer alapja: Folyamatok statisztikai jellemzőinek vizsgálata m (g) 8,2 8,1 8 7,9 7,8 7,7 7,6 Minta átlag LCL UCL Előnye: Legelterjedtebb alkalmazás 7,5 8, n 8,1 Eszközei: Ellenőrző kártyák Hátrány: Mérési bizonytalanság figyelmen kívül hagyása m(g) 8 7,9 7,8 7,7 7,6 Átlag értékek MAi UCL LCL 7, n 7
29 Bizonytalanságok kezelése A termék megfelelőségét a méreteinek tűréshatárokhoz viszonyított elhelyezkedése szabja meg. A mérési eredményekre alapozott döntéseink hibásak lehetnek: A jó terméket selejtezzük le. (elsőfajú hiba) y i y i (k) A rossz terméket engedjük tovább. (másodfajú hiba) y i (1) y i (2) Nem megfelelő Megfelelő Ezek a hibák költségekkel járnak t 8
30 Bizonytalanságok kezelése A Mérési termék pontjainkat megfelelőségét helyettesítjük a méreteinek tartományokkal, tűréshatárokhoz amelyek nagyságát viszonyított a mérőműszer elhelyezkedése szórása és a szabja döntési meg. költségek határozzák meg. y i y i (k) A k U és k L értékek optimalizálandóak adott döntési és selejtezési költségek mellett. y i (1) y i (2) Nem megfelelő Megfelelő t 8
31 Bizonytalanságok kezelése A Mérési termék pontjainkat megfelelőségét helyettesítjük a méreteinek tartományokkal, tűréshatárokhoz amelyek nagyságát viszonyított a mérőműszer elhelyezkedése szórása és a szabja döntési meg. költségek határozzák meg. y i y i (k) A k U és k L értékek optimalizálandóak adott döntési és selejtezési költségek mellett. y i (1) y i (2) Nem megfelelő Megfelelő t 8
32 Bizonytalanságok kezelése A Mérési termék pontjainkat megfelelőségét helyettesítjük a méreteinek tartományokkal, tűréshatárokhoz amelyek nagyságát viszonyított a mérőműszer elhelyezkedése szórása és a szabja döntési meg. költségek határozzák meg. 8 y i 7,95 A k U és k L értékek optimalizálandóak adott döntési és selejtezési költségek mellett. Gáz töltettömeg (g) 7,9 7,85 7,8 7,75 y i (k) y i (2) y i (1) Nem megfelelő Megfelelő Mintavételi csoport sorszáma t 8
33 Bizonytalanságok kezelése A Mérési termék pontjainkat megfelelőségét helyettesítjük a méreteinek tartományokkal, tűréshatárokhoz amelyek nagyságát viszonyított a mérőműszer elhelyezkedése szórása és a szabja döntési meg. költségek határozzák meg. 8 A k U és k L értékek optimalizálandóak adott döntési és selejtezési költségek mellett. y i Gáz töltettömeg (g) 7,95 7,9 7,85 7,8 7,75 y i (k) y i (2) y i (1) Nem megfelelő Megfelelő K LSL K USL Mintavételi csoport sorszáma t 8
34 Bizonytalanságok kezelése A Mérési termék pontjainkat megfelelőségét helyettesítjük a méreteinek tartományokkal, tűréshatárokhoz amelyek nagyságát viszonyított a mérőműszer elhelyezkedése szórása és a szabja döntési meg. költségek határozzák meg. 8 A k U és k L értékek optimalizálandóak adott döntési és selejtezési költségek mellett. y i Gáz töltettömeg (g) 7,95 7,9 7,85 7,8 7,75 y i (k) y i (2) y i (1) Nem megfelelő Megfelelő K USL K LSL K LSL K USL Mintavételi csoport sorszáma t 8
35 Egydimenziós kockázatalapú kártyacsalád kialakítása Ellenőrző kártyák Megbízhatóság alapú Azonos mintaelemszám, azonos mintavételi időköz Különböző mintaelemszám/ különböző mintavételi időköz Azonos mintaelemszám, azonos mintavételi időköz Kockázatalapú Különböző mintaelemszám/ különböző mintavételi időköz Normáleloszlás p, np, x, s, r, CUSUM, EWMA, u, c, MA CUSUM, x, EWMA, MA, p, np, s RB x? Normálistól eltérő eloszlástípus x, CUSUM, R, EWMA, MA x, CUSUM, EWMA, MA RBMA, RBEWMA? 9
36 Mintavétel, mintanagyság változása A mintavételezésnek és a mintadarabok lemérésének is van költsége 10
37 Mintavétel, mintanagyság változása A mintadarabok mintavételezésnek megfelelősége és a mintadarabok alapján döntünk lemérésének a két mintavétel is van között gyártott költsége termékegyedek elfogadásáról vagy visszautasításáról 10
38 Mintavétel, mintanagyság változása A mintadarabok mintavételezésnek megfelelősége és a mintadarabok alapján döntünk lemérésének a két mintavétel is van között gyártott költsége termékegyedek elfogadásáról vagy visszautasításáról Meghatározható a legkisebb veszteségköltséggel járó mintavételezési gyakorlat 10
39 Mintavétel, mintanagyság változása A mintadarabok mintavételezésnek megfelelősége és a mintadarabok alapján döntünk lemérésének a két mintavétel is van között gyártott költsége termékegyedek elfogadásáról vagy visszautasításáról Meghatározható a legkisebb veszteségköltséggel járó mintavételezési gyakorlat A bizonytalanság figyelembe vételével 1-7%-kal csökkenthetőek a veszteségköltségek 10
40 A mintavételi időköz és a mintanagyság adaptív meghatározása 11
41 Változó paraméteres kockázatalapú kártyák kialakítása Adatgyűjtés 12
42 Változó paraméteres kockázatalapú kártyák kialakítása Adatgyűjtés Eloszlástípus Átlag Szórás Mérési bizonytalanság Specifikációs határok Mintavétel költsége 12
43 Változó paraméteres kockázatalapú kártyák kialakítása Adatgyűjtés 12
44 Változó paraméteres kockázatalapú kártyák kialakítása Adatgyűjtés Megbízhatóság alapú változó paraméterű Átlag kártya Kártyatervezés Átlag értékek [mm] 30,5 30,4 30,3 30,2 30, ,9 29,8 29,7 29,6 29, Átlag értékek(mérési bizonytalansággal) UCL LCL Minta sorszáma 12
45 Változó paraméteres kockázatalapú kártyák kialakítása Adatgyűjtés Kártyatervezés Fedezeti értékek meghatározása Fedezeti értékek Tény Megfelelő Nem megfelelő Döntés Megfelelő Nem megfelelő π 11 =r 11 -c 11 π 10 =r 10 -c 10 π 01 =r 01 -c 01 π 00 =r 00 -c 00 12
46 Változó paraméteres kockázatalapú kártyák kialakítása Adatgyűjtés Kártyatervezés Fedezeti értékek meghatározása Átlag értékek [mm] 30,5 30,4 30,3 30,2 30, ,9 29,8 29,7 29,6 29,5 Megbízhatóság alapú változó paraméterű Átlag kártya Minta sorszáma Átlag értékek(mérési bizonytalansággal) UCL LCL Beavatkozási határok módosítása 12
47 Változó paraméteres kockázatalapú kártyák kialakítása Adatgyűjtés Kártyatervezés Fedezeti értékek meghatározása Átlag értékek [mm] 30,5 30,4 30,3 30,2 30, ,9 29,8 29,7 29,6 29,5 Megbízhatóság alapú változó paraméterű Átlag kártya Minta sorszáma Átlag értékek(mérési bizonytalansággal) UCL LCL Beavatkozási határok módosítása Új beavatkozási határ 12
48 Változó paraméteres kockázatalapú kártyák kialakítása Adatgyűjtés Kártyatervezés Fedezeti értékek meghatározása Átlag értékek [mm] 30,5 30,4 30,3 30,2 30, ,9 29,8 29,7 29,6 29,5 Megbízhatóság alapú változó paraméterű Átlag kártya Átlag értékek(mérési k USL bizonytalansággal) UCL LCL k LSL Minta sorszáma Beavatkozási határok módosítása Új beavatkozási határ 12
49 Gyakorlati alkalmazhatóság bemutatása 13
50 Gyakorlati alkalmazhatóság bemutatása 13
51 Gyakorlati alkalmazhatóság bemutatása Szempontok VSS X bar RB VSS X bar UCL 148,7 148,63 LCL 148,2 148,12 k USL 0 0,07 k LSL 0 0,08 Fedezet ( ) ( ) Százalékos növekedés 5,12% 14
52 Gyakorlati alkalmazhatóság bemutatása Szempontok VSS X bar RB VSS X bar UCL 148,7 148,63 LCL 148,2 148,12 k USL 0 0,07 k LSL 0 0,08 Fedezet ( ) ( ) Százalékos növekedés 5,12% ( ) ( ) 14
53 Gyakorlati alkalmazhatóság bemutatása Szempontok VSS X bar RB VSS X bar UCL 148,7 148,63 LCL 148,2 148,12 k USL 0 0,07 k LSL 0 0,08 Fedezet ( ) ( ) Százalékos növekedés 5,12% ( ) ( ) 5,12 % os növekedés! 14
54 Gyakorlati alkalmazhatóság bemutatása A fedezeti érték alakulása k USL és k LSL paraméterek függvényében mintavétel szimulációja során 15
55 Gyakorlati alkalmazhatóság bemutatása A fedezeti érték alakulása k USL és k LSL paraméterek függvényében mintavétel szimulációja során 15
56 Gyakorlati alkalmazhatóság bemutatása A fedezeti érték alakulása k USL és k LSL paraméterek függvényében mintavétel szimulációja során 15
57 Gyakorlati alkalmazhatóság bemutatása A fedezeti érték alakulása k USL és k LSL paraméterek függvényében mintavétel szimulációja során 5,2 % 15
58 Köszönöm a megtisztelő figyelmet! Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése konvergencia program 16
Kockázatkezelés a rezgésdiagnosztikában többváltozós szabályozó kártya segítségével
Kockázatkezelés a rezgésdiagnosztikában többváltozós szabályozó kártya segítségével Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése konvergencia program
RészletesebbenKockázatok és mérési bizonytalanság kezelése a termelésmenedzsment területén
Kockázatok és mérési bizonytalanság kezelése a termelésmenedzsment területén Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és ködtetése konvergencia program Projekt
RészletesebbenKockázatalapú szabályozó kártyák tervezése, kiválasztása és folyamatra illesztése
Kockázatalapú szabályozó kártyák tervezése, kiválasztása és folyamatra illesztése Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése konvergencia program
RészletesebbenKosztyán Zsolt Tibor Katona Attila Imre
Kockázatalapú többváltozós szabályozó kártya kidolgozása a mérési bizonytalanság figyelembe vételével Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és ködtetése konvergencia
RészletesebbenMinőségellenőrzés. Miről lesz szó? STATISZTIKAI FOLYAMATSZABÁLYOZÁS (SPC) Minőségszabályozás. Mikor jó egy folyamat? Ellenőrzés Szabályozás
STATISZTIKAI FOLYAMATSZABÁLYOZÁS (SPC) Erdei János Miről lesz szó? Mit értünk folyamatok stabilitásán, szabályozottságán? Mit jelent a folyamatképesség, és hogyan mérhetjük azt? Hogyan vehetjük észre a
RészletesebbenMinőségmenedzsment (módszerek) BEDZSULA BÁLINT
Minőségmenedzsment (módszerek) BEDZSULA BÁLINT Bedzsula Bálint gyakornok Menedzsment és Vállalatgazdaságtan Tanszék Q. épület A.314. bedzsula@mvt.bme.hu http://doodle.com/bedzsula.mvt Az előző előadás
RészletesebbenMinőségmenedzsment (módszerek) BEDZSULA BÁLINT
Minőségmenedzsment (módszerek) BEDZSULA BÁLINT Bedzsula Bálint gyakornok Menedzsment és Vállalatgazdaságtan Tanszék Q. épület A.314. bedzsula@mvt.bme.hu http://doodle.com/bedzsula.mvt Az előző előadás
RészletesebbenDesign of a risk-based control chart with variable. Pannon Egyetem, Kvantitatív Módszerek Intézeti Tanszék. Le Bélier Formaöntöde Zrt.
Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a statisztikai folyamatszabályozásban Design of a risk-based control chart with variable parameters in statistical process control Dr. Kosztyán
Részletesebben17. Folyamatszabályozás módszerei
17. Folyamatszabályozás módszerei 200. Egyéb módszerek A folyamatszabályozás alapjai Minőségképesség-elemzés Mérőeszköz-képességelemzés Ellenőrzőkártyák Bedzsula Bálint 249 215. Mérőeszköz-képességelemzés
Részletesebbenbiometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
RészletesebbenHipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
RészletesebbenHipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
Részletesebben[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
RészletesebbenNagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
RészletesebbenGVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet
GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő
Részletesebben4. A méréses ellenırzı kártyák szerkesztése
4. A méréses ellenırzı kártyák szerkesztése A kártyákat háromféle módon alkalmazhatjuk. Az elızetes adatfelvétel során a fı feladat az eloszlás paramétereinek (µ és σ ) becslése a további ellenırzésekhez.
RészletesebbenKOCKÁZATALAPÚ DÖNTÉSEK TÁMOGATÁSA A MÉRÉSI BIZONYTALANSÁG FIGYELEMBEVÉTELÉVEL HEGEDŰS CSABA 1
KOCKÁZATALAPÚ DÖNTÉSEK TÁMOGATÁSA A MÉRÉSI BIZONYTALANSÁG FIGYELEMBEVÉTELÉVEL HEGEDŰS CSABA 1 Összefoglalás: A tevékenységirányításban a döntések nagy része mérési eredményekre épül, azonban ezek a döntések
RészletesebbenMatematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása
Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból
RészletesebbenHipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58
u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ
RészletesebbenBevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
RészletesebbenTermelés- és szolgáltatásmenedzsment
Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Előrejelzési módszerek 14. Az előrejelzési modellek felépítése
RészletesebbenStatisztikai folyamatszabályozás Minitab szoftverrel
Statisztikai folyamatszabályozás Minitab szoftverrel A Minitab általános statisztikai szoftvert elsősorban statisztikai feladatok megoldására (oktatásra és minőségfejlesztésre) használják, és másodsorban
RészletesebbenDr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.
Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati
RészletesebbenA mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra
A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra Vörös Zsuzsanna NÉBIH RFI tervezési referens 2013. április 17. Egy kis felmérés nem kor Következtetések: 1. a jelenlevők nemi megoszlása:
Részletesebbene (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:
Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:
RészletesebbenBAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett
RészletesebbenA kockázatkezelés az államháztartási belső kontrollrendszer vonatkozásában
A kockázatkezelés az államháztartási belső kontrollrendszer vonatkozásában Előadó: Ivanyos János Trusted Business Partners Kft. ügyvezetője Magyar Közgazdasági Társaság Felelős Vállalatirányítás szakosztályának
RészletesebbenSTATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
RészletesebbenStatisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
RészletesebbenGazdálkodás- és Szervezéstudományok Doktori Iskola
PANNON EGYETEM Gazdálkodás- és Szervezéstudományok Doktori Iskola Hegedűs Csaba Kockázatalapú döntések támogatása a megfelelőség értékelésében a mérési bizonytalanság figyelembevételével című doktori (Ph.D)
RészletesebbenMINŐSÉGÜGYI STATISZTIKAI MÓDSZEREK. Dr. Drégelyi-Kiss Ágota ÓE BGK
MINŐSÉGÜGYI STATISZTIKAI MÓDSZEREK Dr. Drégelyi-Kiss Ágota ÓE BGK e-mail: dregelyi.agota@bgk.uni-obuda.hu 1 STATISZTIKA CÉLJA Sokaság Következtetés bizonytalansága Véletlenszerű és reprezentatív mintavétel
RészletesebbenGazdálkodás- és Szervezéstudományok Doktori Iskola. Katona Attila Imre. Kockázatalapú statisztikai folyamatszabályozás
PANNON EGYETEM Gazdálkodás- és Szervezéstudományok Doktori Iskola Katona Attila Imre Kockázatalapú statisztikai folyamatszabályozás című doktori (Ph.D) értekezés tézisgyűjteménye Témavezető: Dr. habil.
Részletesebben3. A mintavételi kockázat elfogadható szintjének meghatározása (pl. 5 vagy 10%)
MINTAVÉTELEZÉSI ELJÁRÁSOK A mintavételezés célja A statisztikai és nem statisztikai mintavételi eljárások során az ellenőr megtervezi és kiválasztja az ellenőrzési mintát, valamint kiértékeli a mintavétel
RészletesebbenHanthy László Tel.: 06 20 9420052
Hanthy László Tel.: 06 20 9420052 Néhány probléma a gyártási folyamatok statisztikai szabályzásával kapcsolatban Miben kellene segíteni az SPC alkalmazóit? Hanthy László T: 06(20)9420052 Megválaszolandó
RészletesebbenMódszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!
BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22
Részletesebben6. Előadás. Vereb György, DE OEC BSI, október 12.
6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás
RészletesebbenSTATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba
Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum
RészletesebbenA leíró statisztikák
A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az
RészletesebbenKiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.
Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak
RészletesebbenAnyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Mérési adatok feldolgozása Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Statisztika 1/ 22 Mérési eredmények felhasználása Tulajdonságok hierarchikus
RészletesebbenA mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv
Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési
RészletesebbenHipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
RészletesebbenSTATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
RészletesebbenDefine Measure Analyze Improve Control. F(x), M(ξ),
5.5.5. Six Sigma Minőségmenedzsment Statisztikai folyamatszabályozási (SPC) rendszer Erdei János Egy fegyelmezett és erősen mennyiségi szemléletű folyamatfejlesztési megközelítés, amely a gyártási, szolgáltatási
RészletesebbenMatematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
RészletesebbenKabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a
Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,
RészletesebbenMINİSÉGBIZTOSÍTÁS 12. ELİADÁS Május 9. Összeállította: Dr. Kovács Zsolt egyetemi tanár
MINİSÉGBIZTOSÍTÁS Összeállította: Dr. Kovács Zsolt egyetemi tanár 12. ELİADÁS 2011. Május 9. NyME FMK Terméktervezési és Gyártástechnológiai Intézet http://tgyi.fmk.nyme.hu NYME FMK TGYI 2006.08.28. 1.
RészletesebbenKÖVETKEZTETŐ STATISZTIKA
ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak
RészletesebbenKontrol kártyák használata a laboratóriumi gyakorlatban
Kontrol kártyák használata a laboratóriumi gyakorlatban Rikker Tamás tudományos igazgató WESSLING Közhasznú Nonprofit Kft. 2013. január 17. Kis történelem 1920-as években, a Bell Laboratórium telefonjainak
RészletesebbenKockázatkezelés és biztosítás 1. konzultáció 2. rész
Kockázatkezelés és biztosítás 1. konzultáció 2. rész Témák 1) A kockázatkezelés eszközei 2) A kockázatkezelés szakmai területei 3) A kockázatelemzés nem holisztikus technikái 4) Kockázatfinanszírozás 5)
Részletesebben2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!
GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az
RészletesebbenBevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze. Célja: - a sokaságot
RészletesebbenA minőség és a kockázat alapú gondolkodás kapcsolata
Mottó: A legnagyobb kockázat nem vállalni kockázatot A minőség és a kockázat alapú gondolkodás kapcsolata DEMIIN XVI. Katonai Zsolt 1 Ez a gép teljesen biztonságos míg meg nem nyomod ezt a gombot 2 A kockázatelemzés
Részletesebben2013.03.11. Az SPC alapjai. Az SPC alapjai SPC 5. 5. Az SPC (Statistic Process Control) módszer. Dr. Illés Balázs
SPC 5 5. Az SPC (Statistic Process Control) módszer Dr. Illés Balázs BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM ELEKTRONIKAI TECHNOLÓGIA TANSZÉK Az SPC alapjai SPC (Statistical Process Controll) =
RészletesebbenTöbbváltozós lineáris regressziós modell feltételeinek tesztelése I.
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós
RészletesebbenNEMZETKÖZI KONFERENCIA KIADVÁNYA
" KARBANTARTÁS SZEREPE AZ ÜZLETI FOLYAMATOK ÚJRAGONDOLÁSÁBAN" NEMZETKÖZI KONFERENCIA KIADVÁNYA 2014. június 2-3 Veszprém Szerkesztő: Dr. Balogh Ágnes Lektorálta: Dr. Gaál Zoltán ISBN 978-963-396-012-7
RészletesebbenStatisztikai módszerek a skálafüggetlen hálózatok
Statisztikai módszerek a skálafüggetlen hálózatok vizsgálatára Gyenge Ádám1 1 Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Számítástudományi és Információelméleti
RészletesebbenA hallgatói preferenciák elemzése statisztikai módszerekkel
A hallgatói preferenciák elemzése statisztikai módszerekkel Kosztyán Zsolt Tibor 1, Katona Attila Imre 1, Neumanné Virág Ildikó 2, Telcs András 1 1,2 Pannon Egyetem, 1 Kvantitatív Módszerek Intézeti Tanszék,
Részletesebben1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
RészletesebbenTöbbváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
RészletesebbenMintavételes átvételi ellenőrzés
Mintavételes átvételi ellenőrzés öntés a tétel átvételéről vagy visszautasításáról beszállítótól érkezett tétel másik részlegből érkezett tétel kiszállítandó tétel Nem paraméterbecslés, hanem hipotézisvizsgálat
RészletesebbenStatistical Process Control (SPC), Statisztikai Folyamatszabályozás
Statistical Process Control (), Statisztikai Folyamatszabályozás 1 2 2 A statisztikai folyamatszabályozás () koncepcióját először Dr Walter Shewhart fejlesztette ki a Bell laboratóriumokban, az 1920-as
RészletesebbenStatisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék
Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 17. Outline 1 Leíró statisztikák 2 Középértékek Példa 3 Szóródási mutatók Példa 4 Néhány megjegyzés a grafikonokról 5 Számítások
RészletesebbenHipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
RészletesebbenElemszám becslés. Kaszaki József Ph.D. SZTE ÁOK Sebészeti Műtéttani Intézet
Elemszám becslés Kaszaki József Ph.D. SZTE ÁOK Sebészeti Műtéttani Intézet Miért fontos? Gazdasági okok: Túl kevés elem esetén nem tudjuk kimutatni a kívánt hatást Túl kevés elem esetén olyan eredmény
Részletesebbeny ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
RészletesebbenA kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András
Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András A kockázat fogalma A kockázat (def:) annak kifejezése, hogy valami nem kívánt hatással lesz a valaki/k értékeire, célkitűzésekre. A kockázat
RészletesebbenYou created this PDF from an application that is not licensed to print to novapdf printer (
4.6 4. 4.8 4.4 4.0 4.6 4. 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 Run: Run: Run: Run: 4 Run: 5 Run: 6 4.6 4. 4.8 4.4 4.0 4.6 4. 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5
RészletesebbenSPC egyszerően, olcsón, eredményesen
SPC egyszerően, olcsón, eredményesen Rába Tivadar Six Sigma Black Belt BorgWarner Turbo System April 7, 2007 1 Mi az SPC? Miért pont SPC? Tán Show Program for Costumer? Szakértık Statisztikai folyamat
RészletesebbenSzámítógépes döntéstámogatás. Statisztikai elemzés
SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre
RészletesebbenMINŐSÉGELLENŐRZÉS TÁBLÁZATOK A JEGYZŐKÖNYVEK MEGOLDÁSÁHOZ
MINŐSÉGELLENŐRZÉS TÁBLÁZATOK A JEGYZŐKÖNYVEK MEGOLDÁSÁHOZ Minőségi jellemzők csoportosítása Tervezett, mérhető minőségi jellemzők Használatra való alkalmasság. Szabványoknak, rajzoknak, műszaki, környezetvédelmi
RészletesebbenIATF 16949:2016 szabvány fontos kapcsolódó kézikönyvei (5 Core Tools):
APQP IATF 16949:2016 szabvány fontos kapcsolódó kézikönyvei (5 Core Tools): PPAP (Production Part Approval Process) Gyártás jóváhagyási folyamat APQP (Advanced Product Quality Planning and Control Plans)
RészletesebbenStatisztikai alapfogalmak a klinikai kutatásban. Molnár Zsolt PTE, AITI
Statisztikai alapfogalmak a klinikai kutatásban Molnár Zsolt PTE, AITI Bevezetés Research vs. Science Kutatás Tudomány Szerkezeti háttér hiánya Önkéntesek (lelkes kisebbség) Beosztottak (parancsot teljesítő
RészletesebbenStatisztika elméleti összefoglaló
1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11
RészletesebbenMi az adat? Az adat elemi ismeret. Az adatokból információkat
Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás
RészletesebbenTájékoztató. Normális (Gauss-) eloszlás. Következtetés hibái. Mintavételi alapelvek. Minőségmenedzsment módszerek (SPC) 3σmás szabály.
Minőségmenedzsment módszerek (SPC) Erdei János Tájékoztató Előadó: Erdei János Tematika: Minőségmenedzsment módszerek Folyamatszabályozás logikája, eszközei, mintavételes átvételi minőség-ellenőrzés alapjai
RészletesebbenMéréstechnika II. Mérési jegyzőkönyvek FSZ képzésben részt vevők részére. Hosszméréstechnikai és Minőségügyi Labor Mérési jegyzőkönyv
Méréstechnika II. ek FSZ képzésben részt vevők részére Összeállította: Horváthné Drégelyi-Kiss Ágota Kis Ferenc Lektorálta: Galla Jánosné 009 Tartalomjegyzék. gyakorlat Mérőhasábok, mérési eredmény megadása.
RészletesebbenHidak építése a minőségügy és az egészségügy között
DEBRECENI EGÉSZSÉGÜGYI MINŐSÉGÜGYI NAPOK () 2016. május 26-28. Hidak építése a minőségügy és az egészségügy között A TOVÁBBKÉPZŐ TANFOLYAM KIADVÁNYA Debreceni Akadémiai Bizottság Székháza (Debrecen, Thomas
RészletesebbenIntervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef.
Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Feladatok Gazdaságstatisztika 7. Statisztikai becslések (folyt.); 8. Hipotézisvizsgálat
RészletesebbenHat Szigma Zöldöves Tanfolyam Tematikája
Hat Szigma Zöldöves Tanfolyam Tematikája Megjegyzések: A tanfolyamon haszáljuk: - Minitab statisztikai (demo) és - Companion by Minitab projektek menedzselésére szolgáló (demo) szoftvert, átadunk: - egy
RészletesebbenMintavételi eljárások
Mintavételi eljárások Daróczi Gergely, PPKE BTK 2008. X.6. Óravázlat A mintavétel célja Alapfogalmak Alapsokaság, mintavételi keret, megfigyelési egység, mintavételi egység... Nem valószínűségi mintavételezési
RészletesebbenKabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.
Kabos: Statisztika II. ROC elemzések 10.1 ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás szóhasználatával A riasztóberendezés érzékeli, ha támadás jön, és ilyenkor riaszt. Máskor nem. TruePositiveAlarm:
RészletesebbenPopulációbecslések és monitoring
Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány
Részletesebbeny ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell
Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.
RészletesebbenSTATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel
RészletesebbenSTATISZTIKA. A Föld pályája a Nap körül. Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)
STATISZTIKA 10. Előadás Megbízhatósági tartományok (Konfidencia intervallumok) Sir Isaac Newton, 1643-1727 Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)
Részletesebben1. Példa. A gamma függvény és a Fubini-tétel.
. Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +
RészletesebbenNYF-MMFK Műszaki Alapozó és Gépgyártástechnológia Tanszék gépészmérnöki szak III. évfolyam
Tantárgy neve: INFORMATIKÁVAL TÁMOGATOTT MINŐSÉGMENEDZSMENT Tantárgy kódja: GM 2503 Meghirdetés féléve: 5. Össz-óraszám (elm. + gyak.): 28 5. 14 1 1 14 14 Összesen: 14 14 Előfeltétel (tantárgyi kód): GM
RészletesebbenAz éghajlati modellek eredményeinek alkalmazhatósága hatásvizsgálatokban
Az éghajlati modellek eredményeinek alkalmazhatósága hatásvizsgálatokban Szépszó Gabriella Országos Meteorológiai Szolgálat, szepszo.g@met.hu RCMTéR hatásvizsgálói konzultációs workshop 2015. június 23.
RészletesebbenLövedékálló védőmellény megfelelőségének elemzése lenyomatmélységek (traumahatás) alapján
Lövedékálló védőmellény megfelelőségének elemzése lenyomatmélységek (traumahatás) alapján Eur.Ing. Frank György c. docens az SzVMSzK Szakmai Kollégium elnöke SzVMSzK mérnök szakértő (B5) A lövedékálló
RészletesebbenPopulációbecslések és monitoring
Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány
RészletesebbenStatisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat
Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat 7. lecke Paraméter becslés Konfidencia intervallum Hipotézis vizsgálat feladata Paraméter becslés és konfidencia
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
RészletesebbenZempléni gyümölcsalapú kézműves élelmiszerek fogyasztói magtartásának vizsgálata a nők körében
Debreceni Egyetem Gazdaságtudományi Kar XXXII. Országos Tudományos Diákköri Konferencia Közgazdaságtudományi Szekció Fogyasztói magatartás 1. Zempléni gyümölcsalapú kézműves élelmiszerek fogyasztói magtartásának
RészletesebbenModern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt
Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak
RészletesebbenSTATISZTIKAI MÓDSZEREK ALKALMAZÁSA SZABVÁNYOK ÁTTEKINTÉSE (ISO TC 69)
STATISZTIKAI MÓDSZEREK ALKALMAZÁSA SZABVÁNYOK ÁTTEKINTÉSE (ISO TC 69) 1. AZ ISO SZABVÁNYOK TÉRKÉPE 2. A SZABVÁNYOK BEMUTATÁSA 3. HASZNÁLATI TANÁCSOK 4. A STATISZTIKAI SZABVÁNYOK ÉS AZ ISO 9001 5. JAVASLATOK
RészletesebbenMatematikai geodéziai számítások 6.
Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre
RészletesebbenGyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László
Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,
RészletesebbenKvantitatív módszerek
Kvantitatív módszerek szimuláció Kovács Zoltán Szervezési és Vezetési Tanszék E-mail: kovacsz@gtk.uni-pannon.hu URL: http://almos/~kovacsz Mennyiségi problémák megoldása analitikus numerikus szimuláció
RészletesebbenStatisztikai következtetések Nemlineáris regresszió Feladatok Vége
[GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell
Részletesebben