A Markowitz modell: kvadratikus programozás
|
|
- Árpád Nemes
- 9 évvel ezelőtt
- Látták:
Átírás
1 A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. Ennek a legegyszer bb változatát ismertetjük (irodalom: Robert J. Vanderbei, Linear Programing, Foundations and Extensions. Adott n db. potenciális befektetés, jelölje R i (i = 1,..., n a i-edik befektetés értékét (t ke+ kamat a következ id periódusban. Ekkor R i -t valószín ségi változónak tekinthetjük, jóllehet, bizonyos befektetések esetén ez determinisztikus is lehet. Portfolió alatt nemnegatív x i (i = 1,..., n számok összességét értjük, melyek összege éppen 1. Most x i azt mutatja meg, hogy egységnyi t kének mely részéért vásároltunk az i-edik befektetésb l. Így portfoliónk (egységnyi befektetésre es értéke a következ id periódusban R = x i R i. A portfolió várható értéke: E R = x i E R i. Ha ezt akarjuk maximalizálni, akkor a helyzet egyszer, teljes t kénket a legnagyobb várható érték befektetésbe fektetjük. De sajnos, a magas nyereség befektetések egyúttal magas kockázatúak is. Azaz hosszú távon jól teljesítenek, de rövid távon nagyon nagy az ingadozásuk. 1
2 2 Markowitz egy portfolió kockázatát annak varianciájaként deniálta: ( n var R = E(R E R 2 2 = E x i (R i E R i ahol ( n 2 = E x i Ri R i = R i E R i. A várható értéket maximalizálni a kockázatot minimalizálni kellene. Ez két ellenkez irányú cél, melyet egyszerre nem teljesíthetünk. A Markowitz modellben arra törekszünk, hogy a várható értéket úgy maximalizáljuk, hogy közben a kockázat ne legyen túl nagy. Markowitz egy µ pozitív paramétert vezetett be (kockázat elkerülési paraméter, és a következ optimalizálási problémát veti fel: ( n 2 maximalizálja x i E R i µ E x i Ri feltéve, hogy x i = 1 (1 x i 0 (i = 1,..., n. A µ kockázat elkerülési paraméter a kockázat fontosságát jelzi a várható értékkel szemben, ha értéke nagy, akkor a kockázatot csökkentjük, a várható érték ellenében, míg kis értékénél magas kockázatot vállalunk a magas várható érték érdekében. Pédául, ha µ = 0 akkor a várható értéket maximalizáljuk, és
3 a kockázatot gyelmen kívül hagyjuk. Az (1 maximalizálási optimum problémával egyenérték az alábbi minimalizálási optimum probléma: 3 minimalizálja feltéve, hogy ( n n 2 x i E R i + µ E x i Ri x i = 1 (2 x i 0 (i = 1,..., n. A célfüggvény alakjából kiolvasható, hogy annak kvadratikus része pozitív szemidenít. (2 egy kvadratikus programozási minimumprobléma. A varianciát tovább alakítva kapjuk, hogy ( n 2 E x i Ri ( n ( ( = E x i Ri x j Rj = E j=1 j=1 x i x j Ri Rj = n x i x j E( R i Rj = n j=1 j=1 x i x j C ij ahol C ij = E( R i Rj
4 4 a kovariancia mátrix. Bevezetve a r i = E R i jelölést, optimalizálási problémánk átírható minimalizálja feltéve, hogy n r i x i + µ n x i x j C ij x i = 1 j=1 x i 0 (i = 1,..., n (3 alakba. Látható, hogy a megoldáshoz szükségünk van minden befektetés nyereségének és a kovariancia mátrixnak a becslésére. Ezeket azonban nem ismerjük, viszont a múltbeli adatok alapján becsülhet k. Táblázatunk nyolc különböz lehetséges befektetésre: (1 3 hónapos US kincstárjegy, (2 US hosszú lejáratú kötvény, (3 S& P 500, (4 Wilshire 500 (kis cégek részvényeinek összessége, (5 NASDAQ Composite, (6 Lehman Brothers Corporate Bonds Index, (7 EAFE (index Európa, Ázsia, Távolkelet befektetéseire, (8 arany nézve mutatja az évenkénti értékeket az id szakra 1$ befektetett összegre nézve. Így pl. 1$ január 1-én 3 hónapos US kincstárjegybe fektetve, ugyanezen év december 31-én 1, 075$-re n tt.
5 5 Legyen R i (t (i = 1,..., n a i-edik befektetés értéke az t évben. Egy egyszer becslés ennek E R i várható értékére, a múltbeli értékek átlaga (számtani közepe: r i = E R i = 1 T T R i (t. Ennek az egyszer képletnek két hátránya van.
6 6 Az els az, hogy ami 1973-ban történt, az bizonyára kevésbbé van hatással a jöv re, mint az, ami 1994-ben történt. Így, ha ugyanolyan súllyal vesszük gyelembe a múltbeli éveket, akkor a régi eseményeknek túl nagy jelent séget tulajdonítunk, a közelmúltbeli események rovására. Egy jobb becslést kaphatunk, ha a E R i = T p T t R i (t T p T t diszkontált összeget számoljuk, ahol p a diszkontálási faktor. A p = 0, 9 értéket véve a súlyozott átlag nagyobb súlyt ad a közelmúlt éveinek. Például arany esetén az átlagos érték 1,129, míg a súlyozott 1,053. Legtöbb szakért 1995-ben úgy gondolta, hogy az 5, 3%-os növekedés reálisabb, mint a 12, 9%. Az alábbi számításokban a becslések p = 0, 9 súllyal lettek kiszámolva. A második probléma az átlag kiszámítási módja. Egy befektetésnek melynek értéke az els évben 1,1, a másodikban 0,9 az átlagértéke 1,0, vagyis nincs se növekedés, se veszteség. Azonban 1$ így befektetve a második év végén 1, 1 0, 9 = 0, 99$ lesz, vagyis 1%-kal kisebb mint az átlag. Ez nem nagy eltérés, de ha pl. az érték az els évben 2, a másodikban 0,5 az átlagértéke 1,25, viszont az érték a második év végén 2 0, 5 = 1$ lesz ami már 25%-kal kisebb mint az átlag, azaz jelent s az eltérés. Ez már egy olyan hatás amit korrigálni kell. Ennek
7 eszköze a súlyozott geometriai középpel képezett átlag: T p T t ln R i (t ( T E R i = exp T = R i (t (pt t p T t 1 T p T t Ez a becslés pl. aranyra 2, 9%-ot ad ami sokkal jobban összhangban van a szakért k véleményével (legalábbis 1995-ben. Hasonlóan lehet a C ij kovariancia mátrix elemeit is becsülni a múltbeli adatok alapján, például: C ij = 1 T (R i (t r i (R j (t r j (i, j = 1,..., n. T Az r i, C ij értékeket ismerve, adott µ mellett a (3 kvadratikus programozási feladat megoldható. A következ táblázat az optimális portfoliókat adja meg a µ paraméter több értékénél (az 1995 évre vonatkozóan. 7 Látható, hogy µ = 0-nál a portfoliónk egyetlen befektetést tartalmaz EAFE-t, mert ennek a legmagasabb a várható értéke
8 8 a múltbei adatok alapján. Nagyon magas, pl. µ = 1024 esetén, portfoliónk 93, 3%-ban hosszú lejáratú US államkötvényt tartalmaz, és csak 2, 2%nyi EAFE-t, mert az el z nek kicsi, utóbbinak nagy a varianciája (a múltbeli adatokból becsülve. A µ értékét folytonosan változtatva, az optimális portfolió várható értékét (középérték és varianciáját ábrázolva egy görbét kapunk, melyet esetünkben az alábbi ábra mutat: Itt a vízszintes tengelyen az optimális portfolió várható értékei, a függ leges tengelyen a varianciák (100-zal szorozva vannak feltüntetve, a µ értékek a megfelel pontoknál be vannak
9 írva. Ugyancsak be vannak jelölve az egyes befektetések adatai. A kapott görbét ecient frontier -nek nevezzük (magyarul kb. hatékonysági határgörbe. E görbe felett (vagy rajta van az összes (az optimális portfolió meghatározásánál gyelembevett befektetés. Minden olyan portfolió, melynek várható értéke és varianciája nem erre a görbére esik (felette van javítható, így csak olyan portfolióba szabad befektetni, mely a hatékonysági határgörbén van. 9
A Markowitz modell: kvadratikus programozás
A Markowitz modell: kvadratikus programozás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2011/12 tanév, II. félév Losonczi László (DE) A Markowitz modell 2011/12 tanév,
RészletesebbenDiverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,
RészletesebbenNem-lineáris programozási feladatok
Nem-lineáris programozási feladatok S - lehetséges halmaz 2008.02.04 Dr.Bajalinov Erik, NyF MII 1 Elég egyszerű példa: nemlineáris célfüggvény + lineáris feltételek Lehetséges halmaz x 1 *x 2 =6.75 Gradiens
RészletesebbenKockázatos pénzügyi eszközök
Kockázatos pénzügyi eszközök Tulassay Zsolt zsolt.tulassay@uni-corvinus.hu Tőkepiaci és vállalati pénzügyek 2006. tavasz Budapesti Corvinus Egyetem 2006. március 1. Motiváció Mi a fő különbség (pénzügyi
RészletesebbenMikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 6. hét AZ IDŽ KÖZGAZDASÁGTANA, 1. rész
MIKROÖKONÓMIA II. B ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia II. B AZ IDŽ KÖZGAZDASÁGTANA, 1. rész Készítette: Szakmai felel s: 2011. február A tananyagot készítette: Jack Hirshleifer, Amihai
RészletesebbenA pénzügyi kockázat elmélete
7. Kötvények és árazásuk Részvények és kötvények Részvény: tulajdonrészt jelent, részesedést a vállalat teljesítményéb l. Kötvény: hitelt jelent és a tartozás visszazetésének szabályait. A részvényeket
RészletesebbenA vállalati pénzügyi döntések fajtái
A vállalati pénzügyi döntések fajtái Hosszú távú finanszírozási döntések Befektetett eszközök Forgóeszközök Törzsrészvények Elsőbbségi részvények Hosszú lejáratú kötelezettségek Rövid lejáratú kötelezettségek
RészletesebbenVéletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
RészletesebbenOPTIMÁLIS PORTFÓLIÓK KIALAKÍTÁSA
EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR OPTIMÁLIS PORTFÓLIÓK KIALAKÍTÁSA Szakdolgozat PÉTER ZSÓFIA Matematika BSc., Matematikai elemz szakirány Témavezet : Csiszár Vill, adjunktus Valószín
RészletesebbenA befektetési eszközalap portfolió teljesítményét bemutató grafikonok
PÉNZPIACI befektetési eszközalap portfólió Benchmark: RMAX Típus: Rövid lejáratú állampapír Árfolyam 1,638 HUF/egység Valuta HUF Portfolió nagysága 8 180 498 608 HUF Kockázati besorolás: alacsony A bemutatott
RészletesebbenA befektetési eszközalap portfolió teljesítményét bemutató grafikonok
PÉNZPIACI befektetési eszközalap portfólió Benchmark: RMAX Típus: Rövid lejáratú állampapír Árfolyam 1,657HUF/egység Valuta HUF Portfolió nagysága 7 625 768 268 HUF Kockázati besorolás: alacsony A bemutatott
RészletesebbenBiztosítási ügynökök teljesítményének modellezése
Eötvös Loránd Tudományegyetem Természettudományi Kar Budapest Corvinus Egyetem Közgazdaságtudományi Kar Biztosítási ügynökök teljesítményének modellezése Szakdolgozat Írta: Balogh Teréz Biztosítási és
Részletesebben11. Előadás. 11. előadás Bevezetés a lineáris programozásba
11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez
RészletesebbenTovábbi programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás
További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás Készítette: Dr. Ábrahám István Hiperbolikus programozás Gazdasági problémák optimalizálásakor gyakori, hogy
RészletesebbenOnline algoritmusok. Algoritmusok és bonyolultságuk. Horváth Bálint március 30. Horváth Bálint Online algoritmusok március 30.
Online algoritmusok Algoritmusok és bonyolultságuk Horváth Bálint 2018. március 30. Horváth Bálint Online algoritmusok 2018. március 30. 1 / 28 Motiváció Gyakran el fordul, hogy a bemenetet csak részenként
RészletesebbenRövid távú modell III. Pénzkereslet, LM görbe
Rövid távú modell III. Pénzkereslet, Makroökonómia Tanszék Budapesti Corvinus Egyetem Makroökonómia Rövid távú modell III. Pénzkereslet, Félév végi dolgozat 40 pontos vizsga május 23. hétf 10 óra május
RészletesebbenRövid távú modell Pénzkereslet, LM görbe
Rövid távú modell Pénzkereslet, Kuncz Izabella Makroökonómia Tanszék Budapesti Corvinus Egyetem Makroökonómia Kuncz Izabella Rövid távú modell Pénzkereslet, Mit tudunk eddig? Elkezdtük levezetni a rövid
RészletesebbenA stratégiában egyszerre van jelen a küls környezethez való alkalmazkodás és az annak
1. feladat: Webes felület készít i a szervizelés és ügyfélszolgálat területén kívánják tevékenységeiket korszer síteni. A beruházás jelent s volumen költséget jelent, a cégvezetés SWOT elemzést végzett
RészletesebbenForintban Denominált Modell Portfoliók Átmeneti portfolió 45% 10% Átmeneti portfolió 45% Pénzpiaci Kötvény Abszolút hozamú A befektetési stratégia célja: A tőke reálértékének megőrzése és egy stabil kamatjövedelem
Részletesebben1. szemináriumi. feladatok. két időszakos fogyasztás/ megtakarítás
1. szemináriumi feladatok két időszakos fogyasztás/ megtakarítás 1. feladat Az általunk vizsgál gazdaság csupán két időszakig működik. A gazdaságban egy reprezentatív fogyasztó hoz döntéseket. A fogyasztó
RészletesebbenEllátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével
Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Pekárdy Milán, Baumgartner János, Süle Zoltán Pannon Egyetem, Veszprém XXXII. Magyar Operációkutatási
RészletesebbenTársaságok pénzügyei kollokvium
udapesti Gazdasági Főiskola Pénzügyi és Számviteli Főiskolai Kar udapesti Intézet Továbbképzési Osztály Társaságok pénzügyei kollokvium Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 55 60 pont
RészletesebbenDefiníciószerűen az átlagidő a kötvény hátralévő pénzáramlásainak, a pénzáramlás jelenértékével súlyozott átlagos futamideje. A duration képlete:
meg tudjuk mondani, hogy mennyit ér ez a futamidő elején. Az évi 1% különbségeket jelenértékre átszámolva ez kb. 7.4% veszteség, a kötvényünk ára 92,64 lesz. Látható, hogy a hosszabb futamidejű kötvényre
RészletesebbenBudapest Pénzpiaci Tőkevédett Alap FÉLÉVES JELENTÉS 2013
Budapest Pénzpiaci Tőkevédett Alap FÉLÉVES JELENTÉS 2013 Alapadatok Elnevezés angolul Rövid neve Rövid név angolul Budapest Money Market Capital Protected Investment Fund Budapest Pénzpiaci Alap Budapest
RészletesebbenMátrixjátékok tiszta nyeregponttal
1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják
Részletesebben10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai
Optimalizálási eljárások MSc hallgatók számára 10. Előadás Előadó: Hajnal Péter Jegyzetelő: T. Szabó Tamás 2011. április 20. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai A feltétel nélküli optimalizálásnál
RészletesebbenEgyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma
Egyes logisztikai feladatok megoldása lineáris programozás segítségével - bútorgyári termelési probléma - szállítási probléma Egy bútorgyár polcot, asztalt és szekrényt gyárt faforgácslapból. A kereskedelemben
RészletesebbenA portfólió elmélet általánosításai és következményei
A portfólió elmélet általánosításai és következményei Általánosan: n kockázatos eszköz allokációja HOZAM: KOCKÁZAT: variancia-kovariancia mátrix segítségével! ) ( ) ( ) / ( ) ( 1 1 1 n s s s p t t t s
RészletesebbenVállalati pénzügyek alapjai. 2.DCF alapú döntések
Vállalati pénzügyek alapjai 2.DCF alapú döntések Deliné Palinkó Éva Pénzügyek Tanszék (palinko@finance.bme.hu) A vállalati pénzügyi döntések alapjai 1) Bevezetés. Vállalati pénzügyi döntések köre.. 2)
RészletesebbenOpkut deníciók és tételek
Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét
RészletesebbenAz élet Jeremie nélkül
Az élet Jeremie nélkül avagy mit jelent a hazai magánbefektetőknek a Jeremie-program? Zsembery Levente 2016. szeptember 27. A Jeremie-program keretei A magán- és állami források aránya alaponként változó,
RészletesebbenMatematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók
Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz
RészletesebbenVállalkozási finanszírozás kollokvium
Harsányi János Főiskola Gazdaságtudományok tanszék Vállalkozási finanszírozás kollokvium Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 47 55 pont jeles 38 46 pont jó 29 37 pont közepes 20 28
Részletesebben14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull
14 A Black-choles-Merton modell Copyright John C. Hull 01 1 Részvényárak viselkedése (feltevés!) Részvényár: μ: elvárt hozam : volatilitás Egy rövid Δt idő alatt a hozam normális eloszlású véletlen változó:
RészletesebbenEuroOffice Optimalizáló (Solver)
1. oldal EuroOffice Optimalizáló (Solver) Az EuroOffice Optimalizáló egy OpenOffice.org bővítmény, ami gyors algoritmusokat kínál lineáris programozási és szállítási feladatok megoldására. Szimplex módszer
RészletesebbenÉrzékenységvizsgálat
Érzékenységvizsgálat Alkalmazott operációkutatás 5. elıadás 008/009. tanév 008. október 0. Érzékenységvizsgálat x 0 A x b z= c T x max Kapacitások, együtthatók, célfüggvény együtthatók változnak => optimális
RészletesebbenMAX Index. A MAX CA IB Értékpapír Rt. TV3 Profitvadász Magyar Államkötvény Index
A MAX TV3 Profitvadász Magyar Államkötvény Index 1999. január 1-i hatállyal érvényes felülvizsgált és kiegészített leírása 1999. július 8. Tartalomjegyzék...2 1. AZ INDEX LEÍRÁSA...3 1.1 AZ INDEX HIVATALOS
RészletesebbenA Termelésmenedzsment alapjai tárgy gyakorló feladatainak megoldása
azdaság- és Társadalomtudományi Kar Ipari Menedzsment és Vállakozásgazdaságtan Tanszék A Termelésmenedzsment alapjai tárgy gyakorló feladatainak megoldása Készítette: dr. Koltai Tamás egyetemi tanár Budapest,.
RészletesebbenTájékoztató hirdetmény az OTP Bank Nyrt. Regionális Treasury Igazgatóságának Értékesítési Üzletszabályzatához
Tájékoztató hirdetmény az OTP Bank Nyrt. Regionális Treasury Igazgatóságának Értékesítési Üzletszabályzatához Az egyes tőzsdén kívüli származtatott Egyedi Ügyletek változó letét igény mértékének számításáról
RészletesebbenVállalkozási finanszírozás kollokvium
Harsányi János Főiskola Gazdaságtudományok tanszék Vállalkozási finanszírozás kollokvium F Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 43 50 pont jeles 35 42 pont jó 27 34 pont közepes 19 26
RészletesebbenHírlevél ERGO Befektetési egységekhez kötött életbiztosítás eszközalapjainak teljesítményéről
Hírlevél ERGO Befektetési egységekhez kötött életbiztosítás eszközalapjainak teljesítményéről 2016.07.29 Smart Child Befektetési egységekhez kötött életbiztosítás Smart Senior Befektetési egységekhez kötött
RészletesebbenA maximum likelihood becslésről
A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának
RészletesebbenNemlineáris programozás 2.
Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,
RészletesebbenMIKROÖKONÓMIA II. Készítette: K hegyi Gergely. Szakmai felel s: K hegyi Gergely február
MIKROÖKONÓMIA II. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi
RészletesebbenFORINT KAMATVÁLTOZTATÁSI MUTATÓ. (Hatályos: 2015. január 7-től)
FORINT KAMATVÁLTOZTATÁSI MUTATÓ (Hatályos: 2015. január 7-től) H0K: 0. számú kamatváltoztatási mutató forinthitelek esetén A mutató értéke fix nulla a hitel futamideje alatti kamatperiódusokban, azaz a
RészletesebbenK&H HOZAMLÁNC ÉLETBIZTOSÍTÁSHOZ VÁLASZTHATÓ NYÍLTVÉGŰ ESZKÖZALAPOK
K&H HOZAMLÁNC ÉLETBIZTOSÍTÁSHOZ VÁLASZTHATÓ NYÍLTVÉGŰ ESZKÖZALAPOK K&H TŐKEVÉDETT PÉNZPIACI ESZKÖZALAP Az eszközalap kockázatviselő kategória szerinti besorolása: védekező A tőkevédett pénzpiaci eszközalap
RészletesebbenElső Országos Iparszövetségi Nyugdíjpénztár A PÉNZTÁR BEFEKTETÉSI POLITIKÁJÁRA VONATKOZÓ SZABÁLYZAT
Első Országos Iparszövetségi Nyugdíjpénztár A PÉNZTÁR BEFEKTETÉSI POLITIKÁJÁRA VONATKOZÓ SZABÁLYZAT 2015 2 Az Első Országos Iparszövetségi Nyugdíjpénztár BEFEKTETÉSI POLITIKÁJA 1./ Az önkéntes pénztár
RészletesebbenZMAX Index 2004. február 04.
2004. február 04. Tartalomjegyzék...2 1. AZ INDEX LEÍRÁSA...3 1.1 AZ INDEX HIVATALOS MAGYAR NEVE...3 1.2 AZ INDEX HIVATALOS ANGOL NEVE...3 1.3 AZ INDEX HIVATALOS RÖVID NEVE...3 1.4 AZ INDEX BÁZISA...3
RészletesebbenElméleti összefoglaló a Valószín ségszámítás kurzushoz
Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek
RészletesebbenMELLÉKLETEK. a következőhöz: A BIZOTTSÁG (EU).../... FELHATALMAZÁSON ALAPULÓ RENDELETE
EURÓPAI BIZOTTSÁG Brüsszel, 2016.10.4. C(2016) 6329 final ANNEXES 1 to 4 MELLÉKLETEK a következőhöz: A BIZOTTSÁG (EU).../... FELHATALMAZÁSON ALAPULÓ RENDELETE a tőzsdén kívüli származtatott ügyletekről,
RészletesebbenMérnökgazdasági számítások. Dr. Mályusz Levente Építéskivitelezési Tanszék
Mérnökgazdasági számítások Dr. Mályusz Levente Építéskivitelezési Tanszék Tartalom Beruházási döntések Pénzfolyamok meghatározása Tõke alternatíva költsége Mérnökgazdasági számítások Pénzügyi mutatók Finanszírozási
RészletesebbenTERMÉKTÁJÉKOZTATÓ ÉRTÉKPAPÍR ADÁS-VÉTEL MEGÁLLAPODÁSOKHOZ
TERMÉKTÁJÉKOZTATÓ ÉRTÉKPAPÍR ADÁS-VÉTEL MEGÁLLAPODÁSOKHOZ Termék definíció Az Értékpapír adásvételi megállapodás keretében a Bank és az Ügyfél értékpapírra vonatkozó azonnali adásvételi megállapodást kötnek.
RészletesebbenALLIANZ BÓNUSZ ÉLETPROGRAM-EURÓ
ÉLET- ÉS SZEMÉLYBIZTOSÍTÁS ALLIANZ.HU ALLIANZ BÓNUSZ ÉLETPROGRAM-EURÓ Az eszközalapokra vonatkozó konkrét információk BIZTONSÁGOS KÖTVÉNY EURÓ (BKE) ESZKÖZALAPRA VONATKOZÓ KONKRÉT INFORMÁCIÓK TERMÉK A
RészletesebbenKözgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK
KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely
Részletesebben2007. május 19. Altenburger
Dr. Banyár József Jelenleg a magánnyugdíjpénztári járadék (egyszer en: magánpénztári járadék) opcionális - szerencsére senki sem választja A szabályozás ugyanis hiányos és ellentmondásos A problémakör
Részletesebben4 Kamatlábak. Options, Futures, and Other Derivatives 8th Edition, Copyright John C. Hull
4 Kamatlábak 1 Típusok Jegybanki alapkamat LIBOR (London Interbank Offered Rate, naponta, AA minősítésű partnereknek kölcsön) BUBOR (Budapest Interbank Offered Rate) Repo kamatláb (repurchase, értékpapír
RészletesebbenÜtemezési modellek. Az ütemezési problémák osztályozása
Ütemezési modellek Az ütemezési problémák osztályozása Az ütemezési problémákban adott m darab gép és n számú munka, amelyeket az 1,..., n számokkal fogunk sorszámozni. A feladat az, hogy ütemezzük az
RészletesebbenGAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten LINEÁRIS PROGRAMOZÁS Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 4 A lineáris
RészletesebbenKövetelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor
RészletesebbenKépletek és összefüggések a 4. zárthelyi dolgozatra Solow-modell II., rövid táv
Képletek és összefüggések a 4. zárthelyi dolgozatra Solow-modell II., rövid táv 1. Solow-modell II. 1.1. Munkakiterjeszt tényez munkaer min ségét, képességeit is gyelembe vesszük E - munkakiterjeszt tényez
RészletesebbenVállalkozási finanszírozás kollokvium
Harsányi János Főiskola Gazdaságtudományok tanszék Vállalkozási finanszírozás kollokvium Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 47 55 pont jeles 38 46 pont jó 29 37 pont közepes 20 28
RészletesebbenKeynesi kereszt IS görbe. Rövid távú modell. Árupiac. Kuncz Izabella. Makroökonómia Tanszék Budapesti Corvinus Egyetem.
Árupiac Makroökonómia Tanszék Budapesti Corvinus Egyetem Makroökonómia Mit tudunk eddig? Ismerjük a gazdaság hosszú távú m ködését (klasszikus modell) Tudjuk, mit l függ a gazdasági növekedés (Solow-modell)
RészletesebbenKövetelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor
RészletesebbenAdy Endre Líceum Nagyvárad XII.C. Matematika Informatika szak ÉRINTVE A GÖRBÉT. Készítette: Szigeti Zsolt. Felkészítő tanár: Báthori Éva.
Ady Endre Líceum Nagyvárad XII.C. Matematika Informatika szak ÉRINTVE A GÖRBÉT Készítette: Szigeti Zsolt Felkészítő tanár: Báthori Éva 2010 október Dolgozatom témája a különböző függvények, illetve mértani
Részletesebben1. számú melléklet: A választható eszközalapok befektetési politikái. Érvényes: november 8-tól
1. számú melléklet: A választható eszközalapok befektetési politikái Érvényes: 2016. november 8-tól TARTALOMJEGYZÉK Forintos eszközalapok befektetési politikája A Balaton Likviditási forint eszközalap
RészletesebbenBranch-and-Bound. 1. Az egészértéketű programozás. a korlátozás és szétválasztás módszere Bevezető Definíció. 11.
11. gyakorlat Branch-and-Bound a korlátozás és szétválasztás módszere 1. Az egészértéketű programozás 1.1. Bevezető Bizonyos feladatok modellezése kapcsán előfordulhat olyan eset, hogy a megoldás során
RészletesebbenAz eszközalap árfolyamokat és hozamokat folyamatosan nyomon követheti a www.nn.hu/hozamszamlalo oldalunkon.
Kapcsolódó eszközalapok árfolyamai és visszatekintő hozamai Az alábbi táblázat tartalmazza a kapcsolódó eszközalapok - fejlécben megadott napon érvényes vételi nettó árfolyamait, valamint visszatekintő
RészletesebbenA lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/
Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
RészletesebbenStatisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus
Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú
RészletesebbenÜgyfélminősítés lakossági ügyfélnek minősülő társaságok részére
Ügyfélminősítés lakossági ügyfélnek minősülő társaságok részére A Bszt. előírásai szerint a lakossági ügyfél kategóriába sorolt ügyfeleknek a portfólió-kezelési befektetési szolgáltatási tevékenység nyújtása
Részletesebben1. feladat Az egyensúly algoritmus viselkedése: Tekintsük a kétdimenziós Euklideszi teret, mint metrikus teret. A pontok
1. feladat Az egyensúly algoritmus viselkedése: Tekintsük a kétdimenziós Euklideszi teret, mint metrikus teret. A pontok (x, y) valós számpárokból állnak, két (a, b) és (c, d) pontnak a távolsága (a c)
RészletesebbenDEVIZA KAMATFELÁR-VÁLTOZTATÁSI MUTATÓ. (Hatályos: január 7-től)
DEVIZA KAMATFELÁR-VÁLTOZTATÁSI MUTATÓ (Hatályos: 2015. január 7-től) D0F: 0. számú kamatfelár-változtatási mutató devizahitelek esetén A mutató értéke fix nulla a hitel futamideje alatti kamatperiódusokban,
RészletesebbenJó befektetési lehetőség kell? - Ebben van minden, amit keresel
Jó befektetési lehetőség kell? - Ebben van minden, amit keresel 2014.11.18 14:17 Árgyelán Ágnes A jelenlegi hozamsivatagban különösen felértékelődik egy-egy jó befektetési lehetőség. A pénzpiaci- és kötvényalapok
RészletesebbenDualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat
RészletesebbenMakroökonómia (G-Kar és HR) gyakorló feladatok az 1. és 2. szemináriumra
Makroökonómia (G-Kar és HR) gyakorló feladatok az 1. és 2. szemináriumra 1. Feladat Az általunk vizsgált gazdaságban 2018-ban és 2019-ben csupán két terméket állítanak el : X-et és Y-t. Az ezekre vonatkozó
RészletesebbenCEBS Consultative Paper 10 (folytatás) Krekó Béla PSZÁF, 2005. szeptember 15.
CEBS Consultative Paper 10 (folytatás) Krekó Béla PSZÁF, 2005. szeptember 15. 1 3.3.3 Minősítési rendszerek és a kockázatok számszerűsítése Minősítések hozzárendelése PD, LGD, CF meghatározása Közös vizsgálati
RészletesebbenHonics István CFA befektetési igazgató
OTP Paletta Az alap neve: OTP Paletta Fajtája, típusa: Nyíltvégű, nyilvános, vegyes alap Az alap indulása: 1997. november 17. : 7+RDX+Titan20+CETOP20 Az OTP Paletta egy kötvényekből, kincstárjegyekből
RészletesebbenA lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
RészletesebbenKategóriák Fedezeti követelmények
1 Válasszon kedvére a világ 20 különböző tőzsdéjét leképező 6.000 különböző CFD közül. Az elérhető tőkeáttétel akár 10-szeres is lehet. Long és short pozíció nyitására egyaránt van lehetőség, akár napon
RészletesebbenVállalkozási finanszírozás kollokvium
Harsányi János Főiskola Gazdálkodási és Menedzsment Intézet Vállalkozási finanszírozás kollokvium H Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 43 50 pont jeles 35 42 pont jó 27 34 pont közepes
RészletesebbenKÉRDİÍV. A Raiffeisen Bank Zrt. 2007. évi CXXXVIII. törvényben foglalt tájékozódási kötelezettsége alapján, ügyfelei
KÉRDİÍV Ügyfél neve:... Számlaszáma (bankszámlaszám vagy értékpapír számlaszám):.......... Adóazonosító jele:........... Állandó lakcím:.. Ügyfél MIFID alapbesorolása: LAKOSSÁGI A Raiffeisen Bank Zrt.
RészletesebbenPénzügyi számítások. 7. előadás. Vállalati pénzügyi döntések MAI ÓRA ANYAGA. Mérleg. Rózsa Andrea Csorba László FINANSZÍROZÁS MÓDJA
Pénzügyi számítások 7. előadás Rózsa Andrea Csorba László Vállalati pénzügyi döntések Hosszú távú döntések Típusai Tőke-beruházási döntések Feladatai - projektek kiválasztása - finanszírozás módja - osztalékfizetés
RészletesebbenÁtlageredmények a 2011. évi Országos Kompetenciamérésen. matematikából és szövegértésből
Átlageredmények a 2011. évi Országos Kompetenciamérésen Általános iskola 8. osztály matematikából és szövegértésből Matematika Szövegértés Iskolánkban Ált. iskolákban Budapesti ált. iskolákban Iskolánkban
RészletesebbenMátrixaritmetika. Tartalom:
Mátrixaritmetika Tartalom: A vektor és mátrix fogalma Speciális mátrixok Relációk és műveletek mátrixokkal A mátrixok szorzása A diadikus szorzat. Hatványozás Gyakorlati alkalmazások Készítette: Dr. Ábrahám
RészletesebbenFORINT KAMATFELÁR-VÁLTOZTATÁSI MUTATÓ. (Hatályos: 2015. január 7-től) (Aktualizálva: 2015. január 14-én)
FORINT KAMATFELÁR-VÁLTOZTATÁSI MUTATÓ (Hatályos: 2015. január 7-től) (Aktualizálva: 2015. január 14-én) H0F: 0. számú kamatfelár-változtatási mutató forinthitelek esetén A mutató értéke fix nulla a hitel
RészletesebbenMegoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
RészletesebbenStatisztika I. 11. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek
RészletesebbenA szállítási feladat. Készítette: Dr. Ábrahám István
A szállítási feladat Készítette: Dr Ábrahám István Bevezető A személyek, termékek, nyersanyagok szállításának lehető leggazdaságosabb megszervezése fontos kérdés Célunk lehet legkisebb összköltségre törekvés,
RészletesebbenFontosabb tudnivalók. Számonkérés és értékelés 2013.02.13. Kis- és középvállalkozások finanszírozása
Kis- és középvállalkozások finanszírozása Fazekas Tamás 1. és 2. szeminárium 2012/13. tavaszi félév Fontosabb tudnivalók! E-mail: fazekast@szolf.hu! Van honlap: www.szolfkgt.uw.hu! Van tematika (érdemes
RészletesebbenBiztosítási Eszközalapok brosúrája
Biztosítási Eszközalapok brosúrája ESZKÖZALAP MEGNEVEZÉSE: NOVIS Rövid futamidejű Magyar Kötvény Eszközalap Jelen Biztosítási Eszközalapok brosúrája 2018. január 1- től érvényes. Milyen eszközalapról van
RészletesebbenÉrtékpapír-állományok tulajdonosi megoszlása IV. negyedév 1
Értékpapír-állományok tulajdonosi megoszlása 2004. IV. negyedév 1 Budapest, 2004. február 21. A IV. negyedévben az állampapírpiacon folytatódott a biztosítók és nyugdíjpénztárak több éve tartó folyamatos
RészletesebbenMikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 8. hét AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész
MIKROÖKONÓMIA II. B ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia II. B AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész Készítette: Szakmai felel s: 2011. február A tananyagot készítette: Jack
RészletesebbenIngatlanvagyon értékelés
Nyugat-Magyarországi Egyetem Geoinformatikai Kar Ingatlanfejlesztı 8000 Székesfehérvár, Pirosalma u. 1-3. Szakirányú Továbbképzési Szak Ingatlanvagyon értékelés 4. A vagyon elemzése Szerzı: Harnos László
RészletesebbenFolyadékszcintillációs spektroszkópia jegyz könyv
Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés
RészletesebbenKiemelt Befektetői Információk. Trend Lekötött Betét
Kiemelt Befektetői Információk Ez a dokumentum ellátja Önt a Trend Kombinált befektetési termékre vonatkozó kiemelt befektetői információkkal, melyek segítségével Ön jobban megértheti az ebbe a termékbe
RészletesebbenTELJESÍTMÉNY-FORGATÓKÖNYVEK. Éves átlagos hozam -8,21% -1,56% -1,41% Ezt az összeget kaphatja vissza a költségek levonása után
ESZKÖZALAP MEGNEVEZÉSE: NOVIS Rövid futamidejű Magyar Kötvény Eszközalap Jelen Biztosítási Eszközalapok brosúrája 2018. január 1- től érvényes. Milyen eszközalapról van szó? TIPUS: Biztosítási Eszközalap
RészletesebbenOptimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
RészletesebbenBudapest Ingatlan Alapok Alapja FÉLÉVES JELENTÉS 2013
Budapest Ingatlan Alapok Alapja FÉLÉVES JELENTÉS 2013 Alapadatok Rövid neve Elnevezés angolul Rövid név angolul Harmonizáció Az alap típusa, fajtája Futamideje Indulás dátuma Az alapcímlet devizaneme Budapest
RészletesebbenGE Money Franklin Templeton Selections Alapok Alapja FÉLÉVES JELENTÉS 2013
GE Money Franklin Templeton Selections Alapok Alapja FÉLÉVES JELENTÉS 2013 Alapadatok Elnevezés angolul Rövid neve Rövid név angolul GE Money Franklin Templeton Selections Fund of Funds GE Money FTS Alapok
RészletesebbenAz eszközalap árfolyamokat és hozamokat folyamatosan nyomon követheti a oldalunkon.
Kapcsolódó eszközalapok árfolyamai és visszatekintő hozamai Az alábbi táblázat tartalmazza a kapcsolódó eszközalapok - fejlécben megadott napon érvényes vételi nettó árfolyamait, valamint visszatekintő
Részletesebben