Áringadozások elıadás Kvantitatív pénzügyek szakirány 2012/13 2. félév

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Áringadozások elıadás Kvantitatív pénzügyek szakirány 2012/13 2. félév"

Átírás

1 Árigadozások elıadás Kvatitatív pézügyek szakiráy 01/13. félév Heti óra elıadás + óra gyakorlat Elıadás: fıleg modellek, elemzési módszerek Gyakorlat: R programmal, alkalmazások Számokérés 50%: beadadó feladat (+órai muka gyakorlatoko) 50%: ZH az utolsó gyakorlato az elıadás ayagából Iformációk:

2 Tematika Stabilis eloszlások, vozási tartomáyok Extrém-érték modellek egy-és többdimezióba Kopulák Véletle mátrixok ARCH- GARCH modellek Pézügyi kérdések: portfólióoptimalizálás, szabályozók stb.

3 Módszerek Cikk/köyvfeldolgozás Mide elıadás végé irodalomjegyzék Matematikai modellek, de az alkalmazásokra kocetrálva Példák illusztrációkét (részletese a gyakorlato)

4 Ismétlés (Ω, A,P): Kolmogorov-féle valószíőségi mezı X : Ω R függvéy valószíőségi vektorváltozó, ha {ω: X(ω) B} A mide B -dimeziós Borel halmazra. Várható érték: E( X ) = X ( ω) dp( ω) Vektorváltozókra koordiátákét Ω

5 Függvéy várható értéke Legye g: R R B-mérhetı függvéy, X valószíőségi változó. Ekkor g(x) is valószíőségi változó, a várható értéke E( g( X )) = g( X ( ω)) dp( ω) = g( x) dq ( x) = X Ω R R Ha X abszolút folytoos, akkor ebbıl = R E ( g( X )) f ( x) g( x) dx X g( x) df X ( x)

6 Szóráségyzet (variacia) D (X):=E[(X-E(X)) ] Összeg szóráségyzete csak korrelálatla változókra egyezik meg a szóráségyzetek összegével Korreláció R ( X, Y ) = cov( X, Y ) D( X ) DY ( ) a lieáris kapcsolat erısségét méri

7 Mometumok E(X k ), ha létezik Tulajdoság: E(X r )< eseté E(X s )<, ha s<r. Ha E(X r )<, akkor z r P( X >z) 0, ha z Azaz: P( X >z)=o(z -r ) Ekvivales feltétel: E( X r ) < z r 1 P( X > z) itegrálható a (0, + ) - e

8 Nagy számok törvéyei Legye X 1, X,... függetle, azoos eloszlású m várható értékkel. Ekkor P ω X ( ω) + X ( ω) X 1 ω : m = azaz (X 1 +X X )/ m 1 valószíőséggel. (Kolmogorov tétele) Hicsi tétele: Legye X 1, X,... párokét függetle, azoos eloszlású, m várható értékkel. Ekkor (X 1 +X X )/ m. sztochasztikusa. ( ) 1

9 Nagy számok törvéye összefüggı változókra Valami feltétel kell: X 1 =X = =X eseté (X 1 +X + +X )/ = X 1 és így em kovergál kostashoz. Tétel (Berstei). Legye (X 1, X,, X ) olya, hogy D (X 1 )+D (X ) + D (X )<k, valamit tegyük fel, hogy va olya h:n R + függvéy, melyre R(X i,x j ) h( i-j ) és 1 h( i) 0 ekkor (X 1 +X + +X )/ - (m 1 +m + +m )/ 0 sztochasztikusa. i= 1

10 Valódi határeloszlások Kérdés: lehet-e emelfajult valószíőségi változó a határérték? Tétel: ha X 1, X,... függetle valószíőségi változók, b számsorozat, melyre b és (X 1 +X X )/b X 1 valószíőséggel, akkor X 1 valószíőséggel álladó. Ehhez segédeszköz: 0 vagy 1 törvéy. Sıt: Tétel: ha X 1, X,... függetle valószíőségi változók, b számsorozat, melyre b és (X 1 +X X )/b X sztochasztikusa, akkor X 1 valószíőséggel álladó.

11 Gyege kovergecia Defiíció. X X gyegé (eloszlásba), ha az eloszlásfüggvéyeikre teljesül: F (z) F(z) az F mide folytoossági potjába. Megjegyzés. Ez a kovergecia em mod semmit a valószíőségi változók közelségérıl. Ω=[0,1], P= hosszúság, X =I [0,0.5] X=I [0.5,1] eseté F (z)=f(z), azaz teljesül a gyege kovergecia. A fetiekbıl az is látszik, hogy a határértékek csak az eloszlása érdekes.

12 Karakterisztikus függvéy (Fourier traszformált) Komplex értékő valószíőségi változók: Z=X+iY, ahol X és Y is valószíőségi változók. E(Z):=E(X)+iE(Y). X (valós) valószíőségi változó karakterisztikus függvéye: ϕ X (t):=e(e itx )=E(costX)+iE(sitX) Tulajdoságai: ϕ X (t) R C függvéy, mely mide X-re létezik. ϕ X (0)=1 mide X-re ϕ X (t) 1 (mert E(e itx ) E( e itx )=1 Ha X és Y függetleek, ϕ X+Y (t)= ϕ X (t)ϕ Y (t), mert E(e it(x+y) )= E(e itx e ity )= E(e itx ) E(e ity ) a függetleség miatt.

13 Tulajdoságok Ha E(X ) véges valamilye 1 egész számra. Ekkor ϕ X (t) -szer egyeletese folytoosa deriválható és ( l) ϕ X itx l ( t) = e ( ix) dq( x) Pl. 0 potba vett deriváltak: ( l) l l l ϕ (0) = ( ix) dq( x) = ie( X ) X Taylor sorfejtés: tegyük fel, hogy E(X ) véges. Ekkor t 0 mellett it ( it) ( it) ϕx ( t ) = 1+ E( X ) + E( X ) E( X ) + o( t ) 1!!! ahol o(t ) jeletése, hogy t el osztva is 0-hoz tart, ha t 0.

14 ψ ( t) A stadard ormális eloszlás karakterisztikus függvéye Áll.: a stadard ormális eloszlás karakterisztikus függvéye: Ehhez: eleget tesz a ψ (t)=-t ψ(t) differeciálegyeletek. (Ez léyegébe elég is: (log ψ(t)) =-t, amibıl log ψ(t)=-t /+c, de ψ(0)=1 miatt c=1.) parciális itegrálással. ϕ( t) = x x 1 1 = tx e dx t = cos( ) ; ψ '( ) xsi( tx) e dx π π 1 x x 1 ψ '( t) = si( tx) e t cos( tx) e dx π π e t = tψ ( t)

15 Cetrális határeloszlás tétel Legyeek X 1, X,, X,... függetle, azoos eloszlású valószíőségi változók. Tegyük fel, hogy σ =D (X) véges (m:=e(x i )). Tekitsük a stadardizált összegüket: Z X1 : = σ m Ekkor Z gyegé kovergál a stadard ormális eloszláshoz, azaz X X m 1 P < z Φ( z ) σ ahol Φ a stadard ormális eloszlás eloszlásfüggvéye. X

16 Bizoyítás vázlata Elegedı a Z karakterisztikus függvéyére beláti, hogy ϕ (t) exp{-t /}. Ha ψ(t) jelöli az X -m karakterisztikus függvéyét, akkor X 1 +X + +X -m karakterisztikus függvéye ψ (t). Ebbıl A maradéktagos Taylor formula miatt Végül t t = ) ( ) ( σ ψ ϕ ) ( 1 ) (! ) ( 1! ) ( 1 ) ( t o t t o m X E t i m X E it t + = = σ ψ (1) ) ( ) ( t e o t t o t t t + = + = = σ σ σ σ ψ ϕ

17 A em azoos eloszlású eset Ekkor a agy számok törvéyéél már látott okok miatt erısebb feltételek kelleek. A legegyszerőbb eset: ha X 1, X,, X,... függetle, egyeletese korlátos valószíőségi változók (ekkor σ i =D (X i ) véges, tegyük fel viszot, hogy összegük végtelehez tart, m i :=E(X i )), akkor a stadardizált összegük: Z : = X X 1 ( m Ekkor Z gyegé kovergál a stadard ormális eloszláshoz, azaz ahol Φ a stadard ormális eloszlás eloszlásfüggvéye. 1 σ σ m ( Z < z) Φ(z) P )

18 Általáosítások Ljapuov tétel: Legyeek X 1, X,, X,... függetle valószíőségi változók. Tegyük fel, hogy m i =E(X), i σ i =D (X i ) valamit h i =E( X i -m i 3 ) véges. Legye B = σ 1 +σ + + σ. Valamit H 3 =h 1 +h + +h re H /B 0. Ekkor X X ( m m ) limp x ( x) < B =Φ Lideberg tétel: Legyeek X 1, X,, X,... függetle valószíőségi változók. Tegyük fel, hogy m i =E(X), i és σ i =D (X i ) véges. Ha tetszıleges ε>0-ra akkor 1 lim ( x m ) dq ( x) = liml(, ε ) = 0 i i B i= 1 { x: x m εb } i X X ( m m ) limp x =Φ( x) < B

19 Lideberg tétel megfordítása Tétel (Feller). Ha és 1 k akkor X X ( m m ) limp x =Φ( x) < B Y max k m k 0 B sztochasztikusa, lim L(,ε)=0.

20 Kovergeciasebesség Ha X 1, X,, X,... függetle, azoos eloszlású valószíőségi változók, t.f.h. m=0, σ=1, akkor supp z X X m E X1 < z Φ( z) c σ (Berry-Essée tétel). Gyakorlatba agyo függ az eloszlás alakjától. Például az egyeletes eloszlásra =1 elég jó közelítést ad, de az expoeciális eloszlásra legalább =50 szükséges. 3

21 Stabilis eloszlások Def.: X stabilis eloszlású, ha tetszıleges a,bre megadható c és d, hogy ax+by eloszlása (X,Y függetle, azoos eloszlású) éppe cz+d eloszlása (Z is X eloszlású) Def.: Vozási tartomáy. F a G vozási tartomáyába tartozik, ha X 1, X,, X,... függetle, F eloszlásúakra megadható a, b ormáló sorozat, hogy i=1 X a i b G eloszlásba

22 Alkalmazásuk Fizikai törvéyszerőségek (pl. a Lévy eloszlás a Brow mozgás adott szit eléréséhez szükséges idı eloszlása) Általáos határeloszlás-tétel (Potosa a stabilis eloszlásokak va emüres vozási tartomáya) Vastag szélő (heavy tailed) eloszlások, pl. pézügyekbe

23 Szimmetrikus stabilis eloszlások Karakterisztikus függvéyük exp{- t α } ahol 0<α paraméter (α=: ormális eloszlás, α=1: Cauchy, α=0,5: Lévy) Mide stabilis eloszlás abszolút folytoos, sőrőségfüggvéyük végtele sokszor deriválható, de általába em adhatók meg zárt alakba Midegyik uimodális de a módusz általába em adható meg zárt alakba Az α< paraméterő stabilis eloszlás r-edik mometuma potosa r<α eseté véges

24 Általáos stabilis eloszlások Paraméterek: α idex β ferdeség γ skála δ hely α <1 és β =1 eseté félegyeesre kocetrált Egyébkét az egész számegyeesre

25 A ferdeségi paraméter szerepe Spec: E( X ) πα =δ βγ ta δ=0, β=0 eseté E(X)=0 (1< α) De β 0 eseté E(X), ha α 1 pedig a módusz 0 α = eseté E(X)= δ (β-ak ics szerepe)

26 A többi paraméter szerepe A jól ismert kvatilistraszformáció mőködik: ha q a γ=0, δ=0 (stadard) eloszlás kvatilise, akkor qγ+δ a γ, δ paraméterő eloszlás azoos kvatilise A szóráségyzet additivitásáak szerepét a γ α = γ 1α +γ α veszi át.

27 Cauchy eloszlás f ( x) = π ( γ γ + ( x δ ) ) X/Y eloszlása stadard Cauchy, ha X,Y függetle stadard ormális. Ebbıl adódóa megegyezik az 1 szabadságfokú t-eloszlással is. Világítótoroy-probléma: γ magasságú, δ távolságba levı világítótoroy véletleszerő iráyba világít. Az x tegelye a vetület eloszlása Cauchy (0,γ, δ)

28 Egy elrettetı példa α =0,1 β=0 β=0,5 β=1

29 Általáos határeloszlás Legyeek X 1, X,, X,... függetle, azoos eloszlású valószíőségi változók. Tegyük fel, hogy P( X >x) x -α L(x), ahol L lassú változású fv. a végtelebe (L(cx)/L(x) 1, ha x ). Ekkor megadható a, b hogy a ( X X ) b ahol Z éppeαredő stabilis eloszlás. (Ekkor modjuk, hogy az X a Z vozási tartomáyába va) Z

30 Gyakorlati kérdések Paraméterbecslés: maximum likelihood a leghatásosabb (kofidecia itervallum is kostruálható) Illeszkedésvizsgálat Sőrőségfv. becslésbıl: paraméteres vs. emparaméteres ( középe jó) PP plot QQ plot (általába elıyösebb, mert az eloszlás széleit is mutatja, de ezek itt eltúlzottak lehetek)

31 Michael-féle szórásstabilizált P-P plot A PP plotál a szélsı potok szórása kicsi (a QQ plotál általába a középsıké) S=arcsi(U 1/ )/π : sőrőségfüggvéye si(πx)- szel aráyos, a redezett mita elemeiek szórása aszimptotikusa azoos. Az ábrázoladó potok: r i = (/π)arcsi[{(i -0.5)/ 1/ }] s i = (/π)arcsi[f{(y i -m)/s}] Tesztstatisztika is számolható: max r i -s i

32 Szimuláció (Chambers, 1976) Szimmetrikus eset: Legye Θ E[-π/; π/] eloszlású, W pedig exp(1) eloszlású, függetleek. Ekkor Aszimmetrikus eset, θ 0 :=arcta(βta(πα/)/α)

33 Illusztráció: részvéy-idısorok Napi hozamok, Gyakoriság Átlag: 0,05 Miimum: -7 Maximum: 7 Szórás: 3 Nem ormális eloszlású! % ADN

34 Havi aggregálás Havi hozamok, Gyakoriság Átlag:1 Mi:-97 Max:38 Szórás:15 Ez sem ormális eloszlású, de már em vastag szélő % ADN

35 Kokrét példa GBP vs DM api log-hozam idısor ML becslésα-ra: 1,495; β ra:-0,18 Potozott: ormális sfv, vékoy:adatok, vastag: illesztett stabilis

36 Hivatkozások Chambers, J.M., Mallows, C. ad Stuck, B.W.: A method for simulatig stable radom variable (1976) Michael, P.: The stabilized probability plot (1983) Nola, J. P.: Modelig fiacial data with stable distributios (005) Nola, J. P.: Stable distributios (009)

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

Statisztika 1. zárthelyi dolgozat március 21.

Statisztika 1. zárthelyi dolgozat március 21. Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy

Részletesebben

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 5. Megjegyzések. A tétel feltételei gyegíthetőek: elég, ha a függetle, azoos eloszlású változók várható értéke véges.

Részletesebben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,

Részletesebben

A peremeloszlások. Valószínőségszámítás elıadás III. alk. matematikus szak. Példa. Valószínőségi vektorváltozók eloszlásfüggvénye.

A peremeloszlások. Valószínőségszámítás elıadás III. alk. matematikus szak. Példa. Valószínőségi vektorváltozók eloszlásfüggvénye. y Valószíőségszámítás elıaás III. alk. matematkus szak 4. elıaás, szeptember 30 A peremeloszlások (X,Y) eloszlásából (elevezés: együttes eloszlás) következtethetük az egyes változók eloszlására: P(X)P(X,Y0)+P(X,Y)+P(X,Y2)

Részletesebben

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük.

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük. Statisztikai módszerek. BMEGEVGAT01 Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudomáyi Egyetem Gépészméröki Kar Hidrodiamikai Redszerek Taszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Tartalom. Kezdeti szimulációs technikák. Tipikus kérdések. A bootstrap módszer. Bevezetés A független, azonos eloszlású eset:

Tartalom. Kezdeti szimulációs technikák. Tipikus kérdések. A bootstrap módszer. Bevezetés A független, azonos eloszlású eset: Tartalom A bootstrap módszer Zempléi Adrás TTK, Valószíőségelméleti és Statisztika Taszék 2010. október 21 Bevezetés A függetle, azoos eloszlású eset: emparaméteres paraméteres eset Alkalmazások a rétegzett

Részletesebben

Metrikus terek. továbbra is.

Metrikus terek. továbbra is. Metrius tere továbbra is. Defiíció: Legye X egy halmaz, d : X X R egy függvéy. Azt modju, hogy d metria (távolság), ha.. 3. 4. d d d d x, x 0, x, y 0 x y, x, y dy, x, x, z dx, y dy, z. Az X halmazt a d

Részletesebben

Gyakorlati kérdések. 2. előadás, február 22. Szimuláció (Chambers, 1976) Michael-féle szórásstabilizált P-P plot

Gyakorlati kérdések. 2. előadás, február 22. Szimuláció (Chambers, 1976) Michael-féle szórásstabilizált P-P plot Gyakorlati kérdések 2. előadás, 2017. február 22. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Paraméterbecslés:

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum) Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa

Részletesebben

Bootstrap (Efron, 1979)

Bootstrap (Efron, 1979) Bootstrap (Efro, 979) 4. elıadás 204. március 3. Bootstrap módszerek, többdimeziós extrém-érték eloszlások illeszkedésvizsgálata Újramitavételezési eljárás, a becsléseik szórásáak vizsgálatára, modell-illeszkedés

Részletesebben

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Legye N, x k R k =,, és tegyük fel, hogy vagy x k 0 k =,, vagy pedig x k 0 k =,, Ekkor + x k + x k Speciális Beroulli-egyelőtleség Ha N és

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 10. A statisztika alapjai Debrecei Egyetem, 2015 Dr. Bérczes Attila, Bertók Csaád A diasor tartalma 1 Bevezetés 2 Statisztikai függvéyek Defiíció, empirikus várható érték Empirikus

Részletesebben

Wiener-folyamatok definiciója. A funkcionális centrális határeloszlástétel. Norbert Wienerre, a második pedig egy Brown nevű XIX. században élt angol

Wiener-folyamatok definiciója. A funkcionális centrális határeloszlástétel. Norbert Wienerre, a második pedig egy Brown nevű XIX. században élt angol Wieer-folyamatok defiiciója. A fukcioális cetrális határeloszlástétel. A valószíűségszámítás egyik agyo fotos fogalma a Wieer-folyamat, amelyet Browmozgásak is hívak. Az első elevezés e fogalom első matematikailag

Részletesebben

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +... . Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk

Részletesebben

Komputer statisztika

Komputer statisztika Eszterházy Károly Főiskola Matematikai és Iformatikai Itézet Tómács Tibor Komputer statisztika Eger, 010. október 6. Tartalomjegyzék Előszó 4 Jelölések 5 1. Valószíűségszámítás 7 1.1. Valószíűségi mező............................

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

ELTE TTK Budapest, január

ELTE TTK Budapest, január Valószíűségszámítás Arató Miklós előadásai alapjá Készítették: Martiek László Tassy Gergely ELTE TTK Budapest, 008. jauár Typeset by L A TEX . el adás 007. IX.. szerda Klasszikus (kombiatorikus valószí

Részletesebben

Valószín ségszámítás (jegyzet)

Valószín ségszámítás (jegyzet) Valószí ségszámítás (jegyzet) Csiszár Vill 9. február 8.. Valószí ségi mez Két bevezet példa: ) Osztozkodási probléma (494, helyes megoldás több, mit évvel kés bb, Pascal, Fermat): Két játékos fej-írás

Részletesebben

Zavar (confounding): akkor lép fel egy kísérletben, ha a kísérletet végző nem tudja megkülönböztetni az egyes faktorokat.

Zavar (confounding): akkor lép fel egy kísérletben, ha a kísérletet végző nem tudja megkülönböztetni az egyes faktorokat. Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet végző em tudja megkülöbözteti az egyes faktorokat. Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

Autoregressziós folyamatok

Autoregressziós folyamatok Autoregressziós folyamatok.. Példa.. Az ε(t) folyamat függetle érték zaj, ha a várható értéke és ε(t)-k függetle, azoos eloszlású valószí ségi változók.. Az ε(t) folyamat fehér zaj, ha Eε(t) =, és ε(t)-k

Részletesebben

Továbblépés. Általános, lineáris modell. Példák. Jellemzık. Matematikai statisztika 12. elıadás,

Továbblépés. Általános, lineáris modell. Példák. Jellemzık. Matematikai statisztika 12. elıadás, Matematikai statisztika. elıadás, 9.5.. Továbblépés Ha nem fogadható el a reziduálisok korrelálatlansága: Lehetnek fel nem tárt periódusok De más kapcsolat is fennmaradhat az egymáshoz közeli megfigyelések

Részletesebben

Fourier sorok FO 1. Trigonometrikus. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Fourier sorok FO 1. Trigonometrikus. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! Fourier sorok FO Trigoometrikus Fourier sorok FO Trigoometrikus redszer Defiíció: trigoometrikus redszer Az {, cos x, si x, cos x, si x, cos 3x, si 3x, } függvéyekből álló (végtele sok függvéyt tartalmazó)

Részletesebben

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév Kalkulus szigorlati tételsor Számítástechika-techika szak, II. évfolyam,. félév Sorozatok: 1. A valós számoko értelmezett műveletek és reláció tulajdoságai. Számok abszolút értéke, itervallumok. Számhalmazok

Részletesebben

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok, l.ch FÜGGVÉNYSOROZATOK, FÜGGVÉNYSOROK, HATVÁNYSOROK Itt egy függvéysorozat: f( A függvéysorozatok olyaok, mit a valós számsorozatok, csak éppe a tagjai em valós számok, 5 haem függvéyek, f ( ; f ( ; f

Részletesebben

Andai Attila: november 13.

Andai Attila: november 13. Adai Attila: Aalízis éháy fejezete bizoyításokkal Óravázlat 006. ovember 13. Ebbe az óravázlatba az órá elhagzott defiíciókat és a bizoyított tételeket gyűjtöttem össze. i Elemi sorok és függvéyek 1 1.

Részletesebben

Kopulák. 2 dimenziós példák különbözı összefüggıséggel. Példák. Elliptikus kopulák. Sőrőségfüggvények. ( u) 7. elıadás március 24.

Kopulák. 2 dimenziós példák különbözı összefüggıséggel. Példák. Elliptikus kopulák. Sőrőségfüggvények. ( u) 7. elıadás március 24. Kopulák 7. elıaás 204. március 24. Kopulák Az összefüggıségi struktúra uiverzális megjeleítıi (többimeziós eloszlás egyeletes margiálisokkal, Hoeffig, 940 az 990-es évekbe újra felfeezték és azóta széles

Részletesebben

Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2.

Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Statisztika Hipotézisvizsgálat Székely Balázs 2010. december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Előadás vázlat 1 Itervallumbecslések

Részletesebben

1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1

1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1 A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Ha N és h R, akkor + h + h Mikor va itt egyelőség? Léyeges-e a h feltétel? Számtai-mértai közép Bármely N és,, R, k 0 k =,, választással k

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,

Részletesebben

Statisztika 1. zárthelyi dolgozat március 18.

Statisztika 1. zárthelyi dolgozat március 18. Statisztika. zárthelyi dolgozat 009. március 8.. Ismeretle m várható értékű, szórású ormális eloszlásból a következő hatelemű mitát kaptuk:, 48 3, 3, 83 0,, 3, 97 a) Számítsuk ki a mitaközepet és a tapasztalati

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

véletlen : statisztikai törvényeknek engedelmeskedik (Mi az ami közös a népszavazásban, a betegségek gyógyulásában és a fiz. kém. laborban?

véletlen : statisztikai törvényeknek engedelmeskedik (Mi az ami közös a népszavazásban, a betegségek gyógyulásában és a fiz. kém. laborban? BEVEZETÉS A statisztika teljese laikusokak: agy mukával gyűjtött adatok vizsgálata, abból következtetések levoása ( statistical iferece ) (Egy kicsit sok hűhó semmiért azaz Much ado about othig.) Mi is

Részletesebben

Mo= argmax f(x), ha X abszolút folytonos; Mo= argmax P (X = x i ), ha X diszkrét.

Mo= argmax f(x), ha X abszolút folytonos; Mo= argmax P (X = x i ), ha X diszkrét. Segédayag a Matematikai statisztika tatárgyhoz 09 április 0 Leíró statisztika A statisztikai elemzések egyik legfotosabb eszközei a viszoyszámok A viszoyszám két statisztikai adat háyadosa Jelölések: V

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Matematika B4 I. gyakorlat

Matematika B4 I. gyakorlat Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a

Részletesebben

FELADATOK A KALKULUS C. TÁRGYHOZ

FELADATOK A KALKULUS C. TÁRGYHOZ FELADATOK A KALKULUS C. TÁRGYHOZ. HALMAZOK RELÁCIÓK FÜGGVÉNYEK. Bizoyítsuk be a halmaz-műveletek alapazoosságait! 2. Legye adott az X halmaz legye A B C X. Ha A B := (A B) (B A) akkor bizoyítsuk be hogy

Részletesebben

Statisztika október 27.

Statisztika október 27. Statisztika 2011. október 27. Külöbség valószíőségszámítás és statisztika között Kísérlet: 4-szer dobuk fel egy érmét. Megszámoljuk a fejek számát. Valszám: Ismert a fejdobás valószíősége. Milye valószíőséggel

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1

(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1 . Bevezető. Oldja meg az alábbi egyeleteket: (a cos x + si x + cos x si x = (b π si x = x π 4 x 3π 4 cos x (c cos x + si x = si x (d x 6 3x = 0 (e x + x = x (f x + 5 + x = 8 (g x + + x + + x + x + =..

Részletesebben

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA Szerkesztette: Balogh Tamás 202. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add

Részletesebben

Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz. 2 dx = 1, cos nx dx = 2 π. sin nx dx = 2 π

Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz. 2 dx = 1, cos nx dx = 2 π. sin nx dx = 2 π Matematika Ac gyakorlat Vegyzméröki, Bioméröki, Köryezetméröki szakok, 7/8 ősz 4. feladatsor: Fourier-sorok megoldás. Legye fx = ha x, ], fx = ha x, π]. Írjuk fel f Fourier-sorát. Mely potokba állítja

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

Populáció. Történet. Adatok. Minta. A matematikai statisztika tárgya. Valószínűségszámítás és statisztika előadás info. BSC/B-C szakosoknak

Populáció. Történet. Adatok. Minta. A matematikai statisztika tárgya. Valószínűségszámítás és statisztika előadás info. BSC/B-C szakosoknak Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 16. A matematikai statisztika tárgya Következtetések levoása adatok alapjá Ipari termelés Mezőgazdaság Szociológia

Részletesebben

Kalkulus gyakorlat - Megoldásvázlatok

Kalkulus gyakorlat - Megoldásvázlatok Kalkulus gyakorlat - Megoldásvázlatok Fizika BSc I/. gyakorlat. Tétel Newto Leibiz. Ha f folytoos az a, b] itervallumo és F primitív függvéye f-ek, akkor b a f F b F a.. Számítsuk ki az alábbi racioális

Részletesebben

Statisztika. Földtudomány szak, geológus szakirány, 2015/2016. tanév tavaszi

Statisztika. Földtudomány szak, geológus szakirány, 2015/2016. tanév tavaszi Statisztika Földtudomáy szak, geológus szakiráy, 015/016. taév tavaszi félév Backhausz Áges (ELTE TTK Valószíűségelméleti és Statisztika Taszék)1 Tartalomjegyzék 1. Bevezetés 3 1.1. Példa: az adatok elemzése....................

Részletesebben

Valószín ségszámítás 2 gyakorlat Alkalmazott matematikus szakirány

Valószín ségszámítás 2 gyakorlat Alkalmazott matematikus szakirány Valószí ségszámítás gyakorlat Alkalmazott matematikus szakiráy Játékszabályok Az óráko részt kell vei, maximum 3-szor lehet hiáyozi. Aki többször hiáyzik, em ka gyakjegyet. 00 + x otot lehet szerezi a

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

ANALÍZIS I. DEFINÍCIÓK, TÉTELEK

ANALÍZIS I. DEFINÍCIÓK, TÉTELEK ANALÍZIS I. DEFINÍCIÓK, TÉTELEK Szerkesztette: Balogh Tamás 2012. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add el! - Így add

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

Debreceni Egyetem. Kalkulus példatár. Gselmann Eszter

Debreceni Egyetem. Kalkulus példatár. Gselmann Eszter Debrecei Egyetem Természettudomáyi és Techológiai Kar Kalkulus példatár Gselma Eszter Debrece, 08 Tartalomjegyzék. Valós számsorozatok Elméleti áttekités........................................................

Részletesebben

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és A Valószíűségszámítás II. előadássorozat egyedik témája. A NAGY SZÁMOK TÖRVÉNYE Eze előadás témája a agy számok erős és gyege törvéye. Kissé leegyszerűsítve fogalmazva a agy számok törvéye azt modja ki,

Részletesebben

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz

Részletesebben

Lajkó Károly Kalkulus I. példatár mobidiák könyvtár

Lajkó Károly Kalkulus I. példatár mobidiák könyvtár Lajkó Károly Kalkulus I. példatár mobidiák köyvtár Lajkó Károly Kalkulus I. példatár mobidiák köyvtár SOROZATSZERKESZTŐ Fazekas Istvá Lajkó Károly Kalkulus I. példatár programozó és programtervező matematikus

Részletesebben

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke

Részletesebben

3.1. A Poisson-eloszlás

3.1. A Poisson-eloszlás Harmadik fejezet Nevezetes valószíűségi változók Valamely valószíűségi változóhoz kapcsolódó kérdésekre akkor tuduk potos választ adi, ha a változó eloszlása ismert, vagy megközelítőleg ismert. Ebbe a

Részletesebben

ANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2

ANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2 ANALÍZIS. I. VIZSGA. jauár. Mérök iformatikus szak α-variás Mukaidő: perc. feladat pot) Adja meg az z 4 i)z i egyelet összes megoldását. i + i) + 4i + 4 i +, vagyis z p i p cos 3 + i si ) 3 vagy z p i

Részletesebben

hidrodinamikai határátmenet

hidrodinamikai határátmenet Véletle közegű kizárási folyamat, hidrodiamikai határátmeet Diplomamuka Írta Horváth Aja Alkalmazott matematikus szak Témavezető: Nagy Katali Egyetemi doces Differeciálegyeletek Taszék Budapesti Műszaki

Részletesebben

Integrálás sokaságokon

Integrálás sokaságokon Itegrálás sokaságoko I. Riema-itegrál R -e Jorda-mérték haszálható ehhez: A R eseté c(a)=0, ha 0 eseté létezek C 1,,C s kockák hogy A C1 Cs és s i 1 c C i defiíció: D ullmértékű R itegrálási tartomáy,

Részletesebben

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő. 3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.

Részletesebben

Barczy Mátyás és Pap Gyula

Barczy Mátyás és Pap Gyula Barczy Mátyás és Pap Gyula mobidiák köyvtár Barczy Mátyás és Pap Gyula mobidiák köyvtár SOROZATSZERKESZTŐ Fazekas Istvá Barczy Mátyás és Pap Gyula Debrecei Egyetem mobidiák köyvtár Debrecei Egyetem Szerzők

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet A biostatisztika alapfogalmai, kofideciaitervallum Dr. Boda Krisztia PhD SZTE ÁOK Orvosi Fizikai és Orvosi Iformatikai Itézet Mitavétel ormális eloszlásból http://www.ruf.rice.edu/~lae/stat_sim/idex.html

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika

Részletesebben

Bevezetes a matematikai statisztikaba Dr. Ketskemety Laszlo, iter Marta Budapest, 999. ovember. Lektoralta: Dr. Gyor Laszlo Szerkesztette: Gy}ori Sador Tartalomjegyzek. A matematikai statisztika alapfogalmai

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

Statisztika (jegyzet)

Statisztika (jegyzet) Statisztika (jegyzet) Csiszár Vill 009. május 6.. Statisztikai mez A statisztika egyik ága a leíró statisztika. Ekkor a meggyelt adatokat áttekithet formába ábrázoljuk, pl. hisztogrammal (oszlopdiagrammal),

Részletesebben

SOROK Feladatok és megoldások 1. Numerikus sorok

SOROK Feladatok és megoldások 1. Numerikus sorok SOROK Feladatok és megoldások. Numerikus sorok I. Határozza meg az alábbi, mértai sorra visszavezethető sorok esetébe az S -edik részletösszeget és a sor S összegét! )...... k 5 5 5 5 )...... 5 5 5 5 )......

Részletesebben

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k.

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k. 8. KIS REZGÉSEK STABIL EGYENSÚLYI HELYZET KÖRÜL 8.. A rezgések szétcsatolása harmoikus közelítésbe. Normálrezgések Egyesúlyi helyzet: olya helyzet, amelybe belehelyezve a redszert (ulla kezdősebességgel),

Részletesebben

Kevei Péter. 2013. november 22.

Kevei Péter. 2013. november 22. Valószíűségelmélet feladatok Kevei Péter 2013. ovember 22. 1 Tartalomjegyzék 1. Mérhetőség 4 2. 0 1 törvéyek 12 3. Vektorváltozók 18 4. Véletle változók traszformáltjai 28 5. Várható érték 33 6. Karakterisztikus

Részletesebben

2. gyakorlat - Hatványsorok és Taylor-sorok

2. gyakorlat - Hatványsorok és Taylor-sorok . gyakorlat - Hatváysorok és Taylor-sorok 9. március 3.. Adjuk meg az itt szereplő sorok kovergeciasugarát és kovergeciaitervallumát! + a = + Azaz a hatváysor kovergeciasugara. Az biztos, hogy a (-,) yílt

Részletesebben

f(n) n x g(n), n x π 2 6 n, σ(n) n x

f(n) n x g(n), n x π 2 6 n, σ(n) n x Számelméleti függvéyek extremális agyságredje Dr. Tóth László 2006 Bevezetés Ha számelméleti függvéyek, l. multilikatív vagy additív függvéyek agyságredjét vizsgáljuk, akkor először általába az adott függvéy

Részletesebben

DISZTRIBÚCIÓK. {x R N φ(x) 0}

DISZTRIBÚCIÓK. {x R N φ(x) 0} DISZTRIBÚCIÓK. Kovergecia és folytoosság.. Emlékeztetük, hogy egy φ : R N K folytoos függvéy tartója, Supp φ a halmaz lezártja. {x R N φ(x) 0} Defiíció. Jelölje D(R N ) az R N -e értelmezett K értékű kompakt

Részletesebben

Statisztika gyakorlat Geológus szakirány

Statisztika gyakorlat Geológus szakirány Statisztika gyakorlat Geológus szakiráy Játékszabályok Az óráko részt kell vei, maximum 3-szor lehet hiáyozi. Az aláírás megszerzéséek lehetséges módjai: vagy ZH írásával vagy egy el re kihirdetett házi

Részletesebben

Analízis I. gyakorlat

Analízis I. gyakorlat Aalízis I. gyakorlat Kocsis Albert Tihamér, Németh Adriá 06. március 4. Tartalomjegyzék Előszó.................................................... Sorozatok és sorok.............................................

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

kismintás esetekben vagy olyanokban, melyeknél a tanulóalgoritmust tesztadatokon szeretnénk

kismintás esetekben vagy olyanokban, melyeknél a tanulóalgoritmust tesztadatokon szeretnénk ÚJRAMINTAVÉTELEZÉSI ELJÁRÁSOK A jackkife (zsebkés) és bootstrap (cipőhúzó a saját kallatyújáál fogva) eljárások agol elevezése is arra utal, hogy itt ad hoc eljárásokról va szó, melyek azoba agyo haszosak

Részletesebben

Eddig megismert eloszlások Jelölése Eloszlása EX D 2 X P(X = 1) = p Ind(p) P(X = 0) = 1 p. Leíró és matematikai statisztika

Eddig megismert eloszlások Jelölése Eloszlása EX D 2 X P(X = 1) = p Ind(p) P(X = 0) = 1 p. Leíró és matematikai statisztika Leíró és matematikai statisztika Matematika alapszak, matematikai elemző szakiráy Zempléi Adrás Valószíűségelméleti és Statisztika Taszék Matematikai Itézet Természettudomáyi Kar Eötvös Lorád Tudomáyegyetem

Részletesebben

Valószínűségszámítás II. feladatsor

Valószínűségszámítás II. feladatsor Valószíűségszámítás II. feladatsor 214. szeptember 8. Tartalomjegyzék 1. Kovolúció 1 1.1. Poisso és Gamma eloszlások kapcsolata............................... 2 2. Geerátorfüggvéyek 3 2.1. Véletle tagszámú

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

Sorok és hatványsorok vizsgálata Abel nyomán

Sorok és hatványsorok vizsgálata Abel nyomán Sorok és hatváysorok vizsgálata Abel yomá Szakdolgozat Készítette: Vákovics Mária Matematika BSc, Matematikai elemz szakiráy Témavezet : Pfeil Tamás adjuktus Alkalmazott Aalízis és Számításmatematikai

Részletesebben

Valószínűségszámítás alapjai szemléletesen

Valószínűségszámítás alapjai szemléletesen ### walszam07-jav-80.doc, ### 08.0.3., :00' http://math.ui-pao.hu/~szalkai/walszam07.pdf Valószíűségszámítás alapjai szemléletese /Kézirat, 08-0-3. / dr.szalkai Istvá Pao Egyetem, Veszprém Matematika Taszék

Részletesebben

Határértékszámítás. 1 Határátmenet Tétel. (Nevezetes sorozatok) (a) n, n 2,... n α (α > 0), 1 n 0, 1. 0 (α > 0), (b) n 2 0,... 1.

Határértékszámítás. 1 Határátmenet Tétel. (Nevezetes sorozatok) (a) n, n 2,... n α (α > 0), 1 n 0, 1. 0 (α > 0), (b) n 2 0,... 1. Határátmeet Határértékszámítás.. Tétel. (Nevezetes sorozatok) 005..5 Készítette: Dr. Toledo Rodolfo (a)... α (α > 0) (b) (c) 0 0... 0 (α > 0) α q (d) c (c > 0) ha q > = ha q = 0 ha q < diverges korlátos

Részletesebben

Boros Zoltán február

Boros Zoltán február Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n

Részletesebben

A primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be,

A primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be, 6 A primitív üggvéy létezése A primitív üggvéy létezése Kitűzött eladatok. Határozd meg az a és b valós paraméterek értékét úgy hogy az : R ae + b üggvéyek létezze primitív üggvéye! >. Az : [ + [ + olytoos

Részletesebben

hogy alkalmas konstrukcióval megadható-e olyan sztochasztikus folyamat, melynek ezek

hogy alkalmas konstrukcióval megadható-e olyan sztochasztikus folyamat, melynek ezek Wieer folyamatok A következő két feladat azt mutatja, hogy az az eseméy, hogy egy sztochasztikus folyamat folytoos trajektóriájú-e vagy sem em határozható meg a folyamat véges dimeziós eloszlásai segítségével,

Részletesebben

... Defi ció. Statisztia otosabba statisztiai függvéy) alatt a mitaeleme valamely T ο ;ο ;:::;ο ) függvéyét értjü, ahol T : R! R olya függvéy, hogy T

... Defi ció. Statisztia otosabba statisztiai függvéy) alatt a mitaeleme valamely T ο ;ο ;:::;ο ) függvéyét értjü, ahol T : R! R olya függvéy, hogy T Matematiai statisztia Programozó Matematius sza részére Pa Gyula KLTE Matematiai és Iformatiai Itézet 4 Debrece, Pf. agy@math.lte.hu. Bevezetés.. A matematiai statisztia célit}uzései Adott egy mita, amelyalajá

Részletesebben

æ MATEMATIKAI STATISZTIKA Dr. Bolla Marianna, Matematika Intézet, Sztochasztika Tanszék

æ MATEMATIKAI STATISZTIKA Dr. Bolla Marianna, Matematika Intézet, Sztochasztika Tanszék æ MATEMATIKAI STATISZTIKA Dr. Bolla Mariaa, Matematika Itézet, Sztochasztika Taszék Leíró statisztika Ω, A, P) statisztikai mező, ahol a P mértékcsalád olya P eloszlásokból áll, melyekkel Ω, A, P) valószíűségi

Részletesebben

megoldásvázlatok Kalkulus gyakorlat Fizika BSc I/1, 1. feladatsor 1. Rajzoljuk le a számegyenesen az alábbi halmazokat!

megoldásvázlatok Kalkulus gyakorlat Fizika BSc I/1, 1. feladatsor 1. Rajzoljuk le a számegyenesen az alábbi halmazokat! megoldásvázlatok Fizika BSc I/,. feladatsor. Rajzoljuk le a számegyeese az alábbi halmazokat! a { R < 5}, b { R 4}, c { Z 4}, d { Q < 4 6}, e { N 3 }.. Igazak-e az alábbi állítások? Adjuk meg az állítások

Részletesebben

Segédanyag a Leíró és matematikai statisztika tantárgyhoz március 28.

Segédanyag a Leíró és matematikai statisztika tantárgyhoz március 28. Segédayag a Leíró és matematikai statisztika tatárgyhoz 07 március 8 Statisztikai sokaság: a meggyelés tárgyát képez egyedek összessége, halmaza Rövide sokaságak hívjuk A sokaság egysége: a sokaság egy

Részletesebben

= λ valós megoldása van.

= λ valós megoldása van. Másodredű álladó együtthatós lieáris differeciálegyelet. Általáos alakja: y + a y + by= q Ha q = 0 Ha q 0 akkor homogé lieárisak evezzük. akkor ihomogé lieárisak evezzük. A jobb oldalo lévő q függvéyt

Részletesebben

Kalkulus II., második házi feladat

Kalkulus II., második házi feladat Uger Tamás Istvá FTDYJ Név: Uger Tamás Istvá Neptu: FTDYJ Web: http://maxwellszehu/~ugert Kalkulus II, második házi feladat pot) Koverges? Abszolút koverges? ) l A feladat teljese yilvávalóa arra kívácsi,

Részletesebben

Matematikai statisztika gyakorlat 2018/2019 II. félév

Matematikai statisztika gyakorlat 2018/2019 II. félév Matematikai statisztika gyakorlat 018/019 II. félév 1. Táblázatok Viszoyszámok: V = A, ahol A: a viszoyítás tárgya (amit viszoyítuk); B B: a viszoyítás alapja (amihez viszoyítuk) Megoszlási: a sokaság

Részletesebben

Draft version. Use at your own risk!

Draft version. Use at your own risk! BME Matematika Itézet Aalízis Taszék Adai Attila Bevezető aalízispéldák példatár éháy BSc-s órához 8 Tartalomjegyzék. Halmazalgebra. Teljes idukció 3. Relációk, függvéyek 3 4. Számosságok 6 5. A valós

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

1. előadás: Bevezetés. Irodalom. Számonkérés. Cél. Matematikai statisztika előadás survey statisztika MA szakosoknak. A matematikai statisztika tárgya

1. előadás: Bevezetés. Irodalom. Számonkérés. Cél. Matematikai statisztika előadás survey statisztika MA szakosoknak. A matematikai statisztika tárgya Matematikai statisztika előadás survey statisztika MA szakosokak 206/207 2. félév Zempléi Adrás. előadás: Bevezetés Irodalom, követelméyek A félév célja Matematikai statisztika tárgya Törtéet Alapfogalmak

Részletesebben