Mo= argmax f(x), ha X abszolút folytonos; Mo= argmax P (X = x i ), ha X diszkrét.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Mo= argmax f(x), ha X abszolút folytonos; Mo= argmax P (X = x i ), ha X diszkrét."

Átírás

1 Segédayag a Matematikai statisztika tatárgyhoz 09 április 0 Leíró statisztika A statisztikai elemzések egyik legfotosabb eszközei a viszoyszámok A viszoyszám két statisztikai adat háyadosa Jelölések: V = A B, ahol V : viszoyszám; A: a viszoyítás tárgya; B: a viszoyítás alapja A viszoyszámok fajtái: Megoszlási: a sokaság egy részét a sokaság egészéhez viszoyítjuk Koordiációs: a sokaság egy részéek a sokaság egy másik részéhez való viszoyítása Diamikus: két id pot vagy id szak adatáak háyadosa Itezitási: külöböz fajta adatok viszoyítása egymáshoz; gyakra a mértékegységük is eltér Ha egy teljes sokaságra és aak m részére redelkezésre áll a viszoyszám alapja és részei, akkor a viszoyszámokat ki tudjuk számoli a teljes sokaságra (jel V, ezt összetett viszoyszámak hívják) és aak részeire is (jel V,, V m ) Ekkor a teljes sokaságra számolt viszoyszám kiszámítási lehet ségei: V = A i = B i B i V i B i }} súlyozott számtai átlag = A i A i V i }} súlyozott harmoikus átlag A leíró statisztikai szakirodalomba az i idexeket pogyola módo le szokták hagyi: A BV A V = = = B B Deíció z-kvatilis: A V q(z) = q z = ifx : F (x) z}, és ameyibe F ivertálható, akkor q z = F (z)-re egyszer södik (0 < z < ) Fotos speciális kvatilisek: kvartilisek: Q := q alsó kvartilis Q = Me := q mediá (középs mitaelem) Q 3 := q 3 fels kvartilis Deíció Módusz: abszolút folytoos eloszlás eseté a s r ségfüggvéy maximumhelye(i), diszkrét eloszlás eseté pedig az eloszlás maximumhelye(i) Tehát Mo= argmax f(x), ha X abszolút folytoos; x R Mo= argmax P (X = x i ), ha X diszkrét x,x, Nem biztos, hogy létezik, és ha létezik, akkor se biztos, hogy egyértelm skew(x) = E(X EX)3 (DX) 3 skew(x)=0 az eloszlás szimmetrikus skew(x)>0 az eloszlás balra ferdült skew(x)<0 az eloszlás jobbra ferdült Deíció Ferdeség (skewess): Értelmezése: a a kurt(x) = E(X EX) (DX) 3 kurt(x)=0 az eloszlás csúcsossága a stadard ormáliséval megegyez kurt(x)<0 az eloszlás laposabb a st orm-ál kurt(x)>0 az eloszlás csúcsosabb a st orm-ál Deíció Csúcsosság (kurtosis): Értelmezés: V V V Mita: X,, X valószí ségi változó sorozat, jel X = (X,, X ) T A továbbiakba feltesszük, hogy függetleek és azoos eloszlásúak ezt rövide iid mitáak hívjuk (idepedet, idetically distributed) Az elméleti értékeket agy, a kokrét, realizált mitából számolt értékeket midig kis bet fogja jelöli, azaz mita eseté x,, x Statisztika: a mita valamely függvéye: T : X Becslés: a mita eloszlásáak ismeretle paraméterét közelíti a mita segítségével Megj: Mide becslés statisztika Néháy léyeges statisztika: Redezett mita: X X em csökke sorredbe tesszük a mitaelemeket Terjedelem: R = X X (R=rage) Mitaátlag: X = X i Tapasztalati szórás: S = (X i X) Értelmezése: az átlagtól való átlagos eltérés abszolút mértékegységbe Korrigált tapasztalati szórás : S = (X i X) Szórási együttható: V = S X Értelmezése: az átlagtól való átlagos eltérés százalékba Megj: relatív szórásak is hívják Tapasztalati eloszlásfüggvéy : F (x) = I(X i<x)

2 ha X i < x ahol I(X i < x) = karakterisztikus függvéy 0 ha X i x Tapasztalati z-kvatilis : Realizált mitából sokféleképpe számolható, iterpolációs módszer: ) Sorszám megállapítása: ( + )z = e + t (e: egészrész, t: törtrész) ) q z = x e + t(x e+ x e) Értelmezése: a mitaelemek z-ed része legfeljebb a q z értéket veszi fel, ( z)- ed része pedig legalább q z Iterkvartilis terjedelem: IQR = Q 3 Q Tapasztalati módusz : a legtöbbször el forduló érték Értelmezése: a mita tipikus, leggyakrabba el forduló értéke Tapasztalati ferdeség : Tapasztalati csúcsosság : (X i X) 3 S 3 (X i X) S Tétel (Gliveko-Catelli) A tapasztalati eloszlásfüggvéy valószí séggel ( egyeletese tart ) a valódi eloszlásfüggvéyhez, formálisa P lim F (x) F (x) = 0 = sup x R Boxplot ábra: (ez fekv, de lehet álló is) ahol a bet k a következ értékeket jeletik: 3 Középértékek kiszámítása Átlag (számtai vagy mértai amelyikek értelme va) Helyzeti középértékek: módusz és mediá Szóródási mutatók kiszámítása Terjedelem és iterkvartilis terjedelem Szórás és relatív szórás Alakmutatók kiszámítása Ferdeség Csúcsosság Ábrák készítése: S r séghisztogram Boxplot ábra Nevezetes diszkrét eloszlások: Eloszlás eve Jelölése Eloszlása EX D X Karakterisztikus (idikátorvált) Id(p) P (X = ) = p mmmmmm P (X = 0) = p p p( p) Geometriai Geo(p) P (X = k) = p( p) k p m p p (Pascal) k =,, Hipergeometriai Hipgeo(N,M,) P (X = k) = (M k )( N M k ) ( ) ( ) ( N m M M N N M N N ) k = 0,,, Biomiális Bi(, p) ( P (X = k) = p k) ( p) k mm p p( p) k = 0,,, ( ) Negatív biomiális k =, +, NegBi(, p) k P (X = k) = p ( p) k ( p) p p Poisso Poi(λ) P (X = k) = λk k! e λ mm k = 0,, λ λ Nevezetes abszolút folytoos eloszlások: A = maxx, Q, 5 IQR}; B = Q ; C = Me; D = Q 3 ; E = mix, Q 3 +, 5 IQR}; F : kies értékek, azokat tütetjük fel potokkét, amik A- vagy E- kívülre esek Az adatelemzés lépései: Adathibák keresése, irreális adatok, értékek törlése; esetleg korrigálása Alkalmas osztályközös gyakorisági sor készítése Eloszlás eve Jelölése Eloszlásfüggvéy S r ségfüggvéy EX D X 0 ha x a x a ha a < x b b a a+b (b a) Egyeletes E(a, b) ha a < x b b a 0 külöbe ha b < x Expoeciális Exp(λ) e λx ha x 0 0 külöbe Stadard orm N(0, ) Φ(x) = Normális N(m, σ ) További evezetes abszolút folytoos eloszlások: λe λx ha x 0 0 külöbe λ λ π e x x R 0 πσ e (x m) σ x R m σ

3 Eloszlás eve Cauchy Cauchy(a, b) a R, b > 0 Jelölése Eloszlásfüggvéy S r ségfüggvéy EX D X Pareto P areto(α, β) α, β > 0 ( ) π arctg x a b + ( ) β α ha x β x 0 ha x < β [ πb α β +( x a ( β x b ) ] x R ) α+ ha x β 0 ha x < β αβ α A Pareto-eloszlásak akkor va véges várható értéke a képletek megfelel e, ha α >, szóráségyzete pedig akkor, ha α > β α (α ) (α ) Gamma Γ(α, λ) α, λ > 0 Béta Beta(α, β) α, β > 0 Jelölése Eloszlásfüggvéy S r ségfüggvéy EX D X χ k k N k/ Γ(k/) xk/ e x/ x R k k Eloszlás eve Khíégyzet Logormális LN(m, σ ) mm m R, σ > 0 Γ(α) λα e λx x α ha x 0 0 ha x < 0 Γ(α+β) Γ(α)Γ(β) xα ( x) β x [0; ] 0 külöbe (log x m) x πσ e σ ha x 0 0 ha x < 0 α λ α α+β e m+σ / α λ αβ (α+β) (α+β+) (e σ )e m+σ L(ϑ; x) = P ϑ (X = x) = P ϑ (X i = x i ), ha az eloszlás diszkrét Deíció Elégséges statisztika Legye (Ω, A, P) statisztikai mez, X mita, B A A T statisztikát elégséges statisztikáak evezzük, ha a P ϑ (X B T (X)) feltételes eloszlásak létezik ϑ-tól em függ változata Megjegyzés Ez egy elég absztrakt fogalom Elégséges statisztikát a Neyma-féle faktorizációs tétel segítségével (kicsit lejjebb) tuduk keresi és arra lesz jó, hogy segítségével bizoyos szempotból optimális becslést találjuk Megjegyzés az elégséges statisztika mide léyeges iformációt tartalmaz az ismeretle ϑ paraméterre voatkozóa Tétel Neyma-féle faktorizációs tétel "Szép" statisztikai mez a T statisztika akkor és csak akkor elégséges, ha létezek olya g ϑ emegatív és h függvéyek, hogy L(ϑ; x) = g ϑ (T (x)) h(x) ϑ Θ és λ-mm x X eseté Állítás A T (X) = X redezett mita elégséges statisztika Matematikai statisztika becsléselmélet Most belekezdük a matematikai statisztikába, a korábbi mita fogalma egy fokkal absztraktabb formába fog visszaköszöi Deíció Statisztikai mez (Ω, A, P) hármas, ahol P pedig eloszlások egy családja és mide P P-re (Ω, A, P ) valószí ségi mez P-t gyakra paramérese adjuk meg: P = P ϑ : ϑ Θ}, ahol Θ R p összefügg és yílt halmaz, amit paramétertérek hívuk Deíció Mita X : (Ω, A) X leképezés, ahol X eve: mitatér Feladat: aak a meghatározása, hogy a P eloszláscsalád melyik tagja írja le legjobba a valóságot, a vizsgált jeleséget Eek érdekébe veszük mitát Er feszítéseik jelet s része arra fog iráyuli, hogy a valamilye szempotból "legjobb" P -t vagy paraméteres esetbe ezzel ekvivales módo, a "legjobb" ϑ paramétert megtaláljuk Jelölés A továbbiakba a valószí ség, s r ségfüggvéy, várható érték és szórás(mátrix) alsó idexbe lév ϑ arra fog utali, hogy egy paraméteres statisztikai mez va a feladat hátterébe és ϑ-val jelöljük az ismeretle, de érdekl désük középpotjába lév paramétert Deíció Likelihood függvéy: L(ϑ; x) = f ϑ (x) = Legye X = (X,, X ) iid mita f ϑ (x i ), ha az eloszlás folytoos Legye g : Θ R k függvéy Céluk az X mita alapjá g(ϑ) becslése Deíció Torzítatla becslés ha E ϑ T (X) = g(ϑ) ϑ Θ-ra Deíció Torzítás (bias) T(X) statisztika torzítatla becslése g(ϑ)-ak, b T (ϑ) = E ϑ T (X) g(ϑ) Deíció Legyeek T (X) és T (X) torzítatla becslései g(ϑ)-ak Ekkor azt modjuk, hogy T (X) hatásosabb T (X)-él, ha D ϑ (T (X)) D ϑ (T (X)) mide ϑ Θ eseté Deíció Hatásos becslés A T (X) torzítatla becslést hatásosak evezzük, ha mide torzítatla becslésél hatásosabb Tétel A hatásos becslés egyértelm sége Ha T (X) és T (X) hatásos becslései g(ϑ)-ak, akkor mide paraméterértékre valószí séggel megegyezek, azaz P ϑ (T (X) = T (X)) = ϑ Θ eseté Megjegyzés Egy becslésr l em egyszer beláti, hogy hatásos Hatásos becslés kereséséek alapja a kés bb tárgyaladó Blackwell-Rao tétel Deíció Aszimptotikus torzítatlaság A T (X) becsléssorozat ( =,, ) aszimptotikusa torzítatla becslése a g(ϑ)-ak, ha E ϑ T (X) g(ϑ) ϑ Θ eseté Deíció Gyege kozisztecia A T (X) becsléssorozat ( =,, ) gyegé kozisztes becslése a g(ϑ)-ak, ha T (X) g(ϑ) ϑ Θ eseté p 3

4 A T (X) becsléssorozat ( =,, ) er se kozisztes becslése a g(ϑ)-ak, ha T (X) vsz g(ϑ) ϑ Θ eseté Deíció Er s kozisztecia Állítás A tapasztalati eloszlásfüggvéy torzítatla és er se kozisztes becslése az eloszlásfüggvéyek A mitaátlag torzítatla és er se kozisztes becslése a várható értékek A tapasztalati szóráségyzet torzított, de aszimptotikusa torzítatla és er se kozisztes becslése a szóráségyzetek A tapasztalati szóráségyzet torzítatla és er se kozisztes becslése a korrigált szóráségyzetek A s r ségfüggvéy becslése em triviális probléma, két módszer erre: Hisztogram (s r séghisztogram) Parze-Roseblatt becslés A s r ségfüggvéy becslése magfüggvéy segítségével elem mitából: Parze-Roseblatt becslés: f (x) = h k ( x X i h ), ahol h alkalmas 0-hoz tartó sorozat Ez felel meg a mitapot körüli itervallum hossza feléek Tétel A Parze-Roseblatt becslés koziszteciája Alkalmas feltételek eseté h -re és a k magfüggvéyre, az f (x) Parze-Roseblatt becslés aszimptotikusa torzítatla és er se kozisztes becslése a valódi s r ségfüggvéyek Most egy kis emlékeztet következik arról, mi az a feltételes várható érték és hogya kell kiszámítai (blackwellizáláshoz szükséges) Az E(X Y )-ra úgy godoluk, mit egy valószí ségi változóra, kokrétabba az Y valószí ségi változó egy mérhet h(y ) függvéyére; és ha Y egy adott értéket vesz fel, azaz ha E(X Y = y), akkor mit kokrét számra Számítása diszkrét esetbe: E(g(X) Y ) = g(x i )P (X = x i Y = j), ami azt jeleti, hogy el ször i j=y kiszámoljuk a végtele összeget a feltételbe lév Y valószí ségi változó egy kokrét j értéke eseté, majd a j helyére visszaírjuk az Y -t abszolút folytoos eloszlások eseté: E(g(X) Y ) = g(x)f X Y (x y)dx ahol f X Y (x y) = y=y fx,y (x,y) f Y (y) ha f Y (y) > 0 0 külöbe Állítás Teljes valószí ség tétele folytoos esetbe a feltételes s r ségfüggvéy Legye A tetsz leges eseméy, Y abszolút folytoos valószí ségi változó Ekkor P (A) = P (A Y = y)f Y (y) dy Deíció Teljes statisztika A T statisztika teljes, ha tetsz leges h mérhet függvéyére E ϑ (h(t )) = 0 ϑ-ra h(t ) = 0 P-majdem mideütt Tétel Blackwell-Rao tétel Tegyük fel, hogy T statisztika torzítatla becslése g(ϑ)-ak és S elégséges statisztika Ekkor E(T S) feltételes várható érték torzítatla becslése g(ϑ)-ak és Dϑ (E(T S)) D ϑ (T ) mide ϑ-ra Ha S még teljes is, akkor E(T S) hatásos becslés Tehát a Blackwell-Rao tétel értelmébe az alábbi lépéseket követve tuduk hatásos becslést kapi (az eljárás eve blackwellizálás): az adott statisztikai mez keresük egy S teljes elégséges statisztikát; keresük egy, a beüket érdekl g(ϑ)-t torzítatlaul becsül T statisztikát; 3 kiszámoljuk az E(T S) feltételes várható értéket ami az S függvéye, és ez lesz a hatásos becslés Paraméterbecslési módszerek Maximum likelihood módszer (ML-módszer): Azt a paraméterértéket keressük, ahol a likelihood fv a legagyobb értéket veszi fel: max L(ϑ, x) j xi j ) egyel vé tesszük az elméleti mometumokkal (M i := Ameyibe a függvéy deriválható ϑ szerit, akkor a maximumot kereshetjük a szokásos módo, az els és második deriváltak segítségével, azoba a feladatukat jelet se megehezíti, hogy olya -szeres szorzatot kellee deriváli, amelyikek mide tagjába ott va az a változó, ami szerit deriváluk kellee Ezért likelihood függvéy helyett a log-likelihood függvéy maximumhelyét keressük Mometum módszer: A mitából számítható tapasztalati mometumokat (m i := E ϑ X i ), az els t l kezdve, mégpedig ayit, ameyi paraméter va Tehát p darab ismeretle paraméter eseté a következ p ismeretlees egyeletredszert oldjuk meg: M = m M p = m p Megjegyzés: m = x Fisher-tétel: Ha ϑ ML-becslése ˆϑ, akkor tetsz leges g függvéy eseté g(ϑ) MLbecslése g( ˆϑ) ϑ

5 Ebbe a részbe tegyük fel, hogy a paramétertér dimeziós Deíció Fisher-iformáció Tegyük fel, hogy a log-likelihood függvéy ϑ szerit deriválható ( Ekkor az X elem mitába lév Fisher-iformáció: I X (ϑ) I (ϑ) = E ϑ [ ϑ l(ϑ; X)] ) Megj: I X (ϑ) azt az (absztrakt) iformációmeyiséget méri, amelyet az X mita a paraméterre voatkozóa magába hordoz A Fisher-iformáció kiszámítása bizoyos, úgyevezett regularitási feltételek eseté egyszer bbé válik Deíció regularitási feltétel E ϑ ( ϑ l(ϑ, X)) = 0 Állítás E ϑ ( ϑ l(ϑ, X)) = 0 ϑ f ϑ (x) dx = deriváli" az itegráljel mögé x X x X ϑ f ϑ (x) dx, azaz "be lehet Állítás Ha teljesül az regularitási feltétel, akkor a Fisher-iformációt kiszámolhatjuk az alábbi módo: I (ϑ) = I (ϑ) = D ϑ ϑl(ϑ, X ) Tétel Cramér-Rao egyel tleség Tegyük fel, hogy T (X) statisztika torzítatla becslése g(ϑ)-ak és teljesül az regularitási feltétel Ekkor mide ϑ Θ-ra Dϑ (T (X)) (g (ϑ)) I (ϑ) }} iformációs határ Megjegyzés Ha mide ϑ-ra egyel ség teljesül a Cramér-Rao egyel tleségbe, akkor T hatásos becslés Eek az egyel tleségek a vizsgálata tehát lehet séget ad arra, hogy blackwellizálás élkül hatásos becslést találjuk Megjegyzés El fordulhat, hogy a statisztika szóráségyzete agyobb az iformációs határál, viszot a statisztika hatásos Példa erre iid expoeciális mitáál az statisztika X i Deíció χ -eloszlás: Az X val változó szabadságfokú χ -eloszlású (jel: X χ ), ha X = U + + U, ahol U i N(0, ) i-re és függetleek egymástól Deíció t-eloszlás: Az X valószí ségi változó szabadságfokú Studet-féle t-eloszlást követ (jel: X t ), ha X =, ahol Z N(0, ) és Y χ függetleek egymástól Z Y Deíció F-eloszlás: Az X valószí ségi változó m és szabadságfokú F- eloszlást követ (jel: X F m, ), ha X = Ym m Z, ahol Y m χ m és Z χ függetleek egymástól Mostatól α egy 0-hoz közeli pozitív szám lesz (például 0, 05 = 5%), és vezessük be a következ jelöléseket az eloszlások kvatiliseire: u α : N(0, ) eloszlás ( α)-kvatilise, azaz u α = Φ ( α) z α := u α (sok köyvbe ezt haszálják) t,α : szabadságfokú t-eloszlás ( α)-kvatilise χ,α : szabadságfokú χ -eloszlás α-kvatilise Fm, α : m, szabadságfokú F-eloszlás α-kvatilise Deíció Kodecia itervallum: Adott α-hoz legalább ( α) valószí séggel tartalmazza az adott paramétert (vagy aak egy függvéyét): P ϑ (T (X) < ˆϑ ) < T (X) α Gyakra keresük szimmetrikus kodecia itervallumot, ilyekor T = T =:, és az itervallum ˆϑ ± alakba írható Deíció Legye X,, X mita egy ϑ ismeretle paraméter eloszláscsaládból A T (X) statisztikát pivotal statisztikáak hívjuk, ha eloszlása em függ a ϑ paramétert l Például ha va egy N(m, σ ) eloszlású miták, akkor a T (X) = X m statisztika pivotal, ugyais stadard ormális eloszlású, tehát eloszlása em függ a paraméterekt l A pivotal statisztikák egyik f hasza, hogy segítségükkel sok esetbe kodeciaitervallumot lehet készítei Erre példa a következ éháy agyo fotos kodeciaitervallum Állítás Legye X,, X N(m, σ ) iid mita Ekkor m-re kodecia itervallum ha σ ismert, akkor x ± u α σ ha σ ismeretle, akkor x ± t, α σ -re kodecia itervallum: [ s ( ) (s ) ; ( ) (s χ ), α χ, α Hipotézisvizsgálat Hipotézis valami állítás, amiek igazságát vizsgáli szereték Paramétertér: Θ = Θ 0 Θ "valóság" Mitatér: X = X e X k "látszat" - MINTÁBÓL X k : kritikus tartomáy - azo X meggyelések halmaza, amikre elutasítjuk a ullhipotézist X e : elfogadási tartomáy - azo X meggyelések halmaza, amikre elfogadjuk a ullhipotézist Hipotézisvizsgálati feladat: H 0 : ϑ Θ 0 ullhipotézis ] σ 5

6 H : ϑ Θ ellehipotézis Tehát ha X X e, akkor elfogadjuk H 0 -t; ha X X k, akkor pedig elutasítjuk H 0 -t Ameyibe a Θ 0 halmaz egyelem, akkor azt modjuk, hogy H 0 egyszer H -re ugyaígy Az X mitatér felosztását általába egy statisztika (eve: próbastatisztika) segítségével végezzük el: legye T: X R, X k = x X : T(x) > c} c eve: kritikus érték X e = x X : T(x) c} Dötés H 0 -t "Valóság" elfogadjuk (X e ) elutasítjuk (X k ) H 0 teljesül (Θ 0 ) helyes dötés els fajú hiba H 0 em teljesül (Θ ) másodfajú hiba helyes dötés P(els fajú hiba)=α(ϑ)=p ϑ (X k ), ahol ϑ Θ 0 P(másodfajú hiba)=β(ϑ)=p ϑ (X e ), ahol ϑ Θ Er függvéy: ψ: Θ R, ψ(ϑ) = P ϑ (X k ) Terjedelem: α = sup α(ϑ): ϑ Θ 0 } Azt modjuk, hogy az -es próba er sebb a -es próbáál, ha α = α és ψ (ϑ) ψ (ϑ) ϑ Θ Próbafüggvéy: ϕ: X [0,] eyi valószí séggel vetem el a H 0 -t a mita alapjá x X k ϕ(x) = x X e ϕ(x) = 0 p-érték: az az α terjedelem, ami eseté a próbastatisztika értéke egyel a kritikus értékkel : T(x)= c α A p-érték a legkisebb terjedelem, amire még elutasítjuk a H 0 -t Ha egy próbát számítógép segítségével végzük el, redszerit a p-érték révé tuduk dötei: ha (p-érték)< α, akkor elvetjük H 0 -t Ha mid H 0, mid H egyszer, akkor adott α terjedelemhez lehet leger sebb próbát találi, ezt pedig úgy hívják, hogy valószí ség-háyados próba A hipotéziseket folytoos esetre írom fel Diszkrétre a s r ségfüggvéy helyett a kokrét eloszlást kell íri H 0 : f = f 0 H : f = f A valószí ség-háyados próba kritikus tartomáya: X k = x : f(x) f > c 0(x) α } Tehát azokat az x-eket, amire az f(x) f 0(x) agy, bepakoljuk a kritikus tartomáyba egésze addig, míg az adott α terjedelmet el em érjük Diszkrét esetbe ehhez általába véletleítésre va szükség, azaz bizoyos x-ek eseté em vagy 0, haem egy, e két szám közé es (jelöljük p α -val) valószí séggel vetjük el a ullhipotézist Most éháy evezetes próbát mutatuk be a ormális eloszlás várható értékére, illetve szórására Az α végig a próba terjedelmét jelöli, ami el re adott I Próbák ormális eloszlás várható értékére ) Egymitás próbák a) Egymitás u-próba X,, X N(m, σ ), ahol σ ismert, m paraméter a) H 0 : m = m 0 b) H 0 : m = m 0 c) H 0 : m = m 0 H : m m 0 H : m > m 0 H : m < m 0 A próbastatisztika: T(X)=u = X m0 H 0 eseté N(0, ) A kritikus tartomáyok: a) X k = x : u > u α/ } b) X k = x : u > u α } c) X k = x : u < u α } b) Egymitás t-próba X,, X N(m, σ ), ahol σ, m paraméter a) H 0 : m = m 0 b) H 0 : m = m 0 c) H 0 : m = m 0 H : m m 0 H : m > m 0 H : m < m 0 A próbastatisztika: T(X)=t = X m0 s A kritikus tartomáyok: a) X k = x : t > t,α/ } b) X k = x : t > t,α } c) X k = x : t < t,α } ) Kétmitás próbák σ H 0 eseté t X,, X N(m, σ ) Y,, Y m N(m, σ ) Az elvégzed próbák H 0 : m = m ullhipotézis eseté: a két mita a két mita függetle em függetle σ és σ ismert a) kétmitás u-próba egymitás u-próba a külöbségekre el zetes F-próba σ és σ ismeretle σ = σ σ σ egymitás t-próba b) kétmitás t-próba c) Welch-próba a külöbségekre a) kétmitás u-próba m, m paraméterek, σ, σ ismert H 0 : m = m és H : ami a szövegköryezetbe értelmes H 0 eseté N(0,) A próbastatisztika: u = X Y σ + σ m 6

7 b) kétmitás t-próba m, m, σ = σ paraméterek H 0 : m = m és H : ami a szövegköryezetbe értelmes A próbastatisztika: t = m X Y c) Welch-próba m, m, σ σ paraméterek +m A próbastatisztika: t = X Y (s ) + (s ) m ( )(s ) +(m )(s ) +m H 0 : m = m és H : ami a szövegköryezetbe értelmes H 0 eseté t f, ahol f = c + ( c) m c = (s ), ha s (s ) + (s ) > s m II Próbák ormális eloszlás szórására ) Egymitás próba: χ -próba X,, X N(m, σ ), ahol m és σ ismeretle paraméterek H 0 : σ = σ 0 és H 0 : σ σ 0 H 0 eseté χ H 0 eseté t +m A próbastatisztika: h = ( )(S ) σ 0 } Kritikus tartomáy: X k = x : h < χ,α/ vagy h > χ, α/ Az ellehipotézis lehet egyoldali is, ilyekor a kritikus tartomáy értelemszer e módosul ) Kétmitás próba: F -próba X,, X N(m, σ ) Y,, Y m N(m, σ ) m, m, σ, σ paraméterek H 0 : σ = σ és H : ami a szövegköryezetbe értelmes A próbastatisztika: F = (S ) H 0 eseté (S F,m ) χ -próbák a) Diszkrét illeszkedésvizsgálat Feladat: adott egy X = (X,, X ) elem mita, és azt akarjuk eldötei, hogy a mita egy általuk "remélt" eloszlásból származik-e Diszkrét illeszkedésvizsgálatál feltesszük, hogy a mitaelemek r külöböz értéket vehetek fel: P(X i = x j ) = p j j =,, r Jelöljük N j -vel a gyakoriságokat, azaz azt, hogy az elem mitába háy darab x j szerepel Osztályok r Összese Valószí ségek p p p r Gyakoriságok N N N r H 0 : a valószí ségek: p=(p,, p r ) H : em ezek a valószí ségek A próbastatisztika: T = r (N i p i) p i H 0 eseté χ r A kritikus tartomáy: X k = x : T (x) > χ r, α} eloszlásba, ha Becsléses illeszkedésvizsgálat : csak ayit "sejtük", hogy a mita valamilye eloszlású, viszot a paramétereir l ics sejtésük Ilyekor ameyibe MLmódszerrel becsüljük meg az s darab ismeretle paramétert, akkor a próbastatisztika: T H 0 eseté χ r s eloszlásba, ha Nagyo fotos: a próba csak akkor hajtható végre, ameyibe az egyes osztályokba eleged számú gyakoriság szerepel Nem egyértelm, milye határvoalat húzzuk meg Hüvelykujjszabálykét azt lehet modai, hogy legalább -6 gyakoriság szerepelje a cellákba és p i legalább legye mide osztályra Ameyibe kevés gyakoriság va a cellákba, akkor az éritett osztályokat össze kell voi Illeszkedésvizsgálat "szemmel": Q-Q plot és P-P plot Jelölje F az illesztett eloszlás eloszlásfüggvéyét, x k pedig a k redezett mitaelemet Q-Q plot: az illesztett eloszlás kvatiliseit vetjük ( össze ) a ) tapasztalati kvatilisekkel, azaz a következ potokat ábrázoljuk: (F k +, x k, ahol k =,, P-P plot: az illesztett eloszlás valószí ségeit vetjük ( össze a tapasztalati valószí - k ségekkel, azaz a következ potokat ábrázoljuk: +, F (x k ), ) ahol k =,, Midkét ábráál be szokták húzi a 5 fokos egyeest és miél jobba rásimulak a potok az egyeesre, aál jobbak tekithet az illeszkedés b) Diszkrét homogeitávizsgálat Feladat: va két függetle mita, midkett egy közös szempot szerit r osztály egyikébe sorolva Azt kell eldötei, hogy a két mita azoos eloszlásúak tekithet -e Osztályok r Összese mita Valószí ségek p p p r Gyakoriságok N N N r mita Valószí ségek q q q r Gyakoriságok M M M r m H 0 : a valószí ségek: (p,, p r ) = (q,, q r ) H : em ezek a valószí ségek A próbastat: T,m = r ( N i M i m ) N i+m i H 0 eseté χ r A kritikus tartomáy: X k = x : T,m (x) > χ r, α} c) Függetleségvizsgálat eloszlásba, ha 7

8 Feladat: va egy mita, két szempot szerit csoportosítva hogy a két szempot függetle-e egymástól p i,j =P(egy meggyelés az (i,j) osztályba kerül) N i,j =eyi meggyelés kerül az (i,j) osztályba A mitavétel eredméye: szempot j s Összese N N j N s N szempot i N i N ij N is N i r N r N rj N rs N r Összese N N j N s ahol N i = s és N j = r N ij j= N ij Azt kell eldötei, Megoldás: â = (xi x)(y i y) (xi x), ˆb = y âx Reziduumok: ˆε i = y i âx i ˆb (,, ) Reziduális égyzetösszeg: RNÖ= ˆε i = (y i y) (xi x)(y i y) (xi x) ˆσ = RNÖ Tapasztalati korrelációs együttható: R = (xi x)(y i y) (xi x) (y Eek égyzetét, i y) R -et, determiációs együtthatóak hívjuk, és ezzel mérjük a modell jóságát Az R mutatja meg, hogy százalékba a modell az Y változékoyságából meyit magyaráz meg Értéke 0 és között lehet, ha 0-hoz közeli, akkor a modell gyegé teljesít, ha -hez, akkor jól H 0 : a szempotok függetleek, azaz p i,j = p i p j i, j-re H : em azok ( ) r s N A próbastatisztika: T = i,j H N i N j 0 eseté χ (r )(s ) eloszlásba, j= ha A kritikus tartomáy: X k = x : T (x) > χ (r )(s ), α } Ha r = s =, akkor a próbastatisztika T = (NN NN) N N N N -re egyszer södik, az aszimptotikus eloszlás pedig szabadságfokú χ Regressziószámítás Feladat: Y valószí ségi változót szereték közelítei X val változó lieáris függvéye segítségével: E[Y (ax + b)] mi a,b Megoldása: a opt = Cov(X,Y ) D (X) b opt = EY a opt EX Feladat (lieáris regresszió): Adottak (x, y ),, (x, y ) potok, ezekre szereték egyeest illesztei (eve: regressziós egyees) legkisebb égyzetek módszerével A modell: Y i = ax i + b + ε i, ahol Eε i = 0 és D ε i = σ < (i =,, ) 8

Segédanyag a Leíró és matematikai statisztika tantárgyhoz március 28.

Segédanyag a Leíró és matematikai statisztika tantárgyhoz március 28. Segédayag a Leíró és matematikai statisztika tatárgyhoz 07 március 8 Statisztikai sokaság: a meggyelés tárgyát képez egyedek összessége, halmaza Rövide sokaságak hívjuk A sokaság egysége: a sokaság egy

Részletesebben

Statisztika gyakorlat Geológus szakirány

Statisztika gyakorlat Geológus szakirány Statisztika gyakorlat Geológus szakiráy Játékszabályok Az óráko részt kell vei, maximum 3-szor lehet hiáyozi. Az aláírás megszerzéséek lehetséges módjai: vagy ZH írásával vagy egy el re kihirdetett házi

Részletesebben

Segédanyag a Leíró és matematikai statisztika tantárgyhoz március 1.

Segédanyag a Leíró és matematikai statisztika tantárgyhoz március 1. Segédayag a Leíró és matematikai statisztika tatárgyhoz 06 március Közgazdasági értelembe a statisztika a valóság tömör, számszer jellemzésére szolgáló tudomáyos módszerta, illetve gyakorlati tevékeység

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika

Részletesebben

Eddig megismert eloszlások Jelölése Eloszlása EX D 2 X P(X = 1) = p Ind(p) P(X = 0) = 1 p. Leíró és matematikai statisztika

Eddig megismert eloszlások Jelölése Eloszlása EX D 2 X P(X = 1) = p Ind(p) P(X = 0) = 1 p. Leíró és matematikai statisztika Leíró és matematikai statisztika Matematika alapszak, matematikai elemző szakiráy Zempléi Adrás Valószíűségelméleti és Statisztika Taszék Matematikai Itézet Természettudomáyi Kar Eötvös Lorád Tudomáyegyetem

Részletesebben

Matematikai statisztika gyakorlat 2018/2019 II. félév

Matematikai statisztika gyakorlat 2018/2019 II. félév Matematikai statisztika gyakorlat 018/019 II. félév 1. Táblázatok Viszoyszámok: V = A, ahol A: a viszoyítás tárgya (amit viszoyítuk); B B: a viszoyítás alapja (amihez viszoyítuk) Megoszlási: a sokaság

Részletesebben

Statisztika 1. zárthelyi dolgozat március 21.

Statisztika 1. zárthelyi dolgozat március 21. Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy

Részletesebben

Statisztika 1. zárthelyi dolgozat március 18.

Statisztika 1. zárthelyi dolgozat március 18. Statisztika. zárthelyi dolgozat 009. március 8.. Ismeretle m várható értékű, szórású ormális eloszlásból a következő hatelemű mitát kaptuk:, 48 3, 3, 83 0,, 3, 97 a) Számítsuk ki a mitaközepet és a tapasztalati

Részletesebben

Statisztika (jegyzet)

Statisztika (jegyzet) Statisztika (jegyzet) Csiszár Vill 009. május 6.. Statisztikai mez A statisztika egyik ága a leíró statisztika. Ekkor a meggyelt adatokat áttekithet formába ábrázoljuk, pl. hisztogrammal (oszlopdiagrammal),

Részletesebben

Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév

Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,

Részletesebben

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum) Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa

Részletesebben

Statisztika. Földtudomány szak, geológus szakirány, 2015/2016. tanév tavaszi

Statisztika. Földtudomány szak, geológus szakirány, 2015/2016. tanév tavaszi Statisztika Földtudomáy szak, geológus szakiráy, 015/016. taév tavaszi félév Backhausz Áges (ELTE TTK Valószíűségelméleti és Statisztika Taszék)1 Tartalomjegyzék 1. Bevezetés 3 1.1. Példa: az adatok elemzése....................

Részletesebben

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük.

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük. Statisztikai módszerek. BMEGEVGAT01 Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudomáyi Egyetem Gépészméröki Kar Hidrodiamikai Redszerek Taszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Leíró és matematikai statisztika gyakorlat 2018/2019 II. félév

Leíró és matematikai statisztika gyakorlat 2018/2019 II. félév Leíró és matematikai statisztika gyakorlat 08/09 II. félév Táblázatok Viszoyszámok: V = A, ahol A: a viszoyítás tárgya amit viszoyítuk; B B: a viszoyítás alapja amihez viszoyítuk Megoszlási: a sokaság

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 10. A statisztika alapjai Debrecei Egyetem, 2015 Dr. Bérczes Attila, Bertók Csaád A diasor tartalma 1 Bevezetés 2 Statisztikai függvéyek Defiíció, empirikus várható érték Empirikus

Részletesebben

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke

Részletesebben

Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2.

Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Statisztika Hipotézisvizsgálat Székely Balázs 2010. december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Előadás vázlat 1 Itervallumbecslések

Részletesebben

Populáció. Történet. Adatok. Minta. A matematikai statisztika tárgya. Valószínűségszámítás és statisztika előadás info. BSC/B-C szakosoknak

Populáció. Történet. Adatok. Minta. A matematikai statisztika tárgya. Valószínűségszámítás és statisztika előadás info. BSC/B-C szakosoknak Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 16. A matematikai statisztika tárgya Következtetések levoása adatok alapjá Ipari termelés Mezőgazdaság Szociológia

Részletesebben

Valószín ségszámítás és statisztika gyakorlat Programtervez informatikus szak, esti képzés

Valószín ségszámítás és statisztika gyakorlat Programtervez informatikus szak, esti képzés Valószí ségszámítás és statisztika gyakorlat Programtervez iformatikus szak, esti képzés.) Egy érmével dobuk. Ha az eredméy fej, akkor még egyszer dobuk, ha írás, akkor még kétszer. a.) Mik leszek a kísérletet

Részletesebben

Matematikai statisztika gyakorlat Programtervez informatikus alapszak, A szakirány 2018/2019 tavaszi félév Megoldások, végeredmények

Matematikai statisztika gyakorlat Programtervez informatikus alapszak, A szakirány 2018/2019 tavaszi félév Megoldások, végeredmények Matematikai statisztika gyakorlat Programtervez iformatikus alapszak, A szakiráy 8/9 tavaszi félév Megoldások, végeredméyek. A. évi épszámlálás alapjá a -4 év közötti épesség emek szeriti megoszlása Forrás:

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

A matematikai statisztika elemei

A matematikai statisztika elemei A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................

Részletesebben

6. feladatsor. Statisztika december 6. és 8.

6. feladatsor. Statisztika december 6. és 8. 6. feladatsor Statisztika 200. december 6. és 8.. Egy = 0 szervert tartalmazó kiszolgáló mide szervere mide pillaatba 0 < p < valószíűséggel foglalt, a foglaltságok szerverekét függetleek. Tehát a foglaltak

Részletesebben

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz

Részletesebben

Statisztikai programcsomagok

Statisztikai programcsomagok Statisztikai programcsomagok Sz cs Gábor Szegedi Tudomáyegyetem, Bolyai Itézet Szeged, 2012. tavaszi félév Sz cs Gábor (SZTE, Bolyai Itézet) Statisztikai programcsomagok 2012. tavaszi félév 1 / 26 Bevezetés

Részletesebben

A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet A biostatisztika alapfogalmai, kofideciaitervallum Dr. Boda Krisztia PhD SZTE ÁOK Orvosi Fizikai és Orvosi Iformatikai Itézet Mitavétel ormális eloszlásból http://www.ruf.rice.edu/~lae/stat_sim/idex.html

Részletesebben

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit!

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit! Sorozatok 20. október 5. Határozza meg a következ sorozatok határértékeit!. Zh feladat:vizsgálja meg mootoitás és korlátosság szerit az alábbi sorozatot! a + ha ; 2; 5 Mootoitás eldötéséhez vizsgáljuk

Részletesebben

Zavar (confounding): akkor lép fel egy kísérletben, ha a kísérletet végző nem tudja megkülönböztetni az egyes faktorokat.

Zavar (confounding): akkor lép fel egy kísérletben, ha a kísérletet végző nem tudja megkülönböztetni az egyes faktorokat. Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet végző em tudja megkülöbözteti az egyes faktorokat. Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet

Részletesebben

Áringadozások elıadás Kvantitatív pénzügyek szakirány 2012/13 2. félév

Áringadozások elıadás Kvantitatív pénzügyek szakirány 2012/13 2. félév Árigadozások elıadás Kvatitatív pézügyek szakiráy 01/13. félév Heti óra elıadás + óra gyakorlat Elıadás: fıleg modellek, elemzési módszerek Gyakorlat: R programmal, alkalmazások Számokérés 50%: beadadó

Részletesebben

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +... . Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk

Részletesebben

Abszolút folytonos valószín ségi változó (4. el adás)

Abszolút folytonos valószín ségi változó (4. el adás) Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t

Részletesebben

Matematika B4 I. gyakorlat

Matematika B4 I. gyakorlat Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a

Részletesebben

BIOSTATISZTIKA ÉS INFORMATIKA. Leíró statisztika

BIOSTATISZTIKA ÉS INFORMATIKA. Leíró statisztika BIOSTATISZTIKA ÉS INFORMATIKA Leíró statisztika Első közelítésbe a statisztikai tevékeységeket égy csoportba sorolhatjuk, de ezek között ics éles határ:. adatgyűjtés, 2. az adatok áttekithetővé tétele,

Részletesebben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus

Részletesebben

kismintás esetekben vagy olyanokban, melyeknél a tanulóalgoritmust tesztadatokon szeretnénk

kismintás esetekben vagy olyanokban, melyeknél a tanulóalgoritmust tesztadatokon szeretnénk ÚJRAMINTAVÉTELEZÉSI ELJÁRÁSOK A jackkife (zsebkés) és bootstrap (cipőhúzó a saját kallatyújáál fogva) eljárások agol elevezése is arra utal, hogy itt ad hoc eljárásokról va szó, melyek azoba agyo haszosak

Részletesebben

æ MATEMATIKAI STATISZTIKA Dr. Bolla Marianna, Matematika Intézet, Sztochasztika Tanszék

æ MATEMATIKAI STATISZTIKA Dr. Bolla Marianna, Matematika Intézet, Sztochasztika Tanszék æ MATEMATIKAI STATISZTIKA Dr. Bolla Mariaa, Matematika Itézet, Sztochasztika Taszék Leíró statisztika Ω, A, P) statisztikai mező, ahol a P mértékcsalád olya P eloszlásokból áll, melyekkel Ω, A, P) valószíűségi

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

1. Példa. A gamma függvény és a Fubini-tétel.

1. Példa. A gamma függvény és a Fubini-tétel. . Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +

Részletesebben

Statisztika elméleti összefoglaló

Statisztika elméleti összefoglaló 1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

3.1. A Poisson-eloszlás

3.1. A Poisson-eloszlás Harmadik fejezet Nevezetes valószíűségi változók Valamely valószíűségi változóhoz kapcsolódó kérdésekre akkor tuduk potos választ adi, ha a változó eloszlása ismert, vagy megközelítőleg ismert. Ebbe a

Részletesebben

Valószín ségszámítás és statisztika

Valószín ségszámítás és statisztika Valószí ségszámítás és statisztika oktatási segédayag Kupá Pál Tartalomjegyzék fejezet Valószí ségszámítási alapfogalmak 5 Eseméyek 5 M veletek eseméyekkel 5 2 A valószí ség fogalma 7 3 Valószí ségi változók

Részletesebben

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai 05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:

Részletesebben

Játékszabályok. a keresett valószín ség:

Játékszabályok. a keresett valószín ség: Játékszabályok Az óráko részt kell vei, maximum -szor lehet hiáyozi. Aki többször hiáyzik, em kap gyakjegyet. + x potot lehet szerezi a félév sorá: pot:. ZH a félév közepé pot:. ZH a félév végé x pot:

Részletesebben

Valószín ségszámítás és statisztika

Valószín ségszámítás és statisztika Valószín ségszámítás és statisztika Informatika BSc, esti tagozat Backhausz Ágnes 2016/2017. tavaszi félév Valószín ségi vektorváltozó Deníció Az X = (X 1,..., X n ) : Ω R n függvény valószín ségi vektorváltozó,

Részletesebben

Komputer statisztika

Komputer statisztika Eszterházy Károly Főiskola Matematikai és Iformatikai Itézet Tómács Tibor Komputer statisztika Eger, 010. október 6. Tartalomjegyzék Előszó 4 Jelölések 5 1. Valószíűségszámítás 7 1.1. Valószíűségi mező............................

Részletesebben

Statisztika október 27.

Statisztika október 27. Statisztika 2011. október 27. Külöbség valószíőségszámítás és statisztika között Kísérlet: 4-szer dobuk fel egy érmét. Megszámoljuk a fejek számát. Valszám: Ismert a fejdobás valószíősége. Milye valószíőséggel

Részletesebben

Elméleti összefoglaló a Sztochasztika alapjai kurzushoz

Elméleti összefoglaló a Sztochasztika alapjai kurzushoz Elméleti összefoglaló a Sztochasztika alapjai kurzushoz 1. dolgozat Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet

Részletesebben

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 5. Megjegyzések. A tétel feltételei gyegíthetőek: elég, ha a függetle, azoos eloszlású változók várható értéke véges.

Részletesebben

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Legye N, x k R k =,, és tegyük fel, hogy vagy x k 0 k =,, vagy pedig x k 0 k =,, Ekkor + x k + x k Speciális Beroulli-egyelőtleség Ha N és

Részletesebben

Dr. Karácsony Zsolt. Miskolci Egyetem november

Dr. Karácsony Zsolt. Miskolci Egyetem november Valószínűségszámítás és Matematikai statisztika Dr. Karácsony Zsolt Miskolci Egyetem, Alkalmazott Matematikai Tanszék 2013-2014 tanév 1. félév Miskolci Egyetem 2013. november 11-18 - 25. Dr. Karácsony

Részletesebben

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok, l.ch FÜGGVÉNYSOROZATOK, FÜGGVÉNYSOROK, HATVÁNYSOROK Itt egy függvéysorozat: f( A függvéysorozatok olyaok, mit a valós számsorozatok, csak éppe a tagjai em valós számok, 5 haem függvéyek, f ( ; f ( ; f

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk,

ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk, A deceber -i gyakorlat téája A hipotézisvizsgálat fotos probléája a következő két kérdés vizsgálata. a) Egy véletle eyiség várható értékéek agyságáról va bízoyos feltevésük. Elleőrizi akarjuk e feltevés

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

ELTE TTK Budapest, január

ELTE TTK Budapest, január Valószíűségszámítás Arató Miklós előadásai alapjá Készítették: Martiek László Tassy Gergely ELTE TTK Budapest, 008. jauár Typeset by L A TEX . el adás 007. IX.. szerda Klasszikus (kombiatorikus valószí

Részletesebben

1. előadás: Bevezetés. Irodalom. Számonkérés. Cél. Matematikai statisztika előadás survey statisztika MA szakosoknak. A matematikai statisztika tárgya

1. előadás: Bevezetés. Irodalom. Számonkérés. Cél. Matematikai statisztika előadás survey statisztika MA szakosoknak. A matematikai statisztika tárgya Matematikai statisztika előadás survey statisztika MA szakosokak 206/207 2. félév Zempléi Adrás. előadás: Bevezetés Irodalom, követelméyek A félév célja Matematikai statisztika tárgya Törtéet Alapfogalmak

Részletesebben

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is:

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is: . A szupréum elv. = H R felülr l körlátos H fels korlátai között va legkisebb, azaz A és B a A és K B : a K Ekkor ξ-re: mi{k R K fels korlátja H-ak} } a A : a ξ : ξ fels korlát A legkisebb fels korlát

Részletesebben

Valószín ségszámítás (jegyzet)

Valószín ségszámítás (jegyzet) Valószí ségszámítás (jegyzet) Csiszár Vill 9. február 8.. Valószí ségi mez Két bevezet példa: ) Osztozkodási probléma (494, helyes megoldás több, mit évvel kés bb, Pascal, Fermat): Két játékos fej-írás

Részletesebben

Nemparaméteres próbák

Nemparaméteres próbák Nemparaméteres próbák Budapesti Mőszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Mőegyetem rkp. 3. D ép. 334. Tel: 463-16-80 Fax: 463-30-91 http://www.vizgep.bme.hu

Részletesebben

Idősorok elemzése [leíró statisztikai eszközök] I

Idősorok elemzése [leíró statisztikai eszközök] I Leíró és matematikai statisztika Matematika alapszak, matematikai elemző szakirány Zempléni András Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem

Részletesebben

Normális eloszlás paramétereire vonatkozó próbák

Normális eloszlás paramétereire vonatkozó próbák Normális eloszlás paramétereire vonatkozó próbák Az alábbi próbák akkor használhatók, ha a meggyelések függetlenek, és feltételezhetjük, hogy normális eloszlásúak a meggyelések függetlenek, véges szórású

Részletesebben

Hipotézis-ellenırzés (Statisztikai próbák)

Hipotézis-ellenırzés (Statisztikai próbák) Következtetı statisztika 5. Hipotézis-elleırzés (Statisztikai próbák) 1 Egymitás próbák Átlagra, aráyra, Szórásra Hipotézis-vizsgálat Áttekités Egymitás em paraméteres próbák Függetleségvizsgálat Illeszkedésvizsgálat

Részletesebben

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje.

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje. 24. tétel valószíűségszámítás elemei. valószíűség kiszámításáak kombiatorikus modellje. GYORISÁG ÉS VLÓSZÍŰSÉG meyibe az egyes adatok a sokaságo belüli részaráyát adjuk meg (törtbe vagy százalékba), akkor

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

2. egy iskola tanulói, a változók: magasságuk cm-ben, súlyuk (tömegük) kilóban; 3. egy iskola tanulói, a változó: tanulmányi átlaguk;

2. egy iskola tanulói, a változók: magasságuk cm-ben, súlyuk (tömegük) kilóban; 3. egy iskola tanulói, a változó: tanulmányi átlaguk; Statisztika Tegyük fel, hogy va egy halmazuk, és tekitsük egy vagy több valószíűségi változót, amelyek a halmaz mide elemé felveszek valamilye értéket. A halmazt populációak vagy sokaságak evezzük. Példák:

Részletesebben

Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58

Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58 u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ

Részletesebben

Statisztika Elıadások letölthetık a címrıl

Statisztika Elıadások letölthetık a címrıl Statisztika Elıadások letölthetık a http://www.cs.elte.hu/~arato/stat*.pdf címrıl Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább 1-α valószínőséggel

Részletesebben

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.

Részletesebben

Tudjuk, hogy az optimumot az ún. regressziós görbe szolgáltatja, melynek egyenlete:

Tudjuk, hogy az optimumot az ún. regressziós görbe szolgáltatja, melynek egyenlete: æ REGRESSZIÓANALÍZIS Az alapprobléma a következő: Az X, Y v.v. együttes eloszlásáak ismeretébe közelítei szereték Y-t X mérhető t fv.-ével legkisebb égyzetes értelembe: E(Y t(x)) 2 mi. t be. Tudjuk, hogy

Részletesebben

egyetemi jegyzet Meskó Balázs

egyetemi jegyzet Meskó Balázs egyetemi jegyzet 2011 Előszó 2. oldal Tartalomjegyzék 1. Bevezetés 4 1.1. A matematikai statisztika céljai.............................. 4 1.2. Alapfogalmak......................................... 4 2.

Részletesebben

Matematikai statisztika szorgalmi feladatok

Matematikai statisztika szorgalmi feladatok Matematikai statisztika szorgalmi feladatok 1. Feltételes várható érték és konvolúció 1. Legyen X és Y független és azonos eloszlású valószín ségi változó véges második momentummal. Mutassuk meg, hogy

Részletesebben

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik. Számsorozatok 2015. december 22. 1. Alapfeladatok 1. Feladat: Határozzuk meg az a 2 + 7 5 2 + 4 létezik. sorozat határértékét, ha Megoldás: Mivel egy tört határértéke a kérdés, ezért vizsgáljuk meg el

Részletesebben

0,1 P(X=1) = p p p(1-p) Egy p vszgő esemény bekövetkezik-e.

0,1 P(X=1) = p p p(1-p) Egy p vszgő esemény bekövetkezik-e. Egy kis emlékeztetı X val.változó értékek F(x) eloszlásfv. valségek P(a X

Részletesebben

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,

Részletesebben

A statisztika részei. Példa:

A statisztika részei. Példa: STATISZTIKA Miért tauljuk statisztikát? Mire haszálhatjuk? Szakirodalom értő és kritikus olvasásához Mit állít egyáltalá a cikk? Korrektek-e a megállaítások? Vizsgálatok (kísérletek és felmérések) tervezéséhez,

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H

Részletesebben

véletlen : statisztikai törvényeknek engedelmeskedik (Mi az ami közös a népszavazásban, a betegségek gyógyulásában és a fiz. kém. laborban?

véletlen : statisztikai törvényeknek engedelmeskedik (Mi az ami közös a népszavazásban, a betegségek gyógyulásában és a fiz. kém. laborban? BEVEZETÉS A statisztika teljese laikusokak: agy mukával gyűjtött adatok vizsgálata, abból következtetések levoása ( statistical iferece ) (Egy kicsit sok hűhó semmiért azaz Much ado about othig.) Mi is

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

Feladatok megoldása. Diszkrét matematika I. Beadandó feladatok. Bujtás Ferenc (CZU7KZ) December 14, feladat: (A B A A \ C = B)

Feladatok megoldása. Diszkrét matematika I. Beadandó feladatok. Bujtás Ferenc (CZU7KZ) December 14, feladat: (A B A A \ C = B) Diszkrét matematika I. Beadadó feladatok Bujtás Ferec (CZU7KZ) December 14 014 Feladatok megoldása 1..1-6. feladat: (A B A A \ C = B) A B A = A \ C = B igazolása: A B A = B \A = Ø = B = A B (Mivel a B-ek

Részletesebben

Bootstrap (Efron, 1979)

Bootstrap (Efron, 1979) Bootstrap (Efro, 979) 4. elıadás 204. március 3. Bootstrap módszerek, többdimeziós extrém-érték eloszlások illeszkedésvizsgálata Újramitavételezési eljárás, a becsléseik szórásáak vizsgálatára, modell-illeszkedés

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.

Részletesebben

Tartalom. Kezdeti szimulációs technikák. Tipikus kérdések. A bootstrap módszer. Bevezetés A független, azonos eloszlású eset:

Tartalom. Kezdeti szimulációs technikák. Tipikus kérdések. A bootstrap módszer. Bevezetés A független, azonos eloszlású eset: Tartalom A bootstrap módszer Zempléi Adrás TTK, Valószíőségelméleti és Statisztika Taszék 2010. október 21 Bevezetés A függetle, azoos eloszlású eset: emparaméteres paraméteres eset Alkalmazások a rétegzett

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis 1. Írásbeli beugró kérdések Készítette: Szátó Ádám 2011. Tavaszi félév 1. Írja le a Dedekid-axiómát! Legyeek A R, B R. Ekkor ha a A és b B : a b, akkor

Részletesebben

Bevezetes a matematikai statisztikaba Dr. Ketskemety Laszlo, iter Marta Budapest, 999. ovember. Lektoralta: Dr. Gyor Laszlo Szerkesztette: Gy}ori Sador Tartalomjegyzek. A matematikai statisztika alapfogalmai

Részletesebben

1. A radioaktivitás statisztikus jellege

1. A radioaktivitás statisztikus jellege A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a

Részletesebben

= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05

= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 Folytoos vlószíűségi változók Értékkészletük számegyees egy folytoos (véges vgy végtele) itervllum. Vlmeyi lehetséges érték vlószíűségű, pozitív vlószíűségek csk értéktrtomáyokhoz trtozk. Az eloszlás em

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris

Részletesebben

A peremeloszlások. Valószínőségszámítás elıadás III. alk. matematikus szak. Példa. Valószínőségi vektorváltozók eloszlásfüggvénye.

A peremeloszlások. Valószínőségszámítás elıadás III. alk. matematikus szak. Példa. Valószínőségi vektorváltozók eloszlásfüggvénye. y Valószíőségszámítás elıaás III. alk. matematkus szak 4. elıaás, szeptember 30 A peremeloszlások (X,Y) eloszlásából (elevezés: együttes eloszlás) következtethetük az egyes változók eloszlására: P(X)P(X,Y0)+P(X,Y)+P(X,Y2)

Részletesebben

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat 7. lecke Paraméter becslés Konfidencia intervallum Hipotézis vizsgálat feladata Paraméter becslés és konfidencia

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben