Tartalom. Kezdeti szimulációs technikák. Tipikus kérdések. A bootstrap módszer. Bevezetés A független, azonos eloszlású eset:
|
|
- Veronika Jónás
- 6 évvel ezelőtt
- Látták:
Átírás
1 Tartalom A bootstrap módszer Zempléi Adrás TTK, Valószíőségelméleti és Statisztika Taszék október 21 Bevezetés A függetle, azoos eloszlású eset: emparaméteres paraméteres eset Alkalmazások a rétegzett mitavételél Az összefüggıség hatása Megvalósítás az R-be, példák Tipikus kérdések Statisztikai becslések tulajdoságai Mitaátlagra, függetle azoos eloszlású (iid) mitára általába ismertek (pl. aszimptotikus eredméyek) Vajo az aszimptotika alkalmazható-e kokrét mita eseté? Mediára? Kvatilisekre? Mi va, ha em teljesül az iid feltétel? Kellee általáos vizsgálati módszer Kezdeti szimulációs techikák Jackkife: az összes lehetséges módo kihagyuk egy mitaelemet Balaced repeated replicatio (BRR) rétegzett mitavételél, a szóráségyzet becslésére mide réteget két részre osztuk, lehetıleg hasolóra a háttérváltozók szerit ortogoális Hadamard mátrix (+1,-1 elemő) sorai szerit választuk a két csoportból 2 Az eredméy: ( a i a) / aholaaz eredeti mitából kapott becslés a i pedig az egyes replikások alapjá kapott becslés 1
2 Moder módszer: bootstrap Ha em tudjuk a becslés eloszlását, szórását: vegyük visszatevéses mitát a mitából (bootstrap mita), és ezekre számoljuk ki a statisztika értékét. Ha az eljárást sokszor megismételjük, képet kapuk az eljárásuk stabilitásáról. Tapasztalati kofidecia itervallum: a kapott értékek (α/2, 1- α/2) kvatilisei közötti tartomáy. Bootstrap módszer: elméleti bevezetés Efro (1979) X 1, X 2,... iid val. változók (ismeretle) F elo.fv-el X ={X 1,..., X } mita T =t (X ; F) a becsüledı meyiség (például egy tesztstatisztika: eloszlása G ) Cél: G eloszlásáak becslése Bootstrap módszer: AdottX -bıl m elemő visszatevéses mitát veszük (általába m = ) X m = {X 1,..., X m } 1 X közös eloszlása: F = δ X i i m, ( ) T = tm Xm; F Ismétlés ˆ 6 G m, i= 1 Alaptétel (Efro) A feti esetbe, ha σ 2 =D 2 (X i ) véges, és a statisztika a stadardizált mitaátlag akkor ha. T = ( X µ ) /σ * sup P* ( T < x) Φ( x) = o(1), x A bizoyítás a Berry-Essée tétele alapul, a kovergecia gyorsabb is tud lei, mit a klasszikus ormális közelítésé. Paraméteres bootstrap Az illesztett paraméteres eloszlásból geeráljuk a mitákat és ezekre számoljuk ki a statisztikát. Kicsi mitaelemszám eseté jobb, mit a emparaméteres. Gyakra haszálják pl. lieáris modellekél. 2
3 Bootstrap a regresszióál Megfigyelésekre a szokásos módo (együttese az összes koordiátára) Paraméteres módszer: az illesztett modell reziduálisaiból veszük mitát visszatevéssel, majd ezt adjuk hozzá az illesztett értékhez Választás a vizsgálat célja alapjá Modell kiválasztás: emparaméteres bootstrap Modell megbízhatóság: paraméteres bootstrap Kofidecia itervallum A ormális közelítéshez potosítás célszerő. BC-módszer a határok meghatározására: ( α ) ˆ 1 z0+ z F Φ( z0+ ) ( α ) 1 a( z0+ z ) Fˆ a bootstrap statisztika értékek tapasztalati eloszlásfüggvéye z (α) a szokásos empirikus kvatilis z 0 a torzítást (bias) korrigálja a pedig a szórás övekedés gyorsulását (acceleratio) korrigálja a =0, z 0 =0 eseté, és ha Fˆ a ormális eloszlás, éppe z (α) az eredméy. BC-képlet motivációja és alkalmazása Ha valamely mooto m(θ) traszformációt alkalmazva a becslésre ormális eloszlású lesz: m ( ˆ) θ ~ N( m( θ ) z0(1+ am( θ )),1+ am( θ )) Ebbıl a mootoitás miatt P ˆ θ <θ ) = Φ( z ) ( 0 azaz z 0 köye becsülhetı a becslése a loglikelihood függvéy deriváltjáak ferdeségébıl kapható meg Példa: kofidecia itervallum a korrelációra Stadard itervallum (a tapasztalati korreláció ormalitásá alapul) szimmetrikus em reális kicsi mitákál Boostrap aszimmetrikus, potosabb a lefedési valószíőség Kérdéses, hogy paraméteres vagy emparaméteres bootstrap módszert érdemes-e alkalmazi (a paraméteres általába óvatosabb tágabb itervallumot ad) 3
4 Példa paraméteres bootstrapra Vajo lehet az adatokra illesztett gamma eloszlás alakparamétere 1? Boot miták az expoeciális eloszlásból (ez a Γ(1,λ) eloszlás). Statisztika: az alak ML becslése ezekre a mitákra. Boot p-érték: az esetek háy százalékába volt 1-tıl távolabbi a becslés, mit a megfigyelt érték. Bootstrap a rétegzett mitákál Három lehetıség: Mide rétegbıl választuk boot mitát A rétegekbıl választuk boot rétegeket és ott az eredeti megfigyeléseket A rétegeket és a mitaelemeket is mitavételezzük Balaced bootstrap Általáosítása a BRR mitavételek. Az a kikötés, hogy összességébe mide mitaelem ugyaayiszor szerepelje a bootstrap mitákba. Az átlag potos becslését adja Ha még további kikötéseket is felteszük az elıfordulási gyakoriságokra, akkor a szóráségyzetet is potosa állítja elı. God: em mide esetbe kostruálható Összefüggı eset Ha a mitaelemek em függetleek (pl. m-összefüggıek, azaz a legfeljebb m távolságra levı megfigyelések között va kapcsolat), a feti módszer em mőködik: T ( X µ) = határeloszlása ormális, de más szórással. Viszot most is: * sup P ( T < x) Φ( x / σ ) = o(1) x *, Azaz az egyszerő bootstrap em tükrözi az adatok összefüggıségét. Ezért módosítai kell. 4
5 Blokk bootstrap módszerek Több lehetıség, az egyik leggyakrabba haszált: Circular block bootstrap (CBB, Politis és Romao, 1992) 1. Legye Y (folytatjuk az idısort az t = X mod ( t) elejétıl kezdve) 2. Legye i 1, i 2..., i m véletle, visszatevéses mita az {1, 2,..., }-bıl 3. b:blokkméret, =m b ( ) a bootstrap mita: Y( k 1) b+ j = Yi k+ j 1 k=1,,m; j=1,...,b 17 Egy tipikus tétel Akár midjárt vektorváltozókra: tegyük fel, hogy E( X 2+ε )< alkalmas ε>0-ra. Legye a folyamat erıse keverı (azaz a távoli megfigyelések közötti kapcsolat elég gyorsa lecseg), α() keverési együtthatóval. Ha erre teljesül, hogy = 1 α ( ) ε /(2+ ε ) < és a blokkméretre 1/b+b/ 0 ( ), akkor D ( T 2 * * ) Σ azaz aszimptotikusa helyes becslést kapuk. Kérdés: mekkora legye a blokkméret? Függ attól, hogy mit is akaruk becsüli. Hall, Horowitz és Jig (1995) alapjá: O( 1/3 ), ha a torzítást vagy a szórást becsüljük O( 1/4 ), ha a T statisztika eloszlásfüggvéyét becsüljük O( 1/5 ), ha a T statisztika eloszlásfüggvéyét becsüljük Gyakorlati alkalmazás Az elızı tételek em alkalmazhatóak közvetleül Politis és Romao (2004) automatikus blokkméret-meghatározása (szórásbcslésre): G = k R( k) ahol k= 4 = D R( k) és 3 k= G és D is becsüledı, véges közelítı összeggel, a tapasztalati kovariaciák felhaszálásával. 1/ 2 2G D 3 N 1/ 3 2 5
6 Gyakorlati megvalósítás Saját programmal sem boyolult R boot köyvtáráak éháy függvéye: Kofidecia itervallum becslésre (abc.ci) Statisztika paramétereiek számolására (boot) Példa Rétegzett populáció, rétegekét eltérı paraméterekkel: N(m+a k,σ k ) (k=1,..3), E(a k )=0, D 2 (a k )=γ k. 2. pop: agyobb várható érték és szórás, 3. pop: kisebb v.é., legagyobb szórás Frequecy Histogram of xdat1 Frequecy Histogram of xdat2 Frequecy Histogram of xdat xdat xdat xdat3 A háromféle bootstrap eredméye Az igazi eloszlás 1: csak a rétegek véletleek 2: csak az elemek véletleek 3: midkét elem véletle Frequecy Histogram of ered ered Frequecy Histogram of ered ered2 Frequecy Histogram of ered ered3 Magát a geerálást ismételve 500-szor: Az elsı és a 3. modell megfelelı, a 2. csak a csoportoko belüli szóródást mutatja. Megfelelı súlyozással javíthatóak! Frequecy Histogram of ee ee 6
7 Becslések Várható értékre Az összes elem átlaga (rétegek súlyozott átlaga) A rétegek súlyozatla átlaga Véletle populációba midkettı torzítatla, rögzítettbe csak az elsı. Megvalósítás az R-be Boot csomag Kofidecia itervallum: abc.ci A haszált módszer: approximative bias corrected accelerated (azaz az elızıek szerit közelítı becslést ad a bootstrap torzítására és a szórásbecslés esetleges potatlaságára is). Példa: bigcity adatbázis (49 USA-beli agyváros épessége 1920-ba és 1930-ba),a becsült korreláció: corr=0.98. A bootstrap kofidecia itervallumok: megb. alsó h. felsı h Nem szimmetrikus! R:Boot függvéy Tetszıleges statisztikára alkalmas Argumetumai: adatok statisztika miták száma típus, Eredméy: torzítás szórás, Még midig a Boot függvéy Paraméteres és emparaméteres is lehet Nemparaméteres: ordiary bootstrap balaced bootstrap: mide egyes mitaelem ugyaayi mitába szerepel atithetic resamplig: mide mitával együtt a párja is szerepel (az a pár, ahol x k () helyett az x -k+1 () szerepel) permutatio (a mitaelemek permutációját haszálja) 7
8 Másik lehetıség kofidecia itervallum számítására Boot.ci A boot függvéy meghívása utái elemzés Az elızıeke kívül studetized itervallum is kapható Elıye, hogy így a miták külö is elemezhetıek Grafikus megjeleítés plot.boot: paraméteres modell (expoeciális eloszlás illesztése az adatokra) Desity H i s t o g r a m o f t t* t * Q u a t i le s o f S t a d a r d N o r m a l Összefoglalás A szimulációs vizsgálatok szite megkerülhetetleek az eredméyek megbízhatóságáak elemzésekor Fı kérdés: melyik módszert válasszuk egy összetett elemzés vizsgálatáál Hivatkozások T. J. DiCiccio ad B. Efro: Bootstrap cofidece itervals. Statist. Sci. Vol. 11, 3 (1996), P. J. Bickel ad D. A. Freedma: Asymptotic Normality ad the Bootstrap i Stratified Samplig, A. Statist. Vol. 12, (1984), Rao, J.N.K., Wu, C.F.J., Resamplig ifereces with complex survey data. J. Amer. Statist. Assoc. 83, O. Pos: Bootstrap of meas uder stratified samplig. Electroic Joural of Statistics, Vol. 1 (2007) S.N. Lahiri: Resamplig methods for Depedet Data (Spriger, 2003) Hall, P., Horowitz, J., Jig, B.-Y. (1995). O blockig rules for the bootstrap with depedet data. Biometrika 82: D. N. Politis ad H. White (2004): Automatic Block-Legth Selectio for the Depedet Bootstrap. ECONOMETRIC REVIEWS, Vol. 23, No. 1, pp
Bootstrap (Efron, 1979)
Bootstrap (Efro, 979) 4. elıadás 204. március 3. Bootstrap módszerek, többdimeziós extrém-érték eloszlások illeszkedésvizsgálata Újramitavételezési eljárás, a becsléseik szórásáak vizsgálatára, modell-illeszkedés
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 10. A statisztika alapjai Debrecei Egyetem, 2015 Dr. Bérczes Attila, Bertók Csaád A diasor tartalma 1 Bevezetés 2 Statisztikai függvéyek Defiíció, empirikus várható érték Empirikus
Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)
Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa
A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet
A biostatisztika alapfogalmai, kofideciaitervallum Dr. Boda Krisztia PhD SZTE ÁOK Orvosi Fizikai és Orvosi Iformatikai Itézet Mitavétel ormális eloszlásból http://www.ruf.rice.edu/~lae/stat_sim/idex.html
A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük.
Statisztikai módszerek. BMEGEVGAT01 Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudomáyi Egyetem Gépészméröki Kar Hidrodiamikai Redszerek Taszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Statisztika 1. zárthelyi dolgozat március 21.
Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy
Áringadozások elıadás Kvantitatív pénzügyek szakirány 2012/13 2. félév
Árigadozások elıadás Kvatitatív pézügyek szakiráy 01/13. félév Heti óra elıadás + óra gyakorlat Elıadás: fıleg modellek, elemzési módszerek Gyakorlat: R programmal, alkalmazások Számokérés 50%: beadadó
Matematikai statisztika
Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika
kismintás esetekben vagy olyanokban, melyeknél a tanulóalgoritmust tesztadatokon szeretnénk
ÚJRAMINTAVÉTELEZÉSI ELJÁRÁSOK A jackkife (zsebkés) és bootstrap (cipőhúzó a saját kallatyújáál fogva) eljárások agol elevezése is arra utal, hogy itt ad hoc eljárásokról va szó, melyek azoba agyo haszosak
A matematikai statisztika elemei
A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................
biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat
Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke
Matematikai statisztika
Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),
Zavar (confounding): akkor lép fel egy kísérletben, ha a kísérletet végző nem tudja megkülönböztetni az egyes faktorokat.
Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet végző em tudja megkülöbözteti az egyes faktorokat. Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet
Populáció. Történet. Adatok. Minta. A matematikai statisztika tárgya. Valószínűségszámítás és statisztika előadás info. BSC/B-C szakosoknak
Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 16. A matematikai statisztika tárgya Következtetések levoása adatok alapjá Ipari termelés Mezőgazdaság Szociológia
Statisztika 1. zárthelyi dolgozat március 18.
Statisztika. zárthelyi dolgozat 009. március 8.. Ismeretle m várható értékű, szórású ormális eloszlásból a következő hatelemű mitát kaptuk:, 48 3, 3, 83 0,, 3, 97 a) Számítsuk ki a mitaközepet és a tapasztalati
Matematika B4 I. gyakorlat
Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a
Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2.
Itervallum Paraméteres Hipotézisek Nemparaméteres Statisztika Hipotézisvizsgálat Székely Balázs 2010. december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Előadás vázlat 1 Itervallumbecslések
24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje.
24. tétel valószíűségszámítás elemei. valószíűség kiszámításáak kombiatorikus modellje. GYORISÁG ÉS VLÓSZÍŰSÉG meyibe az egyes adatok a sokaságo belüli részaráyát adjuk meg (törtbe vagy százalékba), akkor
Kutatói pályára felkészítı modul
Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI
1. előadás: Bevezetés. Irodalom. Számonkérés. Cél. Matematikai statisztika előadás survey statisztika MA szakosoknak. A matematikai statisztika tárgya
Matematikai statisztika előadás survey statisztika MA szakosokak 206/207 2. félév Zempléi Adrás. előadás: Bevezetés Irodalom, követelméyek A félév célja Matematikai statisztika tárgya Törtéet Alapfogalmak
Statisztika október 27.
Statisztika 2011. október 27. Külöbség valószíőségszámítás és statisztika között Kísérlet: 4-szer dobuk fel egy érmét. Megszámoljuk a fejek számát. Valszám: Ismert a fejdobás valószíősége. Milye valószíőséggel
7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés
7. el adás Becslések és mita elemszámok 7-1. fejezet Áttekités 7-1 Áttekités 7- A populáció aráy becslése 7-3 A populáció átlag becslése: σismert 7-4 A populáció átlag becslése: σem ismert 7-5 A populáció
Statisztika elméleti összefoglaló
1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11
Eddig megismert eloszlások Jelölése Eloszlása EX D 2 X P(X = 1) = p Ind(p) P(X = 0) = 1 p. Leíró és matematikai statisztika
Leíró és matematikai statisztika Matematika alapszak, matematikai elemző szakiráy Zempléi Adrás Valószíűségelméleti és Statisztika Taszék Matematikai Itézet Természettudomáyi Kar Eötvös Lorád Tudomáyegyetem
Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia
Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 5. Megjegyzések. A tétel feltételei gyegíthetőek: elég, ha a függetle, azoos eloszlású változók várható értéke véges.
Sorozatok, határérték fogalma. Függvények határértéke, folytonossága
Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt
Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet
Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz
f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben
Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,
Statisztika. Földtudomány szak, geológus szakirány, 2015/2016. tanév tavaszi
Statisztika Földtudomáy szak, geológus szakiráy, 015/016. taév tavaszi félév Backhausz Áges (ELTE TTK Valószíűségelméleti és Statisztika Taszék)1 Tartalomjegyzék 1. Bevezetés 3 1.1. Példa: az adatok elemzése....................
I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.
I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.
6. feladatsor. Statisztika december 6. és 8.
6. feladatsor Statisztika 200. december 6. és 8.. Egy = 0 szervert tartalmazó kiszolgáló mide szervere mide pillaatba 0 < p < valószíűséggel foglalt, a foglaltságok szerverekét függetleek. Tehát a foglaltak
6. Minısítéses ellenırzı kártyák
6. Miısítéses elleırzı kártyák Sokszor elıfordul, hogy a termék-egyedek miıségét em tudjuk mérhetı meyiségekkel jellemezi, csak megfelelı/em megfelelı kategóriákba sorolhatjuk ıket, és a hibás darabokat,
Reakciómechanizmusok leírása. Paraméterek. Reakciókinetikai bizonytalanságanalízis. Bizonytalanságanalízis
Megbízható kémiai modellek kifejlesztése sok mérési adat egyidejő feldolgozása alajá uráyi amás www.turayi.eu ELE Kémiai Itézet Reakciókietikai Laboratórium Eddig dolgoztak eze a témá: (témavezetık: uráyi
18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható
8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.
1. elıadás: Bevezetés. Számonkérés. Irodalom. Valószínőségszámítás helye a tudományok között. Cél
1 Valószíőségszámítás 1 elıadás alk.mat és elemzı szakosokak 2013/2014 1. félév Zempléi Adrás zemplei@ludes.elte.hu http://www.cs.elte.hu/~zemplei/ 1. elıadás: Bevezetés Irodalom, követelméyek A félév
Statisztika Elıadások letölthetık a címrıl
Statisztika Elıadások letölthetık a http://www.cs.elte.hu/~arato/stat*.pdf címrıl Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább 1-α valószínőséggel
Eötvös Loránd Tudományegyetem
aa BOOTSTRAP MÓDSZEREK ÉS ALKALMAZÁSAIK Doktori értekezés tézisei VARGA LÁSZLÓ Témavezető: Zempléi Adrás Egyetemi doces, CSc Matematika Doktori Iskola Vezető: Faragó Istvá Alkalmazott Matematika Doktori
Lineáris kódok. u esetén u oszlopvektor, u T ( n, k ) május 31. Hibajavító kódok 2. 1
Lieáris kódok Defiíció. Legye SF q. Ekkor S az F q test feletti vektortér. K lieáris kód, ha K az S k-dimeziós altere. [,k] q vagy [,k,d] q. Jelölések: F u eseté u oszlopvektor, u T (, k ) q sorvektor.
2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...
. Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk
2. egy iskola tanulói, a változók: magasságuk cm-ben, súlyuk (tömegük) kilóban; 3. egy iskola tanulói, a változó: tanulmányi átlaguk;
Statisztika Tegyük fel, hogy va egy halmazuk, és tekitsük egy vagy több valószíűségi változót, amelyek a halmaz mide elemé felveszek valamilye értéket. A halmazt populációak vagy sokaságak evezzük. Példák:
VII. A határozatlan esetek kiküszöbölése
A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely
Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása
Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
Statisztikai hipotézisvizsgálatok
Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy
Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
A statisztika részei. Példa:
STATISZTIKA Miért tauljuk statisztikát? Mire haszálhatjuk? Szakirodalom értő és kritikus olvasásához Mit állít egyáltalá a cikk? Korrektek-e a megállaítások? Vizsgálatok (kísérletek és felmérések) tervezéséhez,
Kopulák. 2 dimenziós példák különbözı összefüggıséggel. Példák. Elliptikus kopulák. Sőrőségfüggvények. ( u) 7. elıadás március 24.
Kopulák 7. elıaás 204. március 24. Kopulák Az összefüggıségi struktúra uiverzális megjeleítıi (többimeziós eloszlás egyeletes margiálisokkal, Hoeffig, 940 az 990-es évekbe újra felfeezték és azóta széles
Valószín ségszámítás és statisztika
Valószí ségszámítás és statisztika oktatási segédayag Kupá Pál Tartalomjegyzék fejezet Valószí ségszámítási alapfogalmak 5 Eseméyek 5 M veletek eseméyekkel 5 2 A valószí ség fogalma 7 3 Valószí ségi változók
A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai
05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:
Statisztika gyakorlat Geológus szakirány
Statisztika gyakorlat Geológus szakiráy Játékszabályok Az óráko részt kell vei, maximum 3-szor lehet hiáyozi. Az aláírás megszerzéséek lehetséges módjai: vagy ZH írásával vagy egy el re kihirdetett házi
Valószín ségszámítás és statisztika gyakorlat Programtervez informatikus szak, esti képzés
Valószí ségszámítás és statisztika gyakorlat Programtervez iformatikus szak, esti képzés.) Egy érmével dobuk. Ha az eredméy fej, akkor még egyszer dobuk, ha írás, akkor még kétszer. a.) Mik leszek a kísérletet
1. A radioaktivitás statisztikus jellege
A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a
Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58
u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ
Paraméterek. Reakciómechanizmusok leírása. Megbízható kémiai modellek kifejlesztése sok mérési adat egyidejő feldolgozása alapján
Megbízható kémiai modellek kiejlesztése sok mérési adat egyidejő eldolgozása alajá uráyi amás www.turayi.eu ELE Kémiai Itézet Reakciókietikai Laboratórium Eddig dolgoztak eze a témá: (témavezetık: uráyi
æ MATEMATIKAI STATISZTIKA Dr. Bolla Marianna, Matematika Intézet, Sztochasztika Tanszék
æ MATEMATIKAI STATISZTIKA Dr. Bolla Mariaa, Matematika Itézet, Sztochasztika Taszék Leíró statisztika Ω, A, P) statisztikai mező, ahol a P mértékcsalád olya P eloszlásokból áll, melyekkel Ω, A, P) valószíűségi
Leíró és matematikai statisztika gyakorlat 2018/2019 II. félév
Leíró és matematikai statisztika gyakorlat 08/09 II. félév Táblázatok Viszoyszámok: V = A, ahol A: a viszoyítás tárgya amit viszoyítuk; B B: a viszoyítás alapja amihez viszoyítuk Megoszlási: a sokaság
Statisztika (jegyzet)
Statisztika (jegyzet) Csiszár Vill 009. május 6.. Statisztikai mez A statisztika egyik ága a leíró statisztika. Ekkor a meggyelt adatokat áttekithet formába ábrázoljuk, pl. hisztogrammal (oszlopdiagrammal),
véletlen : statisztikai törvényeknek engedelmeskedik (Mi az ami közös a népszavazásban, a betegségek gyógyulásában és a fiz. kém. laborban?
BEVEZETÉS A statisztika teljese laikusokak: agy mukával gyűjtött adatok vizsgálata, abból következtetések levoása ( statistical iferece ) (Egy kicsit sok hűhó semmiért azaz Much ado about othig.) Mi is
BIOSTATISZTIKA ÉS INFORMATIKA. Leíró statisztika
BIOSTATISZTIKA ÉS INFORMATIKA Leíró statisztika Első közelítésbe a statisztikai tevékeységeket égy csoportba sorolhatjuk, de ezek között ics éles határ:. adatgyűjtés, 2. az adatok áttekithetővé tétele,
Pontfolyamatok definíciója. 5. előadás, március 10. Példák pontfolyamatokra. Pontfolyamatok gyenge konvergenciája
Pontfolyamatok definíciója 5. előadás, 2016. március 10. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Hasznos eszköz,
Hipotézis-ellenırzés (Statisztikai próbák)
Következtetı statisztika 5. Hipotézis-elleırzés (Statisztikai próbák) 1 Egymitás próbák Átlagra, aráyra, Szórásra Hipotézis-vizsgálat Áttekités Egymitás em paraméteres próbák Függetleségvizsgálat Illeszkedésvizsgálat
V. Deriválható függvények
Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája
Matematika I. 9. előadás
Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája
Matematikai statisztika gyakorlat 2018/2019 II. félév
Matematikai statisztika gyakorlat 018/019 II. félév 1. Táblázatok Viszoyszámok: V = A, ahol A: a viszoyítás tárgya (amit viszoyítuk); B B: a viszoyítás alapja (amihez viszoyítuk) Megoszlási: a sokaság
ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet
Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók
Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz
A maximum likelihood becslésről
A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának
1. gyakorlat - Végtelen sorok
. gyakorlat - Végtele sorok 06. március.. Határozza meg az alábbi végtele sorok összegét! a) e e e 3 = e e = e e e e = e e = e e b) c) 4 = 4 + 5 6 + = 6 ) 4 + 6 6 + ) = lim N ) 5 = 6 6 + 5 6 = 7 6 N )
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
földtudományi BSc (geológus szakirány) Matematikai statisztika elıadás, 2014/ félév 6. elıadás
Matematikai statisztika elıadás, földtudományi BSc (geológus szakirány) 2014/2015 2. félév 6. elıadás Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább
Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a
Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,
3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.
3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.
= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05
Folytoos vlószíűségi változók Értékkészletük számegyees egy folytoos (véges vgy végtele) itervllum. Vlmeyi lehetséges érték vlószíűségű, pozitív vlószíűségek csk értéktrtomáyokhoz trtozk. Az eloszlás em
Normális eloszlás tesztje
Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra
Wiener-folyamatok definiciója. A funkcionális centrális határeloszlástétel. Norbert Wienerre, a második pedig egy Brown nevű XIX. században élt angol
Wieer-folyamatok defiiciója. A fukcioális cetrális határeloszlástétel. A valószíűségszámítás egyik agyo fotos fogalma a Wieer-folyamat, amelyet Browmozgásak is hívak. Az első elevezés e fogalom első matematikailag
2. gyakorlat - Hatványsorok és Taylor-sorok
. gyakorlat - Hatváysorok és Taylor-sorok 9. március 3.. Adjuk meg az itt szereplő sorok kovergeciasugarát és kovergeciaitervallumát! + a = + Azaz a hatváysor kovergeciasugara. Az biztos, hogy a (-,) yílt
Kalkulus II., második házi feladat
Uger Tamás Istvá FTDYJ Név: Uger Tamás Istvá Neptu: FTDYJ Web: http://maxwellszehu/~ugert Kalkulus II, második házi feladat pot) Koverges? Abszolút koverges? ) l A feladat teljese yilvávalóa arra kívácsi,
Matematikai statisztika elıadás III. éves elemzı szakosoknak. Zempléni András 9. elıadásból (részlet)
Matematka statsztka elıadás III. éves elemzı szakosokak Zemplé Adrás 9. elıadásból részlet Y közelítése függvéyével Gyakor eset, hogy em smerjük a számukra érdekes meység Y potos értékét pl. holap részvéy-árfolyam,
Továbblépés. Általános, lineáris modell. Példák. Jellemzık. Matematikai statisztika 12. elıadás,
Matematikai statisztika. elıadás, 9.5.. Továbblépés Ha nem fogadható el a reziduálisok korrelálatlansága: Lehetnek fel nem tárt periódusok De más kapcsolat is fennmaradhat az egymáshoz közeli megfigyelések
Komputer statisztika
Eszterházy Károly Főiskola Matematikai és Iformatikai Itézet Tómács Tibor Komputer statisztika Eger, 010. október 6. Tartalomjegyzék Előszó 4 Jelölések 5 1. Valószíűségszámítás 7 1.1. Valószíűségi mező............................
3.1. A Poisson-eloszlás
Harmadik fejezet Nevezetes valószíűségi változók Valamely valószíűségi változóhoz kapcsolódó kérdésekre akkor tuduk potos választ adi, ha a változó eloszlása ismert, vagy megközelítőleg ismert. Ebbe a
Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.
Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika
Biosta'sz'ka és informa'ka
Az előadás céljai Biosta'sz'ka és iforma'ka 5. előadás: Becslés és megbízhatóság 2018. október 11. Agócs Gergely Források: Heréyi L (2016): Sta4sz4ka és Iforma4ka: 14. fejezet Reiczigel J, Haros A, Solymosi
Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,
4. A méréses ellenırzı kártyák szerkesztése
4. A méréses ellenırzı kártyák szerkesztése A kártyákat háromféle módon alkalmazhatjuk. Az elızetes adatfelvétel során a fı feladat az eloszlás paramétereinek (µ és σ ) becslése a további ellenırzésekhez.
Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.
Számsorozatok 2015. december 22. 1. Alapfeladatok 1. Feladat: Határozzuk meg az a 2 + 7 5 2 + 4 létezik. sorozat határértékét, ha Megoldás: Mivel egy tört határértéke a kérdés, ezért vizsgáljuk meg el
ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk,
A deceber -i gyakorlat téája A hipotézisvizsgálat fotos probléája a következő két kérdés vizsgálata. a) Egy véletle eyiség várható értékéek agyságáról va bízoyos feltevésük. Elleőrizi akarjuk e feltevés
Matematikai statisztika gyakorlat Programtervez informatikus alapszak, A szakirány 2018/2019 tavaszi félév Megoldások, végeredmények
Matematikai statisztika gyakorlat Programtervez iformatikus alapszak, A szakiráy 8/9 tavaszi félév Megoldások, végeredméyek. A. évi épszámlálás alapjá a -4 év közötti épesség emek szeriti megoszlása Forrás:
A brexit-szavazás és a nagy számok törvénye
Mûhely Medvegyev Péter kadidátus, a Corvius Egyetem egyetemi taára E-mail: peter.medvegyev@uicorvius.hu A brexit-szavazás és a agy számok törvéye A 016. év, de vélhetőe az egész évtized legfotosabb politikai
Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
Gyakorló feladatok II.
Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,
Mo= argmax f(x), ha X abszolút folytonos; Mo= argmax P (X = x i ), ha X diszkrét.
Segédayag a Matematikai statisztika tatárgyhoz 09 április 0 Leíró statisztika A statisztikai elemzések egyik legfotosabb eszközei a viszoyszámok A viszoyszám két statisztikai adat háyadosa Jelölések: V
Approximációs tételek a kupongyűjtő problémában. Doktori (Ph.D.) értekezés tézisei
Approximációs tételek a kupogyűjtő problémába Doktori Ph.D.) értekezés tézisei Pósfai Aa Témavezetők: Dr. Csörgő Sádor egyetemi taár és Dr. Adrew D. Barbour egyetemi taár Matematika- és Számítástudomáyok
Segédanyag a Leíró és matematikai statisztika tantárgyhoz március 28.
Segédayag a Leíró és matematikai statisztika tatárgyhoz 07 március 8 Statisztikai sokaság: a meggyelés tárgyát képez egyedek összessége, halmaza Rövide sokaságak hívjuk A sokaság egysége: a sokaság egy
Autoregressziós folyamatok
Autoregressziós folyamatok.. Példa.. Az ε(t) folyamat függetle érték zaj, ha a várható értéke és ε(t)-k függetle, azoos eloszlású valószí ségi változók.. Az ε(t) folyamat fehér zaj, ha Eε(t) =, és ε(t)-k
Valószín ségszámítás (jegyzet)
Valószí ségszámítás (jegyzet) Csiszár Vill 9. február 8.. Valószí ségi mez Két bevezet példa: ) Osztozkodási probléma (494, helyes megoldás több, mit évvel kés bb, Pascal, Fermat): Két játékos fej-írás
Sorozatok. [a sorozat szigorúan monoton nő] (b) a n = n+3. [a sorozat szigorúan monoton csökken] (c) B a n = n+7
Bodó Beáta 1 Sorozatok 1. Írja fel az a = 1 +4 sorozat 10. és ( + 1)-edik elemét! [a 10 = 4 14, a +1 = 4 +. Írja fel az a = +4 1 sorozat ( + 1)-edik és ( )-edik tagját! [a +1 = +7 +4, a = 11. Vizsgálja