Sorok és hatványsorok vizsgálata Abel nyomán

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Sorok és hatványsorok vizsgálata Abel nyomán"

Átírás

1 Sorok és hatváysorok vizsgálata Abel yomá Szakdolgozat Készítette: Vákovics Mária Matematika BSc, Matematikai elemz szakiráy Témavezet : Pfeil Tamás adjuktus Alkalmazott Aalízis és Számításmatematikai Taszék Eötvös Lorád Tudomáyegyetem Természettudomáyi Kar Budapest 0

2 Tartalomjegyzék Bevezetés 4. Niels Herik Abel 5.. Abel élete és mukássága Abel-díj Számsorozatok, végtele sorok és hatváysorok 7.. A számsorozat f bb tulajdoságai A végtele sor f bb tulajdoságai A hatváysor f bb tulajdoságai Korlátos változású sorozatok 3.. Korlátos változású sorozatok Példák em korlátos változású sorozatokra Abel és Dirichlet tétele Abel-átredezés, Abel-egyel tleségek Abel és Dirichlet tétele Függvéysorozatok és függvéysorok Függvéysorozatok Függvéysorok Abel és Dirichlet tétele függvéysorokra Dirichlet tétele Abel tétele

3 7. Szummábilis sorok és az Abel-szummáció Szummábilis sorok Abel-szummáció Köszöetyilváítás 44 Irodalomjegyzék 45 Nyilatkozat 46 3

4 Bevezetés A szakdolgozatom témája sorok és hatváysorok. Niels Herik Abel evéhez e terület több tételét kötik, ezek közül dolgoztam fel éháyat. Az els fejezetbe összefoglaltam Abel élettörtéetét. A második fejezetbe felsoroltam azokat a korábbi taulmáyaimból ismert fogalmakat és állításokat, melyeket a szakdolgozatomba felhaszálok. A harmadik fejezetbe deiáltam a korlátos változású sorozat fogalmát, majd összegy jtöttem a rá voatkozó ismert állításokat. Végül példákat mutattam em korlátos változású sorozatokra. Az utolsó példa kapcsá leírtam a váltakozó el jelekkel ellátott harmoikus sor kovergeciájáak elemi bizoyítását. A egyedik fejezetbe az Abel-átredezés utá az Abel-egyel tleség két változatát adtam meg, majd két sorozat szorzatából képzett sorok kovergeciáját vizsgáltam. Bebizoyítottam Abel és Dirichlet tételét, majd példákat mutattam e két tétel alkalmazására. Az ötödik fejezetbe rövide foglalkoztam függvéysorozatok és függvéysorok potokéti illetve egyeletes kovergeciájával. A hatodik fejezetbe ismertettem Abel és Dirichlet végtele sorokra érvéyes tételéek függvéysorokra voatkozó általáosítását. Az utolsó fejezetbe azt vizsgáltam, hogya terjeszthet ki a végtele sor összegéek fogalma. El ször végtele sor szummábilitását, majd az Abel-szummábilitását vizsgáltam. 4

5 . fejezet Niels Herik Abel.. Abel élete és mukássága Niels Herik Abel 80. augusztus 5-é a orvégiai Fioy szigeté született. Édesapja szegéy protestás pap volt. Abel születését követ e a család lakóhelyet változtatott, Gjerstad parókiájára költöztek. Itt töltötte gyerekkorát, majd 85-be megkezdte taulmáyait az oslói püspöki iskolába. Egyik taára észrevette Abel matematikai tehetségét, ezért addig megfejtetle problémákat adott fel eki megoldásra. Tudása tökéletesítése érdekébe taulmáyozi kezdte agy matematikusok, mit Isaac Newto, Leohard Euler, Joseph-Louis Lagrage és Karl Fridrich Gauss mukáit. 80-ba édesapja meghalt, így a család ayagi helyzete bizoytalaá vált. Taára támogatást szerzett számára, s eek köszöhet e 8-be megkezdhette taulmáyait 5

6 a Christiaia Egyeteme Oslóba. Ezt követ évbe megszerezte els egyetemi tudomáyos fokozatát. Felismerte, hogy az általáos ötödfokú egyelet algebrailag em oldható meg, s erre voatkozó bizoyítását ki is adta 84-be. Elismerést remélve az értekezést elküldte Gaussak, aki em ismerte fel, hogy a problémáak az Abel által adott bizoyítása helyes. Berlibe látogatása sorá találkozott a mérök és autodidakta matematikus August Leopold Crellével, aki jó barátja lett, és szakmailag is támogatta. Crelle alapított egy folyóiratot, melyek els számába Abel több taulmáya is olvasható volt. Kutatásaiba f képp az egyeletek elméletér l, függvéyegyeletekr l és a zárt alakba való itegrálásról írt. A traszcedes függvéyekkel foglalkozó taulmáyába adta közre az algebrai függvéyek itegráljáról szóló elmélete belül az Abel-tételt, mely szerit véges számú illeve fajtájú függetle itegrál létezik. Ez utóbbi taulmáyát beterjesztette a Fracia Tudomáyos Akadémiához, ahol visszautasítással kellett szembesülie, m vét em ismerték el. Miel tt haza tért vola Párizsból, megvizsgáltatta magát egy orvossal, aki megállapította, hogy tüd beteg. Visszatérve Norvégiába magáórákból tartotta el magát, 88ba helyettesít taári állást kapott. Nehéz ayagi helyzete és egyre rosszabbodó egészségi állapota em tartotta vissza tudása mélyítésébe és a matematika más ágai belüli kutatásba. Ebbe az id szakba adott közre egy taulmáyt, mely tartalmazta az Abel-féle egyeletekek Abel-csoportokra alapozott elméletét. Karl Gustav Jacobival közöse foglalkoztak az elliptikus függvéyekkel. 88 szé Abel megbetegedett, és állapota az id teltével egyre súlyosabb lett. 89. április 6-á Frolado tuberkulózisba halt meg. 84be a Fracia Tudomáyos Akadémia kiadta értekezéseit... Abel-díj Az Abel-díjat az Oslói Egyetem matematika taszékéek javaslatára hozták létre 00 szé, Abel születéséek 00-adik évfordulójá. A díjat 003tól évete emzetközi bizottság osztja ki arra méltó, kiemelked matematikusokak. 6

7 . fejezet Számsorozatok, végtele sorok és hatváysorok.. A számsorozat f bb tulajdoságai... Deíció (Koverges sorozat). Az (y ) sorozatot kovergesek modjuk, ha létezik olya Y R, hogy mide ε R + számhoz található N ε N küszöbidex, amelyre N ε eseté y Y < ε.... Deíció (Nullsorozat). Egy (y ) sorozatra azt modjuk, hogy ullsorozat vagy zérussorozat, ha a határértéke Deíció (Korlátosság). Az (y ) számsorozatot felülr l korlátosak evezzük, ha va olya K valós szám, amelyél ics agyobb eleme a sorozatak, azaz mide idexre y K teljesül. Mide ilye tulajdoságú K számot a sorozat fels korlátjáak evezük. Az (y ) számsorozatot alulról korlátosak evezzük, ha va olya k valós szám, amelyél ics kisebb eleme a sorozatak, azaz mide idexre y k teljesül. Mide ilye tulajdoságú k számot a sorozat alsó korlátjáak evezük. Az (y ) számsorozatot korlátosak evezzük, ha alulról és felülr l is korlátos...4. Deíció (Mooto sorozat). Azt modjuk, hogy az (y ) sorozat mooto övekv, ha bármely idexre teljesül, hogy y y +. 7

8 Ha a feti feltételbe y y + áll, akkor azt modjuk, hogy az (y ) sorozat mooto csökke. Ameyibe az y < y +, illetve az y > y + reláció teljesül, akkor szigorúa mooto övekv, illetve szigorúa mooto csökke sorozatról beszélük. Az (y ) sorozatra azt modjuk, hogy mooto sorozat, ha mooto övekv vagy mooto csökke... A végtele sor f bb tulajdoságai... Deíció (Végtele sor és kovergeciája). Legye az (y ) egy valós számsorozat, és y az ebb l képzett végtele sor. Jelölje s az (y ) sorozat -edik részlet- összegét, azaz a y i alakú számot mide N eseté. Ha az (s ) sorozat koverges, i= és a határértéke Y, akkor azt modjuk, hogy a y végtele sor koverges, és az összege Y. Jele y = Y. Ellekez esetbe, ha a részletösszegekb l képzett (s ) sorozat diverges, akkor a végtele sort divergesek hívjuk.... Tétel (Cauchy-kovergeciakritérium). A akkor koverges, ha bármely ε R + y y végtele sor akkor és csak számhoz található olya N idex, hogy mide N m < idexek eseté y k < ε. k=m+..3. Deíció (Abszolút kovergecia). A y végtele sort abszolút kover- gesek evezzük, ha a y végtele sor koverges...4. Deíció (Végtele sor átredezése). Tekitsük a y végtele sort és legye b : N + N + egy bijekció, azaz a pozitív egész számok ömagára törté bijektív leképezése. A y b(i) végtele sort a y végtele sor b bijekcióhoz tartozó átredezé- i= séek evezzük...5. Tétel. Bármely abszolút koverges sor koverges. 8

9 Egy abszolút koverges sor bármely átredezése abszolút koverges, és az összege megegyezik az eredeti sor összegével...6. Deíció (Feltételes kovergecia). Azt modjuk, hogy a y végtele sor feltételese koverges, ha koverges, de em abszolút koverges...7. Tétel (Riema átredezési tétele). Legye a y végtele sor feltételese koverges, ekkor bármely Y R eseté létezik olya átredezés, amely koverges és az összege Y, továbbá va olya átredezés, melyek összege +, illetve olya is létezik, melyek összege, végül va olya, amely diverges és ics összege...8. Deíció (Leibiz-típusú sor). Ha (y ) mooto fogyó emegatív tagú sorozat, akkor a ( ) + y alakú végtele sort Leibiz-típusú sorak evezzük...9. Tétel. Egy Leibiz-típusú sor potosa akkor koverges, ha lim y = Deíció (Cauchy-szorzat). A a végtele sort értjük. x i és y i végtele sorok Cauchy-szorzatá i=0 i=0 ( i ) x j y i j i=0 j=0... Tétel (Mertes). Legyeek a x i és y i végtele sorok kovergesek, és i=0 i=0 x i = X, y i = Y. Ha e végtele sorok közül legalább az egyik abszolút koverges, i=0 i=0 akkor a Cauchy-szorzatuk is koverges, és ( i ) x j y i j = i=0 j=0 x i i=0 y i..3. A hatváysor f bb tulajdoságai.3.. Deíció (Hatváysor). Adott (a ) sorozat és x 0 R eseté a a (x x 0 ) =0 alakú végtele sort x 0 középpotú hatváysorak evezzük. Az (a ) sorozatot a hatváysor együttható-sorozatáak modjuk. 9 i=0

10 .3.. Deíció (Kovergeciahalmaz). Egy hatváysor kovergeciahalmazá azo x valós számok halmazát értjük, melyre a a (x x 0 ) végtele sor koverges. = Deíció (Összegfüggvéy). A a (x x 0 ) hatváysor összegfüggvéyé az =0 f(x) := a (x x 0 ) =0 függvéyt értjük, melyek értelmezési tartomáya a hatváysor kovergeciahalmaza Deíció (Kovergeciasugár). Vegyük egy (a ) együttható-sorozattal megadott hatváysort, ekkor a hatváysor kovergeciasugará az alábbit értjük: 0, ha ( a ) felülr l em korlátos, R := +, ha ( a ) ullsorozat, lim sup, a ha lim sup a pozitív valós szám Tétel (Cauchy-Hadamard-tétel). Adott (a ) sorozat és x 0, x valós számok eseté a a (x x 0 ) hatváysor abszolút koverges, ha x x 0 < R, míg x x 0 > R =0 eseté diverges Tétel (Abel-tétel). Egy hatváysor összegfüggvéye a kovergeciahalmaz mide potjába folytoos Tétel. A =0 a (x x 0 ) hatváysor összegfüggvéye diereciálható a kovergeciahalmaz bels potjaiak halmazá, és ott az f(x) összegfüggvéy deriváltfüggvéye f (x) = a + a (x x 0 ) + 3 a 3 (x x 0 ) +... =.3.8. Tétel. A ( + ) a + (x x 0 ). a (x x 0 ) hatváysor összegfüggvéyéek létezik primitív függvéye =0 a kovergeciahalmaz bels potjaiak halmazá, melyek F (x) = =0 =0 a + (x x 0) + + c, ahol c R. 0

11 3. fejezet Korlátos változású sorozatok 3.. Korlátos változású sorozatok 3... Deíció (Korlátos változású sorozat). Az (y ) sorozatot korlátos változású sorozatak hívjuk, ha a y + y végtele sor koverges Állítás. Mide mooto és korlátos sorozat korlátos változású. Bizoyítás: Ha (y ) mooto és korlátos sorozat, akkor (y + y ) álladó el jel, ezért s := y + y, y k+ y k = y y +, A mooto és korlátos sorozat koverges, így ha (y ) mooto, ha (y ) mooto fogy. lim s = lim y y, y lim y, ha (y ) mooto, ha (y ) mooto fogy. Ezért (s ) koverges, ami azt jeleti, hogy (y ) korlátos változású Állítás. Mide korlátos változású sorozat koverges. Bizoyítás: A y + y végtele sor koverges, ezért a (y + y ) végtele sor is koverges. Ekkor az s := (y k+ y k ) = y + y

12 sorozat koverges. Ebb l következik, hogy (y + ) is koverges, és így az eggyel kisebb idex (y ) korlátos változású sorozat is koverges. Ha egy sorozat koverges, akkor korlátos is, tehát mide korlátos változású sorozat korlátos Állítás. Egy sorozat potosa akkor korlátos változású, ha el állítható két koverges mooto öv sorozat külöbségekét. Bizoyítás: Legye (x ) egy korlátos változású sorozat és x 0 := 0. Legyeek az (y ) és (z ) sorozatok az alábbi alakúak: y : = x k x k, ahol N + z : = y x. Ekkor z = x k x k x, N +. Az (y ) sorozat emegatív tagú sor részletösszeg-sorozata, ezért mooto öv. A (z ) sorozatra: z + z y + x + y x y + y x + x x + x x + x. Tehát (z ) mooto öv sorozat. Már csak (y ) és (z ) kovergeciáját kell belátuk. Az (y ) sorozat koverges, hisze x k x k koverges, ami azt jeleti, hogy a részletösszeg-sorozata koverges. A korlátos változású (x ) sorozat a állítás szerit koverges. Végül azt kaptuk, hogy (z ) két koverges sorozat külöbsége, így persze (z ) kovergeciáját is beláttuk. Következésképpe mide korlátos változású sorozat el áll két koverges mooto öv sorozat külöbségekét. Ezzel a bizoyítás egyik iráyát végigvittük. A másik iráyál bebizoyítjuk, ha egy sorozat el áll két koverges mooto öv sorozat külöbségekét, akkor az korlátos változású. Legyeek (y ) és (z ) mooto öv

13 koverges sorozatok és (y ) Y R (z ) Z R a határértékek. Ekkor az (y z ) sorozat korlátos változású, ez a tulajdoság az alábbi módo bizoyítható: (y + z + ) (y z ) = (y + y ) (z + z ). Ekkor a végtele sor részletösszeg-sorozata s := (y i+ y i ) (z i+ z i ) y i+ y i + z i+ z i. i= i= i= Az egyel tleség jobb oldalá mide tag emegatív szám abszolút értéke, így midkét tagú összeg teleszkópos összeg. y i+ y i = (y i+ y i ) = y + y Y y, i= z i+ z i = i= i= i= (z i+ z i ) = z + z Z z. Ekkor s Y + Z y z R, tehát az (s ) részletösszeg-sorozat emegatív tagú és korlátos, ezért koverges. 3.. Példák em korlátos változású sorozatokra Három példát mutatuk olya sorozatra, mely koverges, de em korlátos változású Példa. x :=, ha páratla, N, + 0, ha páros. Az (x ) számsorozat koverges és a határértéke 0, továbbá a számsorozat em mooto. Már csak azt kell látuk, hogy (x ) em korlátos változású. Ehhez vizsgáljuk x + x kovergeciáját. Nézzük eze végtele sor részletösszegeit. s + := + x k+ x k = = x x + x 3 x + x 4 x x x + x + x + x + x + = = ( )+ + (+) (+)+ = = + + k + k= k +. 3

14 A részletösszeg-sorozat páratla idex részsorozata diverges, mert a harmoikus sor diverges. A továbbiakba a páros idex részsorozatot vizsgáljuk. s = x k+ x k = = x x + x 3 x + x 4 x x x + x x + x + x = = ( ) ( )+ + (+)+ 0 = + = k + k +. Tehát a változású Példa. k= x + x végtele sor diverges, ezért az (x ) sorozat em korlátos y := ( ), ahol N +. Az (y ) sorozat zérussorozat, de em mooto. Az a sejtésük, hogy (y ) em korlátos változású. y + y = ( )+ + ( ) y + y = + + >. A y + y végtele sorak miorás sora ( = ( ) ) is diverges. Következésképpe (y ) em korlátos változású., ami diverges, ezért y + y Példa. z := ( ) i+ i, ahol N+. i= A (z ) sorozat vajo korlátos változású-e? Ehhez ézzük két egymás melletti tag külöbségét. z + z = ( )

15 Ekkor az eltérés abszolút értéke Tehát A z + z = +. z + z = +. végtele sor diverges, ezért (z + ) em korlátos változású. A (z ) sorozatról megmutatjuk, hogy koverges, és a határértéke l. (z ) kovergeciájába azért lehetük biztosak, mert Leibiz-típusú sor. Már csak azt kell beláti, hogy z l, azaz ( ) i+ i i= ( ) i+ i i= D(f) := (, ) függvéy 0 középpotú Taylor-sorát: T (x) := x x + x3 3 x4 = l. Ehhez ézzük az f(x) := l( + x), = =0 + x ( ). Tehát a feti hatváysor együttható-sorozata a 0 := 0, a := ( )+, N + s ekkor a kovergeciasugár kovergeciahalmaza (, ]. R = lim sup =, ( ) + A hatváysorokra voatkozó Abel-tétel alkalmazásával vizsgáljuk meg a kovergeciahalmaz végpotjait. Az x < kvócies mértai sor összegére voatkozó + x = ( x) = =0 ( ) x, x < egyel ség midkét oldaláak primitív függvéyét véve a (, ) itervallumo, az alábbi összefüggést kapjuk: l( + x) = =0 ( ) x+ + c, ahol x <. + A c kostas értékét az x := 0 helyettesítéssel kaphatjuk meg, c=0, vagyis l( + x) = ( ) + x 5, ha < x <.

16 A jobb oldali hatváysor x = eseté koverges, midkét függvéy x = eseté folytoos, ezért az Abel-tétel alapjá Megjegyzés. A ( ) + végtele sor kovergeciájáak létezik elemi bizoyítása is, mely több lépésb l áll. ( ) + l =. Tekitsük az (x ) sorozatot, melyek tagjai az alábbi formába állak el : x := l, ahol N+.. Állítás. x, ahol N+. Bizoyítás: Az egyel tleséget teljes idukcióval bizoyítjuk. Az els tagra igaz az állítás. x =. Tegyük fel, hogy -re és aál kisebb idexek midegyikére teljesül az állítás. Ekkor írjuk fel + -re a bizoyítadó egyel tleséget. x + +. x + = l( + ) = + ( ) l + l + l( + ). + Az idukciós feltétel szerit elég igazoli, hogy + l + l( + ) + ( + + l( + ) l = l = l l ( + ) ( = l + ) } {{ } <e + Az ( + ) sorozatról tudjuk, hogy mooto öv módo tart az e számhoz. Ezzel igazoltuk, hogy (x ) alulról korlátos, hisze mide tagja pozitív. Vizsgáljuk meg a sorozatot mootoitás szempotjából. 6. )

17 . Állítás. x + < x, N +. Bizoyítás: l( + ) < l ( + < l( + ) l = l = l + ) + ( < ( + ) l + ) ( = l + +. ) Az ( + ) + sorozatról tudjuk, hogy szigorúa mooto csökke módo tart az e számhoz. Tehát (x ) szigorúa mooto fogyó. Ezzel az állítást igazoltuk. Az (x ) sorozat szigorúa mooto csökke, és alulról korlátos, így koverges. A C := lim x R határértéket Euler-Mascheroi kostasak evezzük, értéke C 0, Állítás. lim ( ) = l. Bizoyítás: A korábba deiált (x ) sorozat koverges, ezért (x x ) ullsorozat, hisze lim (x ) = lim (x ) R, vagyis [( x x = ) ] [( l ) ] l = = l 0. Ebb l következik, hogy ( ) 4. Állítás. + = l. Bizoyítás: Legye z := majd a páratla idex tagjait: = ( l. ( ) k+, ahol N +. Nézzük a z k sorozat páros, z = = ) ( ) z + = z + + Ebb l következik, hogy z l, s így = l. ( ) + = l. l, 7

18 4. fejezet Abel és Dirichlet tétele 4.. Abel-átredezés, Abel-egyel tleségek 4... Tétel (Abel-átredezés). Legyeek c k, d k, k =,..., valós számok, és jelölje k s k a d i összeget bármely k =,..., eseté. Ekkor a c k d k összeg átredezhet a i= következ képpe: c k d k = (c k c k+ )s k + c s. Bizoyítás: c k d k = c d + c d c d = c s + c (s s ) c (s s ) = (c c )s + (c c 3 )s (c c )s + c s = (c k c k+ )s k + c s. Ezzel a tételt beláttuk Tétel (I. Abel-egyel tleség). Legyeek c k, d k, k =,..., olya valós számok, melyekre a (c k ) véges sorozat mooto fogyó és emegatív tagú, továbbá m k d i M bármely k =,..., eseté. Ekkor igaz a következ egyel tleség: i= c m Bizoyítás: A tétel feltétele szerit c k d k c M. k m d i M, i= 8

19 ami ekvivales azzal, hogy m s k M, ahol s k := k d i, k =,...,. Az Abelátredezést alkalmazva a c k d k = (c c )s + (c c 3 )s (c c )s + c s összegbe mide s k helyére M-et írva fels becslést kapuk, mert a tétel másik feltétele szerit a (c k ) sorozatról megköveteljük, hogy mooto fogyó legye, és eek köszöhet e az összegbe szerepl (c i c i+ ), i =,..., és c egyike sem lesz egatív. Végül a következ t kapjuk fels becsléskét: c k d k (c c )M + (c c 3 )M (c c )M + c M = c M. Ezzel igazoltuk a tétel második egyel tleségét. Az els hasolóa kihozható, hisze ha a c k d k = (c c )s + (c c 3 )s (c c )s + c s összegbe mide s k helyére m-et íruk, akkor az összeget alulról becsüljük, hisze m s k mide k =,..., eseté, így az alábbi alsó becsléshez jutuk: c m = (c c )m + (c c 3 )m (c c )m + c m c k d k. Ezzel igazoltuk a tétel els egyel tleségét is Következméy. Legyeek a c k, d k, k =,..., olya valós számok, melyekre k a (c k ) véges sorozat mooto fogyó és emegatív tagú, valamit d i M bármely k =,..., eseté. Ekkor igaz a következ egyel tleség: c k d k c M. Az el z ekhez hasoló becslés adható akkor is, ha a (c k ) véges sorozat em álladó el jel Tétel (II. Abel-egyel tleség). Legyeek a c k, d k, k =,..., olya valós k számok, melyekre a (c k ) véges sorozat mooto és d i M bármely k =,..., eseté. Ekkor igaz a következ egyel tleség: c k d k ( c + c ) M. 9 i= i= i=

20 Bizoyítás: Tegyük fel, hogy (c k ) mooto fogyó véges sorozat, ebbe az esetbe yilvá teljesül, hogy c c c c... c c 0. Ekkor az I. Abel-egyel tleség következméyéek felhaszálásával az alábbi összefüggéshez jutuk: (c k c )d k (c c ) M. Ebb l következik, hogy c k d k = (c k c )d k + c d k (c k c )d k + c d k ( c c ) M + c }{{} M ( c + c ) M. c + c Ha (c k ) mooto öv véges sorozat, akkor ( c k ) mooto fogyó, ezért alkalmazhatjuk a már bizoyított mooto fogyó eset becslését: c k d k = ( c k )d k ( c + c ) M = ( c + c ) M. Ezzel a tételt beláttuk. 4.. Abel és Dirichlet tétele 4... Tétel (Dirichlet-tétel). Tegyük fel, hogy a (z ) sorozat (s ) részletösszeg-sorozata korlátos, továbbá (y ) korlátos változású ullsorozat. Ekkor a s (y y + ) és a (y z ) végtele sorok kovergesek, és az összegük egyel. Bizoyítás: Tekitsük a s (y y + ) végtele sort. Az (s ) részletösszeg-sorozat korlátos, tehát létezik olya K R, melyre s K mide idexre. Az (y ) sorozat korlátos változású, így a deíció szerit a y y + végtele sor koverges. 0

21 Tekitsük a s (y y + ) végtele sor részletösszegeit. s k (y k y k+ ) = s k y k y k+ K y k y k+ K y k y k+ R. s k (y k y k+ ) részletösszegei felülr l korlátosak, ezért ez a végtele sor koverges, azaz s k (y k y k+ ) abszolút koverges. Ez másképp is bizoyítható. Haszáljuk a Cauchy-kovergeciakritériumot, melyek segítségével belátható, hogy a s (y y + ) végtele sor abszolút koverges. A tétel feltétele szerit a (z ) sorozat (s ) részletösszeg-sorozata korlátos, tehát létezik olya K valós szám, melyre s K mide idexre. Feltettük továbbá, hogy (y ) korlátos változású, ezért y y + koverges. A Cauchy-kovergeciakritérium szerit bármely ε R + számhoz található olya N ε K Ekkor k=m+ s k (y k y k+ ) = k=m+ k=m+ idex, hogy mide N ε K y k y k+ < ε K. s k y k y k+ K k=m+ m < idexre y k y k+ < K ε K = ε. Így a Cauchy-kritérium szerit a s (y y + ) végtele sor abszolút koverges. Az Abel-átredezés szerit y k z k = y s + s k (y k y k+ ). Mivel (y ) ullsorozat és (s ) korlátos, ezért lim y s = 0, így a bal oldalo álló sorozat is koverges, és az el z egyel ség midekét oldaláak határértékét képezve lim y k z k = lim y s }{{}}{{} 0 y k z k + lim s k (y k y k+ ) }{{} s k (y k y k+ ) Tehát a s (y y + ) és a (y z ) végtele sorok összege egyel. Ezzel a Dirichlettételt beláttuk. Milye eleged feltétel adható, hogy x valós szám és (y ) számsorozat eseté az (y si x), illetve az (y cos x) sorozatból képzett végtele sorok kovergesek legyeek?.

22 4... Példa. A si x végtele sor részletösszeg-sorozata korlátos, ahol x R. Ha x lπ, l Z, akkor a si kx részletösszeget a si x cos(α + β) cos(α β) = si α si β, α, β R addíciós képletet alkalmazva az alábbit kapjuk: si kx = si x si kx si x = [ ( = si x cos k ) ( x cos k + ) x]. kifejezéssel b vítve, majd a Az utolsó összeg teleszkópos, ezért (cos x cos 3 ) x + (cos 3 x cos 5 ) ( ( x cos ) ( cos + )) = = cos ( x cos + ) x. A feti összefüggést felhaszálva, majd a háromszög-egyel tleséget alkalmazva a következ egyel tleséghez jutuk: si kx = si x cos x ( cos + ) x [ cos si x x + ( cos + ) ] x si x. Tehát si x részletösszeg-sorozata felülr l korlátos, ha x R és x lπ, l Z. Ha x = lπ, l Z alakú, akkor a végtele sor mide tagja 0, így a részletösszegsorozat felülr l korlátos Példa. Hasolóa belátható, hogy cos x részletösszeg-sorozata felülr l korlátos, ha x lπ, l Z. cos kx = si x [ ( = si x si k + ) ( x si k [ ( si x si + ) cos kx si x = = si x ( si + ) x si x x si + x ] si x. ) x] Ha x = lπ, l Z, akkor a részletösszeg-sorozat felülr l em korlátos.

23 4..4. Példa. Ha (y ) korlátos változású ullsorozat, akkor mide x R eseté a y si x végtele sor koverges Példa. Ha (y ) korlátos változású ullsorozat, akkor mide x R, x lπ eseté a y cos x végtele sor koverges. A Dirichlet-tétel egy speciális esete az alábbi következméy Következméy. Tegyük fel, hogy az (y ) sorozat mooto csökke zérussorozat, és a Ekkor a z végtele sor részletösszegeiek sorozata korlátos. y z végtele sor koverges. Bizoyítás: tehát korlátos változású. Az (y ) zérussorozat korlátos, így a feltétel szerit mooto és korlátos, Tétel (Abel-tétel). Legye (y ) korlátos változású sorozat, és a sor koverges, ekkor a (y z ) végtele sor koverges. (z ) végtele Bizoyítás: Az (y ) sorozat korlátos változású, ezért koverges. Jelölje (s ) a (z ) végtele sor részletösszeg-sorozatát. Mivel a koverges. Ekkor vizsgáljuk a lim (y s ) határértéket: lim (y s ) = lim y lim s = lim y (z ) végtele sor koverges, ezért (s ) (z ). Tehát fet két koverges sorozat szorzata szerepel, s ekkor (y s ) koverges és a határértéke megegyezik a két téyez határértékéek szorzatával. Ahogy a Dirichlet-tétel bizoyításába láttuk, az Abel-átredezést alkalmazva mide idexre y k z k = y s + s k (y k y k+ ). A jobb oldali második tag koverges, ami potosa úgy bizoyítható,mit a Dirichlettétel bizoyításába. Mivel a jobb oldali összeg midkét tagja koverges,ezért a (y z ) végtele sor koverges. Az Abel-tétel egy speciális esete az alábbi következméy. 3

24 4..8. Következméy. Tegyük fel, hogy az (y ) sorozat mooto és korlátos, és a Ekkor a z végtele sor koverges. y z végtele sor is koverges. Bizoyítás: Az (y ) sorozat mooto és korlátos, tehát korlátos változású Állítás. Ha (z ) ( z mooto fogyó sorozat, akkor +...+z ) is mooto fogyó. Bizoyítás: Azt kell igazoluk, hogy z z Ekvivales átalakítással a következ t kapjuk: z z +, N +. + ( + ) z ( + ) z z z + z +, A (z ) sorozat mooto fogyó, ezért z z z +. z z +, z z +,. z z +. Ebb l következik, hogy z z z +. Ezzel igazoltuk, hogy a mooto fogyó (z ) sorozat számtaiközép-sorozata is mooto fogyó Megjegyzés. Hasolóa belátható, hogy mooto öv sorozat számtaiközépsorozata is mooto öv Példa. A si ( ) végtele sor koverges. A 4... példából tudjuk, hogy si kx si x, x lπ, l Z. 4

25 Ezt x = eseté alkalmazva a következ t kapjuk: si k si. Tehát a si végtele sor részletösszeg-sorozata korlátos. ( ) + Még megmutatjuk, hogy az sorozat korlátos változású ullsorozat. A ( ) állításból arra következtethetük, hogy mivel ( ) mooto fogyó, ezért is mooto fogyó. Már csak azt kell belátuk, hogy ez a számtaiközép-sorozat ullsorozat. Ehhez vegyük az x alábbi módo: függvéy [, ] itervallumo vett Riema-itegráljáak becslését az Ekkor felírható, hogy l = x dx > , l + > < < l + 0. ( ) + A red r-elv szerit az sorozat ullsorozat, továbbá mooto fogyó, ezért korlátos változású. Tehát alkalmazható a Dirichlet-tétel, a ( si ) végtele sor koverges. 5

26 A 7... tétel bizoyítása szerit mide koverges sorozat számtaiközép-sorozata is koverges, és a két határérték megegyezik Példa. A cos si(a) végtele sor bármely a R eseté koverges. Vegyük észre, hogy a si α cos β = ( ) si(α + β) + si(α β) addíciós tételt alkalmazva a következ höz jutuk: cos si(a) = ( si((a+))+si((a )) ) = si((a + )) + si((a )). Itt a si ( k(a + ) ) és si ( k(a ) ) végtele sorok részletösszeg-sorozatai a 4... példa alapjá korlátosak. Az ( ) sorozatról tudjuk, hogy mooto fogyó módo tart a ullába. Tehát alkalmazható a Dirichlet-tétel következméye, a végtele sor koverges. cos si(a) Példa. A ( ) arcta végtele sor koverges. Az (arcta ) sorozat mooto öv és korlátos, tehát koverges, a határértéke pedig lim arcta = π. Az ( ) sorozat mooto fogyó és emegatív tagú, így a ( ) végtele sor Leibiz-típusú. Mivel lim = 0, ezért ( ) koverges. Tehát alkalmazható az Abel-tétel következméye, s így a vizsgált végtele sor koverges Példa. A ( ) l x végtele sor koverges, ha x >. A megjegyzés 4. állításából tudjuk, hogy a ( ) végtele sor koverges, összege l. Az ( l x) sorozat korlátos, és ha x > e, akkor szigorúa mooto csökke, míg az < x < e eseté szigorúa mooto övekv. Alkalmazható az Abel-tétel következméye, a végtele sor koverges. ( ) l x 6

27 5. fejezet Függvéysorozatok és függvéysorok 5.. Függvéysorozatok 5... Deíció (Függvéysorozat). Egy olya hozzáredelést, mely mide természetes számhoz egy valós f függvéyt redel, függvéysorozatak hívjuk, és a következ képp jelöljük: (f ) Deíció (Egyeletes korlátosság). Legye (f ) függvéysorozat és D(f ) = H, N +. Ezt a függvéysorozatot egyeletese korlátosak evezzük, ha létezik olya K valós szám, hogy bármely idex eseté mide x H elemre f (x) K Deíció (Potokéti kovergecia). Legye (f ) függvéysorozat, melyre D(f ) = H, N +. Az (f ) függvéysorozat potokét kovergál az f : H R függvéyhez, ha a H halmaz mide x elemére teljesül Jelölés: f f. lim f (x) = f(x) Deíció (Egyeletes kovergecia). Legye (f ) függvéysorozat és f valós függvéy, melyekre D(f ) = D(f) = H, N +. Az (f ) függvéysorozat egyeletese koverges a H halmazo, ha mide ε R + számhoz található N ε N + küszöbidex, hogy bármely N +, N ε eseté mide x H elemre teljesül Jelölés: f f. f (x) f(x) < ε. 7

28 5..5. Állítás. Ha az (f ) függvéysorozat egyeletese koverges a H halmazo, akkor potokét is. Bizoyítás: Ha a függvéysorozat egyeletese koverges, akkor aak deícióját bármely rögzített x H elemre alkalmazva azt kapjuk, hogy az (f (x)) számsorozat koverges Tétel (Cauchy-kovergeciakritérium). Az (f ) függvéysorozat akkor és csak akkor kovergál egyeletese a H halmazo, ha bármely ε R + számhoz található olya N N + küszöbidex, hogy mide, m N idex eseté bármely x H elemre teljesül f (x) f m (x) < ε. Bizoyítás: Tegyük fel, hogy f f a H halmazo, tehát bármely ε R + számhoz található olya N ε N + küszöbidex, hogy bármely N ε idexre és mide x H elemre teljesül, hogy f (x) f(x) < ε. Ekkor az ε R+ számhoz is választható olya N ε N+ küszöbidex, hogy N ε idex eseté bármely x H elemre f (x) f(x) < ε. Ezek utá a háromszög-egyel tleség alkalmazásával mide x H elemre és bármely, m N ε idexek eseté teljesülek az alábbiak: f (x) f m (x) = f (x) f(x) + f(x) f m (x) f (x) f(x) + f(x) f m (x) < ε + ε = ε. A másik iráy belátásához eleged felismeri, hogy adott x H elemre az (f (x)) számsorozatra teljesül a Cauchy-kovergeciakritérium feltétele. Ezért az (f (x)) számsorozat koverges, és ekkor legye f : H R az a függvéy, amelyre mide x H elemre A továbbiakba azt látjuk be, hogy f f(x) := lim f (x). f a H halmazo. Adott ε R + számhoz található olya N ε N + küszöbidex, hogy mide, m N ε idexre és bármely x H elemre teljesül f (x) f m (x) < ε. Legye N ε adott idex és x H rögzített elem, ekkor m + eseté f (x) f(x) = lim m f (x) f m (x) ε < ε. 8

29 Következésképpe f f a H halmazo, s ezzel a Cauchy-kovergeciakritériumot beláttuk. A továbbiakba olya példát mutatuk, ahol az f : [0, ] R függvéysorozat potokét kovergál a 0 kostasfüggvéyhez, de egyeletese em koverges Példa. f (x) := x, ha 0 x, x, ha < x, 0, ha < x. Ha x > 0, akkor található olya N N +, hogy N < x. Ha N, akkor < x, ezért f N (x) = 0. Következésképpe (f (x)) egy idext l kezdve a ulla kostas sorozat, így f (x) 0. Ha x = 0, akkor mide idexre f (x) = 0. Tehát az f(x) := 0, D(f) = [0, ] kostasfüggvéy a függvéysorozat limeszfüggvéye, így csak ehhez a függvéyhez kovergálhata egyeletese. Idirekt módo tegyük fel, hogy egyeletese kovergál, s ekkor teljesüli kellee aak, hogy mide ε R + számhoz található N ε N + küszöbidex, hogy bármely N +, N ε eseté, mide x [0, ] elemre f (x) f(x) = f (x) < ε. 9

30 Elletmodásra jutuk ε < eseté, hisze ha x :=, akkor f (x) =. Tehát (f ) em tart egyeletese a 0 függvéyhez. 5.. Függvéysorok Legye az (f ) függvéysorozat tagjaiak a H emüres halmaz a közös értelmezési tartomáya. Eze függvéyek végtele összegét függvéysorak evezzük, és az alábbi módo jelöljük: f = f + f f Deíció. Legye az (f ) függvéysorozat tagjaiak a H emüres halmaz a közös értelmezési tartomáya. Az olya x H elemek halmazát, melyekre f (x) koverges, a f függvéysor kovergeciahalmazáak evezzük és K-val jelöljük. A függvéysor összegfüggvéye az a K halmazo értelmezett f függvéy, melyre f(x) := f (x), x K. Ekkor azt modjuk, hogy a f függvéysor potokét kovergál a K halmazo, és összegfüggvéye az f függvéy. Tehát f = f akkor és csak akkor teljesül, ha az s := f k, N + függvéyekb l álló függvéysorozat potokét kovergál az f függvéyhez a K halmazo Deíció (Egyeletes kovergecia). A f függvéysort egyeletese kovergesek modjuk a H halmazo, ha az (s ) függvéysorozat egyeletese koverges a H halmazo Deíció (Abszolút kovergecia). Azt modjuk, hogy a f függvéysor abszolút koverges a H halmazo, ha f potokét koverges a H halmazo. 30

31 5..4. Tétel (Cauchy-kovergeciakritérium). A f függvéysor akkor és csak akkor kovergál egyeletese a H halmazo, ha bármely ε R + számhoz található olya N ε N +, hogy N ε m idexek eseté bármely x H elemre teljesül f k (x) < ε. k=m+ Bizoyítás: A függvéysorozatokra voatkozó Cauchy-kovergeciakritériumból köyye adódik a feti tétel bizoyítása. 3

32 6. fejezet Abel és Dirichlet tétele függvéysorokra 6.. Dirichlet tétele 6... Tétel (Dirichlet-tétel függvéysorokra). Legye H R adott halmaz, továbbá legyeek mide N + eseté az f : H R és g : H R függvéyek. Tegyük fel, hogy bármely x H elemre az (f (x)) sorozat mooto, a H halmazo az (f ) függvéysorozat egyeletese tart a ullába, a Ekkor a g függvéysor (s ) részletösszeg-sorozata egyeletese korlátos a H halmazo. f g függvéysor egyeletese koverges a H halmazo. Bizoyítás: A tétel harmadik feltétele szerit g részletösszeg-sorozata egyeletese korlátos, ahol az -edik részletösszeg s := g k formájú. E feltétel miatt létezik olya K R + szám, melyre mide idexre és x H elemre s (x) K teljesül. A második feltétel alapjá f 0 a H halmazo, deíció szerit ez azt jeleti, hogy bármely ε R + számhoz létezik olya N ε küszöbidex, hogy mide N ε idexre és bármely x H elemre igaz, hogy Ekkor létezik olya N ε K mide x H elemre f (x) < ε K. f (x) f(x) = f (x) 0 = f (x) < ε. küszöbidex, hogy az N ε K 3 idext l kezdve bármely idexre és

33 Az (f ) függvéysorozat egyeletese tart a ullába, ezért potokét is, így bármely x H elemre az (f (x)) sorozat álladó el jel. Ezt követ e ha N ε K < m és x H adott elem, akkor felhaszálható az I. Abel-egyel tleség, miszerit mooto fogyó emegatív tagú (f (x)) sorozatra ε < f (x) ( K) f (x)g (x) f m (x)g m (x) f (x) K < ε, ha (f (x)) mooto öv empozitív tagú, akkor ε < f (x) ( K) f }{{} (x)g (x)... f m (x)g m (x) f (x) K < ε, }{{} f (x) f (x) hisze bármely x H elemre g (x) g m (x) = (g (x) g m (x)) (g (x) g (x)) s m (x) + s (x) K. Így bármely x H számra igaz f (x)g (x) f m (x)g m (x) < ε. Tehát a f g függvéysor kielégíti a Cauchy-kovergeciakritérium feltételét, s így a vizsgált függvéysorról elmodható, hogy egyeletese koverges Következméy. Tegyük fel, hogy (γ ) mooto fogyó zérussorozat, és legye a g függvéysor (s ) részletösszeg-sorozata egyeletese korlátos a H halmazo. Ekkor γ g egyeletese koverges a H halmazo. 6.. Abel tétele 6... Tétel (Abel-tétel függvéysorokra). Legye H R adott halmaz, továbbá legyeek mide N + eseté az f : H R és g : H R függvéyek. Tegyük fel, hogy az (f ) függvéysorozat egyeletese korlátos a H halmazo, az (f (x)) sorozat mooto bármely x H eseté, 33

34 a Ekkor a g függvéysor egyeletese koverges a H halmazo. f g függvéysor egyeletese koverges a H halmazo. Bizoyítás: Az els feltétel szerit létezik olya K R +, hogy mide idexre és bármely x H elemre f (x) K. A tétel harmadik feltétele szerit a g függvéysor egyeletese koverges, emiatt a Cauchy-kovergeciakritérium alapjá mide ε R + számhoz létezik olya N ε 6K elemre idex, hogy m > N ε 6K m g i (x) < i= ε 6K. idexek eseté mide x H A tétel második feltételéb l tudjuk, hogy az (f (x)) sorozat mooto, így a II. Abelegyel tleség alkalmazásával mide m > N ε 6K m f i (x)g i (x) ( f (x) + f m (x) ) i= eseté bármely x H elemre ε 6K ε < ε. Ebb l következik a függvéysorokra voatkozó Cauchy-kovergeciakritérium alapjá, hogy a f g függvéysor egyeletese koverges a H halmazo Következméy. Legye az (f ) függvéysorozat egyeletese korlátos a H halmazo és tegyük fel, hogy mide x H eseté az (f (x)) sorozat mooto. Legye a γ végtele sor koverges. Ekkor a γ f függvéysor egyeletese koverges a H halmazo. 34

35 7. fejezet Szummábilis sorok és az Abel-szummáció 7.. Szummábilis sorok 7... Deíció (Szummábilis sor). A a végtele sort szummábilis sorak e- vezzük, melyek szummája A R, ha az s := a k, N + részletösszeg-sorozat számtaiközép-sorozata koverges, és a határértéke 7... Tétel. Ha a s s lim = A. a végtele sor koverges, és szummábilis és a szummája A. a = A, akkor a végtele sor Bizoyítás: Mivel a a végtele sor koverges és összege A R, ezért az (s ) részletösszeg-sorozata koverges, és s A. Ekkor bármely ε R + számhoz található olya N ε küszöbidex, hogy mide N ε idexre s A < ε. Azt kell belátuk, hogy ( s +s +...+s ) is az A számhoz tart. s + s s A = s + s s A = = (s A) + (s A) (s A) s A + s A s A. 35

36 Ha N ε, akkor s A + s A s A = ( ) ( ) sn s A s N ε A + ε A s A = < s A s N ε A < + ( N ε + ) ε. s N ε A A feti egyel tleségbe ( N ε +), és a K := s A haszálva s A s N ε A + ( N ε + ) ε A jobb oldali összeg akkor és csak akkor kisebb, mit ε, ha Ezért bármely ε R + számra az K < ε, azaz > K ε. N := max { N ε, K ε } küszöbidex olya, hogy mide N idexre s + s s A < ε. Tehát az ( s +...+s ) sorozat határértéke szité A. K + ε. jelölést Megjegyzés. A bizoyítás léyege az, hogy egy koverges sorozat számtaiközépsorozata is koverges, és a határértéke az eredeti sorozat határértéke Tétel. Ha a a sor szummábilis, akkor s 0. Bizoyítás: A a végtele sor szummábilis, így s s A R. Ezzel ekvivales az alábbi felírás: a + (a + a ) + (a + a + a 3 ) (a a ) = a + ( ) a + ( ) a a 36 A. =

37 Jelölje S a következ sorozatot: S := s s, N +, ekkor S A. Az ( )-edik tagra felírható az alábbi összefüggés: ( ) S = s s. Ezt felhaszálva a következ höz jutuk: mivel lim S = ( ) S + s = S + s, s = S S 0, = és lim S = A Tétel. Ha a a sor szummábilis, akkor a 0. Bizoyítás: A részletösszegek átlaga felírható az alábbi formába: s s = a + ( ) a a, N +. A feti egyel ségb l következik, hogy a = s s a + ( ) a a. A második tagba elemi átalakításokat végezve a következ t kapjuk: a = s [ s ( ) a a + a a ]. Az el z tétel miatt a a = s 0, valamit az el z tétel bizoyításáak eleje alapjá Tudjuk, hogy, továbbá s +...+s A. Ebb l következik, hogy a 0. ( ) a a A. A, hisze a szummábilis, és a szummája 37

38 7..6. Példa. Mi modható a ( ) + végtele sorról szummábilitás szempotjából? A feti végtele sor részletösszegei:, ha páratla, s = 0, ha páros. Ekkor a részletösszegek átlaga: s s = k, ha = k, k k+, ha = k +. k+ Mivel eseté k :=, így k k s s lim Tehát a végtele sor szummábilis, és a szummája. és k+ k+, ezért = Példa. Szummábilis-e a ( ) i+ i végtele sor? i= El ször ézzük a páros, majd a páratla idex részletösszeget: s k = ( ) + (3 4) ((k ) k) = k, }{{}}{{}}{{} s k+ = ( ) + (3 4) ((k ) k) +(k + ) = k +. }{{}}{{}}{{} Tekitsük a ( ) i+ i végtele sor részletösszegeiek átlagát. Ha az idex páros, akkor i= Ha az idex páratla, akkor {}}{{}}{{}}{ s + s + s 3 + s s k + s k k {}}{{}}{{}}{ s + s + s 3 + s s k + s k +s k+ k + = 0. = s k+ k + = k + k +. Tehát a következ t kapjuk: s s = k+, ha = k +, k+ 0, ha = k. 38

39 A páratla idex részsorozat határértéke, a páros idex részsorozat 0-hoz tart, ezért a ( ) i+ i végtele sor em szummábilis. i= Itt a sem teljesül. = ( )+ em tart a ullába, a szummábilitás tételbeli szükséges feltétel 7.. Abel-szummáció 7... Deíció. A a végtele sorra azt modjuk, hogy Abel-szummábilis, melyek =0 Abel-szummája A R, ha a továbbá feáll, hogy =0 a x hatváysor koverges a (, ) itervallumo, lim x 0 a x = A. = Tétel. Ha egy végtele sor szummábilis és a szummája A, akkor a sor Abelszummábilis és az Abel-szummája is A. Bizoyítás: Els két azt kell belátuk, hogy a a x hatváysor koverges a (, ) itervallumo. Ez teljesül, hisze a a végtele sorról tudjuk, hogy szummábilis, s mit azt már igazoltuk, ekkor a =0 =0 0. A határérték deícióját ε = eseté alkalmazva azt kapjuk, hogy egy idext l kezdve a, vagyis a <. Így rögzített x (, ) eseté a x majorizálható a x végtele sorral, ezért R := =0 =0 lim sup = alapjá midkét végtele sor abszolút koverges, ha x (, ). akkor Már csak azt kell bizoyítai, hogy ha a =0 lim f(x) = A. x 0 Ehhez vegyük a x és a x végtele sorok Cauchy-szorzatát. =0 =0 ( ) x k a k x k = =0 k=0 a x hatváysor összegfüggvéye f(x), ( ) a k x = =0 k=0 s x, =0 39

40 ahol (s ) a a végtele sor részletösszeg-sorozata, azaz A x =0 és =0 =0 s := a i, N +. i=0 a x hatváysorok abszolút kovergesek a (, ) itervallumo, így Mertes tétele szerit a Cauchy-szorzatuk is abszolút koverges, és az összege a sorok összegeiek szorzata. Tudjuk, hogy mide x (, ) számra x =, s ekkor x =0 s x = f(x), x (, ). x Vegyük a feti sor Cauchy-szorzatát a x végtele sorral, s ekkor az el z mitájára azt kapjuk, hogy A =0 s s =0 =0 (s s )x = f(x) x x = f(x), x (, ). (7.) ( x) a végtele sorról feltettük, hogy szummábilis, és a szummája A, vagyis + A. Jelölje S az alábbi ullsorozatot: =0 S := s s + A. Ekkor a (7.) bal oldalá szerepl sort az S számokkal kifejezve a következ höz jutuk: = A (s s )x = =0 mx m + m= ( + )Sx = =0 =0 ( ) ( + )A + ( + )S x = A ( x) + ( + )Sx, x (, ). (7.) Az egyel ség azért teljesül, mert midkét sor abszoút koverges a (, ) itervallumo, és a összefüggésb l következik, hogy m=0 m x m = m= =0 x m =, x (, ) x ( ) = x, x (, ). ( x) 40

41 A (7.) és a (7.) midkét oldalát ( x) -el szorozva, és a kett t összevetve: f(x) = A + ( x) Végül azt kell belátuk, hogy lim ( x 0 x) ( + )Sx, x (, ). =0 ( + )Sx = 0. =0 Ehhez legye ε R + adott. Mivel (S ) ullsorozat, ezért található olya N ε küszöbidex, hogy bármely N ε idexre teljesül S < ε. Ekkor bármely x (0, ) eseté ( x) ( + )Sx =N ε = ( x) ( + )Sx =N ε ( x) ( + )Sx ( x) ( + ) S x < =N ε =N ε < ( x) ε Mide poliomfüggvéy folytoos, ezért számhoz is található olya δ R +, hogy ( x) =N ε ( + )x < ε ( x) N ε =0 ( + )x = ε. =0 } {{ } ( x) N ε lim ( x 0 x) Sx = 0. Így az ε R+ =0 ( + )Sx < ε, ha δ < x <. Végül azt kapjuk, hogy ( x) ( + )Sx =0 N ε ( x) ( + )Sx =0 + ( x) ( + )Sx =N ε < ε + ε = ε, ha δ < x <. Ezzel a tételt igazoltuk. A továbbiakba olya végtele sort láthatuk, mely Abel-szummábilis, de em szummábilis. 4

42 7..3. Példa. ( ) + = =0 Ha a feti végtele sor szummábilis vola, akkor ( )+ 0 teljesüle, de a ( ) + = ( ) + sorozat em kovergál a ullához. E sorozat páros idexekre a míusz végtelebe tart, míg páratla idexekre a végtelebe. Következésképpe a végtele sor em szummábilis, mert aak szükséges feltétele em teljesül. Azoba a ( ) + végtele sor Abel-szummábilis. Eek igazolása érdekébe jelölje =0 f(x) := ( ) + x a hatváysor összegfüggvéyét. A hatváysor kovergeciasugara R := lim sup =0 ( ) + =, ekkor a Cauchy-Hadamard-tétel miatt a ( ) + x hatváysor abszolút koverges a (, ) itervallumo. Ha x 0, akkor =0 f(x) x = ( ) + x, x (, 0) (0, ). =0 Midkét oldal primitív függvéyét képezve a (0, ) itervallumo a.3.8. tétel szerit Jelölje Osztva x-szel f(x) x dx = ( ) + x + c, x (0, ), c R. g(x) := =0 f(x) x dx c = ( ) + x, x (0, ). =0 g(x) x = ( ) + x, x (0, ), =0 4

43 majd midkét oldal primitív függvéyét véve: g(x) x dx = ( ) + x + c, x (0, ), c R. =0 Az egyel ség jobb oldalá lev hatváysor átalakítható az alábbi módo: ( ) + x = ( x) = ( x) =, x <. + x =0 Ezt felhaszálva azt kapjuk, hogy =0 g(x) x dx = + x + c, x (0, ). Ezt deriváljuk, majd szorozzuk meg x-szel, s ekkor g(x) x =, x (0, ), ( + x) f(x) x dx c = g(x) = x, x (0, ). ( + x) Ha a feti egyel ség bal és jobb oldalát deriváljuk, majd az eredméyt x-szel szorozzuk, akkor ( f(x) x = x ( + x) f(x) = ) = x, x (0, ), ( + x) 3 ( x)x, x (0, ). ( + x) 3 Hasolóa levezetve azt kapjuk, hogy az eredméy érvéyes a (, 0) itervallumo is. Az f(x) := ( ) + x összegfüggvéy értéke a 0 helye f(0) = 0, ebb l következik, hogy ezért =0 f(x) = ( x)x, x (, ), ( + x) 3 lim f(x) = f() = 0. x 0 Tehát a ( ) + végtele sor Abel-szummábilis, és az Abel-szummája 0. =0 43

44 Köszöetyilváítás Ezúto szereték köszöetet modai témavezet mek, Pfeil Tamásak, aki redszerese szakított id t kozultációkra, valamit a szakdolgozatom részletes áttekitésére. Köszöettel tartozom Szilágyi Dáielek az ábrák elkészítésébe yújtott segítségéért. Hálás vagyok családomak és szeretteimek támogatásukért. 44

45 Irodalomjegyzék [] Britaica Hugarica Világeciklopédia, I. Kötet, Magyar Világ Kiadó, Budapest, 994. [] Iteretes forrás, Wikipédia, Abel-díj, [3] Laczkovich Miklós T. Sós Vera: Aalízis I., Nemzeti Taköyvkiadó, Budapest, 006. [4] Laczkovich Miklós T. Sós Vera: Aalízis II., Nemzeti Taköyvkiadó, Budapest, 007. [5] Szilágyi Tivadar: Végtele sorok, hatváysorok, jegyzet az iterete, sztiv/5vs.pdf [6] Bátkai Adrás: Hatváysorok, Függvéysorok, jegyzet az iterete, batka/oktatas/hatvaysorok.pdf [7] Iteretes forrás, Chao-Pig Che: The best bouds i Verescu's iequalities for the Euler's costat, [8] W. J. Kaczor, M. T. Nowak: Problems i Mathematical Aalysis : Real Numbers, Sequeces ad Series, America Mathematical Society, Providece, R.I,

46 Nyilatkozat Név: Vákovics Mária ELTE Természettudomáyi Kar, szak: Matematika Bsc ETR azoosító: VAMPABT.ELTE Szakdolgozat címe: Sorok és hatváysorok vizsgálata Abel yomá A szakdolgozat szerz jekét fegyelmi felel sségem tudatába kijeletem, hogy a dolgozatom öálló mukám eredméye, saját szellemi termékem, abba a hivatkozások és idézések stadard szabályait következetese alkalmaztam, mások által írt részeket a megfelel idézés élkül em haszáltam fel. Budapest, 0. december 9. a hallgató aláírása 46

Taylor-sorok alkalmazása numerikus sorok vizsgálatára

Taylor-sorok alkalmazása numerikus sorok vizsgálatára Eötvös Lorád Tudomáyegyetem Természettudomáyi Kar Alkalmazott Aalízis és Számításmatematikai Taszék Taylor-sorok alkalmazása umerikus sorok vizsgálatára Szakdolgozat Készítette: Témavezet : Walter Petra

Részletesebben

Analízis I. gyakorlat

Analízis I. gyakorlat Aalízis I. gyakorlat Kocsis Albert Tihamér, Németh Adriá 06. március 4. Tartalomjegyzék Előszó.................................................... Sorozatok és sorok.............................................

Részletesebben

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli tételek. Készítette: Szántó Ádám Tavaszi félév

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli tételek. Készítette: Szántó Ádám Tavaszi félév Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis. Írásbeli tételek Készítette: Szátó Ádám 20. Tavaszi félév . Archimedes tétele. Tétel: a > 0 és b R : N : b < a. Bizoyítás: Idirekt úto tegyük fel, hogy

Részletesebben

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is:

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is: . A szupréum elv. = H R felülr l körlátos H fels korlátai között va legkisebb, azaz A és B a A és K B : a K Ekkor ξ-re: mi{k R K fels korlátja H-ak} } a A : a ξ : ξ fels korlát A legkisebb fels korlát

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +... . Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő. 3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.

Részletesebben

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis 1. Írásbeli beugró kérdések Készítette: Szátó Ádám 2011. Tavaszi félév 1. Írja le a Dedekid-axiómát! Legyeek A R, B R. Ekkor ha a A és b B : a b, akkor

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

I. rész. Valós számok

I. rész. Valós számok I. rész Valós számok Feladatok 3 4 Teljes idukció Igazolja a teljes idukcióval a következ állítások helyességét!.. k 2 = k= ( + )(2 + ). 6.2. 4 + 2 7 + + (3 + ) = ( + ) 2..3. a) b) ( + ) = +. k ( ) =

Részletesebben

Analízis feladatgy jtemény II.

Analízis feladatgy jtemény II. Oktatási segédayag a Programtervez matematikus szak Aalízis I. tatárgyához (003004. taév szi félév) Aalízis feladatgy jteméy II. Összeállította Szili László 003 Tartalomjegyzék I. Feladatok 3. Valós sorozatok.......................................

Részletesebben

Kalkulus II., második házi feladat

Kalkulus II., második házi feladat Uger Tamás Istvá FTDYJ Név: Uger Tamás Istvá Neptu: FTDYJ Web: http://maxwellszehu/~ugert Kalkulus II, második házi feladat pot) Koverges? Abszolút koverges? ) l A feladat teljese yilvávalóa arra kívácsi,

Részletesebben

ANALÍZIS I. DEFINÍCIÓK, TÉTELEK

ANALÍZIS I. DEFINÍCIÓK, TÉTELEK ANALÍZIS I. DEFINÍCIÓK, TÉTELEK Szerkesztette: Balogh Tamás 2012. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add el! - Így add

Részletesebben

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok, l.ch FÜGGVÉNYSOROZATOK, FÜGGVÉNYSOROK, HATVÁNYSOROK Itt egy függvéysorozat: f( A függvéysorozatok olyaok, mit a valós számsorozatok, csak éppe a tagjai em valós számok, 5 haem függvéyek, f ( ; f ( ; f

Részletesebben

2. fejezet. Számsorozatok, számsorok

2. fejezet. Számsorozatok, számsorok . fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk

Részletesebben

2. gyakorlat - Hatványsorok és Taylor-sorok

2. gyakorlat - Hatványsorok és Taylor-sorok . gyakorlat - Hatváysorok és Taylor-sorok 9. március 3.. Adjuk meg az itt szereplő sorok kovergeciasugarát és kovergeciaitervallumát! + a = + Azaz a hatváysor kovergeciasugara. Az biztos, hogy a (-,) yílt

Részletesebben

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit!

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit! Sorozatok 20. október 5. Határozza meg a következ sorozatok határértékeit!. Zh feladat:vizsgálja meg mootoitás és korlátosság szerit az alábbi sorozatot! a + ha ; 2; 5 Mootoitás eldötéséhez vizsgáljuk

Részletesebben

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA Szerkesztette: Balogh Tamás 202. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

1. feladatlap megoldása. Analízis II. 1. Vizsgálja meg az alábbi sorokat konvergencia szempontjából! a) n 2 n = 1 1X 1

1. feladatlap megoldása. Analízis II. 1. Vizsgálja meg az alábbi sorokat konvergencia szempontjából! a) n 2 n = 1 1X 1 . feladatlap megoldása Aalízis II.. Vizsgálja meg az alábbi sorokat kovergecia szempotjából! a) X Alkalmazva a gyökkritériumot ("egyszer½usített változatát"): Azaz a sor koverges. b) p a!! p < : X 000

Részletesebben

1 h. 3. Hogyan szól a számtani és a mértani közép közötti összefüggést kifejező tétel?

1 h. 3. Hogyan szól a számtani és a mértani közép közötti összefüggést kifejező tétel? 1. Fogalmazza meg az R -beli háromszög-egyelőtleségeket!,y R (i) +y + y (ii) -y - y 2. Mit mod ki a Beroulli-egyelőtleség? (i) (1+h) 1+ h ( h>-1) ( N*) (ii) (1+h) 1+2 h 1 ( N*) h 2 3. Hogya szól a számtai

Részletesebben

(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1

(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1 . Bevezető. Oldja meg az alábbi egyeleteket: (a cos x + si x + cos x si x = (b π si x = x π 4 x 3π 4 cos x (c cos x + si x = si x (d x 6 3x = 0 (e x + x = x (f x + 5 + x = 8 (g x + + x + + x + x + =..

Részletesebben

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik. Számsorozatok 2015. december 22. 1. Alapfeladatok 1. Feladat: Határozzuk meg az a 2 + 7 5 2 + 4 létezik. sorozat határértékét, ha Megoldás: Mivel egy tört határértéke a kérdés, ezért vizsgáljuk meg el

Részletesebben

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév Kalkulus szigorlati tételsor Számítástechika-techika szak, II. évfolyam,. félév Sorozatok: 1. A valós számoko értelmezett műveletek és reláció tulajdoságai. Számok abszolút értéke, itervallumok. Számhalmazok

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

VÉGTELEN SOROK, HATVÁNYSOROK

VÉGTELEN SOROK, HATVÁNYSOROK VÉGTELEN SOROK, HATVÁNYSOROK írta: SZILÁGYI TIVADAR. VÉGTELEN SOROK.. Alapfogalmak, a végtele mértai sor, további példák Az aalízisek a végtele sorok cím fejezete abból a problémából fejl dött ki, hogy

Részletesebben

Kalkulus gyakorlat - Megoldásvázlatok

Kalkulus gyakorlat - Megoldásvázlatok Kalkulus gyakorlat - Megoldásvázlatok Fizika BSc I/. gyakorlat. Tétel Newto Leibiz. Ha f folytoos az a, b] itervallumo és F primitív függvéye f-ek, akkor b a f F b F a.. Számítsuk ki az alábbi racioális

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag VIK, Műszaki Iformatika ANALÍZIS Numerikus sorok Oktatási segédayag A Villamosméröki és Iformatikai Kar műszaki iformatikus hallgatóiak tartott előadásai alapjá összeállította: Fritz Józsefé dr. Kóya Iloa

Részletesebben

Eötvös Loránd Tudományegyetem Természettudományi Kar

Eötvös Loránd Tudományegyetem Természettudományi Kar Eötvös Lorád Tudomáyegyetem Természettudomáyi Kar Végtele sorokkal kapcsolatos tételek és ellepéldák Szakdolgozat Készítette: Csala Mátyás Matematika Bsc Matematikai elemző szakiráy Témavezető: Gémes Margit

Részletesebben

Debreceni Egyetem. Kalkulus példatár. Gselmann Eszter

Debreceni Egyetem. Kalkulus példatár. Gselmann Eszter Debrecei Egyetem Természettudomáyi és Techológiai Kar Kalkulus példatár Gselma Eszter Debrece, 08 Tartalomjegyzék. Valós számsorozatok Elméleti áttekités........................................................

Részletesebben

Határértékszámítás. 1 Határátmenet Tétel. (Nevezetes sorozatok) (a) n, n 2,... n α (α > 0), 1 n 0, 1. 0 (α > 0), (b) n 2 0,... 1.

Határértékszámítás. 1 Határátmenet Tétel. (Nevezetes sorozatok) (a) n, n 2,... n α (α > 0), 1 n 0, 1. 0 (α > 0), (b) n 2 0,... 1. Határátmeet Határértékszámítás.. Tétel. (Nevezetes sorozatok) 005..5 Készítette: Dr. Toledo Rodolfo (a)... α (α > 0) (b) (c) 0 0... 0 (α > 0) α q (d) c (c > 0) ha q > = ha q = 0 ha q < diverges korlátos

Részletesebben

Andai Attila: november 13.

Andai Attila: november 13. Adai Attila: Aalízis éháy fejezete bizoyításokkal Óravázlat 006. ovember 13. Ebbe az óravázlatba az órá elhagzott defiíciókat és a bizoyított tételeket gyűjtöttem össze. i Elemi sorok és függvéyek 1 1.

Részletesebben

SOROK Feladatok és megoldások 1. Numerikus sorok

SOROK Feladatok és megoldások 1. Numerikus sorok SOROK Feladatok és megoldások. Numerikus sorok I. Határozza meg az alábbi, mértai sorra visszavezethető sorok esetébe az S -edik részletösszeget és a sor S összegét! )...... k 5 5 5 5 )...... 5 5 5 5 )......

Részletesebben

megoldásvázlatok Kalkulus gyakorlat Fizika BSc I/1, 1. feladatsor 1. Rajzoljuk le a számegyenesen az alábbi halmazokat!

megoldásvázlatok Kalkulus gyakorlat Fizika BSc I/1, 1. feladatsor 1. Rajzoljuk le a számegyenesen az alábbi halmazokat! megoldásvázlatok Fizika BSc I/,. feladatsor. Rajzoljuk le a számegyeese az alábbi halmazokat! a { R < 5}, b { R 4}, c { Z 4}, d { Q < 4 6}, e { N 3 }.. Igazak-e az alábbi állítások? Adjuk meg az állítások

Részletesebben

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Legye N, x k R k =,, és tegyük fel, hogy vagy x k 0 k =,, vagy pedig x k 0 k =,, Ekkor + x k + x k Speciális Beroulli-egyelőtleség Ha N és

Részletesebben

Lajkó Károly Kalkulus I. példatár mobidiák könyvtár

Lajkó Károly Kalkulus I. példatár mobidiák könyvtár Lajkó Károly Kalkulus I. példatár mobidiák köyvtár Lajkó Károly Kalkulus I. példatár mobidiák köyvtár SOROZATSZERKESZTŐ Fazekas Istvá Lajkó Károly Kalkulus I. példatár programozó és programtervező matematikus

Részletesebben

1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1

1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1 A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Ha N és h R, akkor + h + h Mikor va itt egyelőség? Léyeges-e a h feltétel? Számtai-mértai közép Bármely N és,, R, k 0 k =,, választással k

Részletesebben

ANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2

ANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2 ANALÍZIS. I. VIZSGA. jauár. Mérök iformatikus szak α-variás Mukaidő: perc. feladat pot) Adja meg az z 4 i)z i egyelet összes megoldását. i + i) + 4i + 4 i +, vagyis z p i p cos 3 + i si ) 3 vagy z p i

Részletesebben

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk. NUMERIKUS SOROK II. Ebbe a részbe kizárólag a kovergecia vizsgálatával foglalkozuk. SZÜKSÉGES FELTÉTEL Ha pozitív (vagy em egatív) tagú umerikus sor, akkor a kovergecia szükséges feltétele, hogy lim a

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

Végtelen sorok konvergencia kritériumai

Végtelen sorok konvergencia kritériumai Eötvös Lorád Tudomáyegyetem Természettudomáyi Kar Végtele sorok kovergecia kritériumai BSc Szakdolgozat Készítette: Gyebár Tüde Matematika BSc, Matematikai elemző szakiráy Témavezető: Bátkai Adrás Alkalmazott

Részletesebben

Fourier sorok FO 1. Trigonometrikus. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Fourier sorok FO 1. Trigonometrikus. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! Fourier sorok FO Trigoometrikus Fourier sorok FO Trigoometrikus redszer Defiíció: trigoometrikus redszer Az {, cos x, si x, cos x, si x, cos 3x, si 3x, } függvéyekből álló (végtele sok függvéyt tartalmazó)

Részletesebben

A1 Analízis minimumkérdések szóbelire 2014

A1 Analízis minimumkérdések szóbelire 2014 A1 Aalízis miimumkérdések szóbelire 2014 Halmazelmélet és komplex számok 1. Halmaz, metszet, uió, külöbség halmaz: em defiiált alapfogalom o jelölés: A, B halmazok; a A; a em B (em defiiáljuk) o üreshalmaz:

Részletesebben

2.1. A sorozat fogalma, megadása és ábrázolása

2.1. A sorozat fogalma, megadása és ábrázolása 59. Számsorozatok.. A sorozat fogalma, megadása és ábrázolása.. Defiíció. Azokat az f : N R valós függvéyeket, melyek mide természetes számhoz egy a valós számot redelek hozzá, végtele számsorozatokak,

Részletesebben

Integrálszámítás (Gyakorló feladatok)

Integrálszámítás (Gyakorló feladatok) Itegrálszámítás Gyakorló feladatok Programtervez iformatikus szakos hallgatókak az Aalízis. cím tárgyhoz Összeállította Szili László 8. február Tartalomjegyzék I. Feladatok 5. Primitív függvéyek határozatla

Részletesebben

Függvényhatárérték-számítás

Függvényhatárérték-számítás Függvéyhatárérték-számítás I Függvéyek véges helye vett véges határértéke I itervallumo, ha va olya k valós szám, melyre az I itervallumo, ha va olya K valós szám, melyre I itervallumo, ha alulról és felülről

Részletesebben

Feladatok valós számsorozatokkal és sorokkal. 1.Feladatok valós számsorozatokkal

Feladatok valós számsorozatokkal és sorokkal. 1.Feladatok valós számsorozatokkal Simo Iloa: Feladatok valós számsorozatokkal Feladatok valós számsorozatokkal és sorokkal Írta és szerkesztette: Simo Iloa Lektorálta: Dr. Pap Margit.Feladatok valós számsorozatokkal A feladatgyűjteméy

Részletesebben

Meghökkentő és hihetetlen barangolás a matematikai végtelen birodalmában (Végtelen sorokról) július 6.

Meghökkentő és hihetetlen barangolás a matematikai végtelen birodalmában (Végtelen sorokról) július 6. Meghökkető és hihetetle baragolás a matematikai végtele birodalmába (Végtele sorokról) 59. Rátz László vádorgyűlés (spec.mat. szekció) Gödöllő 09. július 6. Dr. Németh József c. egyetemi taár SZTE TTIK

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

A primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be,

A primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be, 6 A primitív üggvéy létezése A primitív üggvéy létezése Kitűzött eladatok. Határozd meg az a és b valós paraméterek értékét úgy hogy az : R ae + b üggvéyek létezze primitív üggvéye! >. Az : [ + [ + olytoos

Részletesebben

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes

Részletesebben

Eötvös Loránd Tudományegyetem Természettudományi Kar. Függvények közelítése

Eötvös Loránd Tudományegyetem Természettudományi Kar. Függvények közelítése Eötvös Lorád Tudomáyegyetem Természettudomáyi Kar Függvéyek közelítése Szakdolgozat Készítette: Bedeek Eszter Matematika BSc Matematikai elemz szakiráy Kozules: Mezei Istvá adjuktus Alkalmazott Aalízis

Részletesebben

6. Számsorozat fogalma és tulajdonságai

6. Számsorozat fogalma és tulajdonságai 6. Számsorozat fogalma és tulajdoságai Taulási cél: A számsorozat fogalmáak és elemi tulajdoságaiak megismerése. A mootoitás, korlátosság vizsgálatáak elsajátítása. Nevezetes sorozatok határértékéek megismerése.

Részletesebben

Végtelen sorok. (szerkesztés alatt) Dr. Toledo Rodolfo március Mértani és teleszkopikus sorok 8

Végtelen sorok. (szerkesztés alatt) Dr. Toledo Rodolfo március Mértani és teleszkopikus sorok 8 Végtele sorok (szerkesztés alatt) Dr. Toledo Rodolfo 207. március 25. Tartalomjegyzék. Bevezetés 2 2. A sor fogalma 3 3. Mértai és teleszkopikus sorok 8 4. Abszolút és feltételese koverges sorok 4 5. Sorok

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

I. FEJEZET: ANALÍZIS... 3

I. FEJEZET: ANALÍZIS... 3 Tartalomjegyzék I. FEJEZET: ANALÍZIS... 3.. NUMERIKUS SOROZATOK... 3... Numerikus sorozatok: határérték, mootoitás, korlátosság... 3..2. A Cauchy-féle általáos kovergecia kritérium... 5..3. Sorozatok közgazdaságtai

Részletesebben

1. gyakorlat - Végtelen sorok

1. gyakorlat - Végtelen sorok . gyakorlat - Végtele sorok 06. március.. Határozza meg az alábbi végtele sorok összegét! a) e e e 3 = e e = e e e e = e e = e e b) c) 4 = 4 + 5 6 + = 6 ) 4 + 6 6 + ) = lim N ) 5 = 6 6 + 5 6 = 7 6 N )

Részletesebben

Általános taggal megadott sorozatok összegzési képletei

Általános taggal megadott sorozatok összegzési képletei Általáos taggal megadott sorozatok összegzési képletei Kéri Gerzso Ferec. Bevezetés A sorozatok éháy érdekes esetét tárgyaló el adást az alábbi botásba építem fel:. képletek,. alkalmazások, 3. bizoyítás

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

BSc Analízis I. előadásjegyzet

BSc Analízis I. előadásjegyzet BSc Aalízis I. előadásjegyzet 2009/200. őszi félév Sikolya Eszter ELTE TTK Alkalmazott Aalízis és Számításmatematikai Taszék 200. április 30. ii Tartalomjegyzék Előszó v. Bevezetés.. Logikai állítások,

Részletesebben

Határértékszámítás. (szerkesztés alatt) Dr. Toledo Rodolfo április A határátmenet és a műveletek 12

Határértékszámítás. (szerkesztés alatt) Dr. Toledo Rodolfo április A határátmenet és a műveletek 12 Határértékszámítás szerkesztés alatt) Dr. Toledo Rodolfo 207. április 23. Tartalomjegyzék. Bevezetés 2 2. Segédállítások 3 3. Nevezetes sorozatok 7 4. A határátmeet és a műveletek 2 5. Az e szám fogalma

Részletesebben

FELADATOK A KALKULUS C. TÁRGYHOZ

FELADATOK A KALKULUS C. TÁRGYHOZ FELADATOK A KALKULUS C. TÁRGYHOZ. HALMAZOK RELÁCIÓK FÜGGVÉNYEK. Bizoyítsuk be a halmaz-műveletek alapazoosságait! 2. Legye adott az X halmaz legye A B C X. Ha A B := (A B) (B A) akkor bizoyítsuk be hogy

Részletesebben

Feladatok megoldása. Diszkrét matematika I. Beadandó feladatok. Bujtás Ferenc (CZU7KZ) December 14, feladat: (A B A A \ C = B)

Feladatok megoldása. Diszkrét matematika I. Beadandó feladatok. Bujtás Ferenc (CZU7KZ) December 14, feladat: (A B A A \ C = B) Diszkrét matematika I. Beadadó feladatok Bujtás Ferec (CZU7KZ) December 14 014 Feladatok megoldása 1..1-6. feladat: (A B A A \ C = B) A B A = A \ C = B igazolása: A B A = B \A = Ø = B = A B (Mivel a B-ek

Részletesebben

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük:

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük: 1. A KOMPLEX SZÁMTEST A természetes, az egész, a raioális és a valós számok ismeretét feltételezzük: N = f1 ::: :::g Z = f::: 3 0 1 3 :::g p Q = j p q Z és q 6= 0 : q A valós szám értelmezése végtele tizedestörtkét

Részletesebben

Draft version. Use at your own risk!

Draft version. Use at your own risk! BME Matematika Itézet Aalízis Taszék Adai Attila Bevezető aalízispéldák példatár éháy BSc-s órához 8 Tartalomjegyzék. Halmazalgebra. Teljes idukció 3. Relációk, függvéyek 3 4. Számosságok 6 5. A valós

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei

Részletesebben

Függvények határértéke 69. III. Függvények határértéke

Függvények határértéke 69. III. Függvények határértéke Függvéyek határértéke 69 A határérték értelmezése III Függvéyek határértéke Ebbe a fejezetbe taulmáyozi fogjuk a függvéy határértékét egy potba A feladat így fogalmazható meg: Ha adott az f : D valós változójú

Részletesebben

A G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk:

A G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk: Kocsis Júlia Egyelőtleségek 1. Feladat: Bizoytsuk be, hogy tetszőleges a, b, c pozitv valósakra a a b b c c (abc) a+b+c. Megoldás: Tekitsük a, b és c számok saját magukkal súlyozott harmoikus és mértai

Részletesebben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,

Részletesebben

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:

Részletesebben

Bevezető analízis II. példatár

Bevezető analízis II. példatár Bevezető aalízis II. példatár Gémes Margit, Szetmiklóssy Zoltá Eötvös Lorád Tudomáyegyetem Természettudomáyi Kar Matematikai Itézet 06. ovember 3. Tartalomjegyzék. Bizoyítási módszerek, valós számok 3..

Részletesebben

Prímszámok a Fibonacci sorozatban

Prímszámok a Fibonacci sorozatban www.titokta.hu D é e s T a m á s matematikus-kriptográfus e-mail: tdeest@freemail.hu Prímszámok a Fiboacci sorozatba A továbbiakba Fiboacci sorozato az alapsorozatot (u,,,3,5,...), Fiboacci számo az alapsorozat

Részletesebben

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0 Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások

Részletesebben

Differenciaegyenletek aszimptotikus viselkedésének

Differenciaegyenletek aszimptotikus viselkedésének Differeciaegyeletek aszimptotikus viselkedéséek vizsgálata Mathematica segítségével Botos Zsófia Újvidéki Egyetem TTK Újvidék Szerbia E-mail: botoszsofi@yahoo.com 1. Bevezető Tekitsük az késleltetett diszkrét

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

Divergens sorok. Szakdolgozat

Divergens sorok. Szakdolgozat Diverges soro Szadolgozat Eötvös Lorád Tudomáyegyetem Természettudomáyi Kar Készítette: Szabó Szilárd Matematia Bsc., taári szairáy Témavezető: Gémes Margit Műszai gazdasági taár Aalízis taszé Budapest,

Részletesebben

Diszkrét matematika II., 3. előadás. Komplex számok

Diszkrét matematika II., 3. előadás. Komplex számok 1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,

Részletesebben

Sorozatok. [a sorozat szigorúan monoton nő] (b) a n = n+3. [a sorozat szigorúan monoton csökken] (c) B a n = n+7

Sorozatok. [a sorozat szigorúan monoton nő] (b) a n = n+3. [a sorozat szigorúan monoton csökken] (c) B a n = n+7 Bodó Beáta 1 Sorozatok 1. Írja fel az a = 1 +4 sorozat 10. és ( + 1)-edik elemét! [a 10 = 4 14, a +1 = 4 +. Írja fel az a = +4 1 sorozat ( + 1)-edik és ( )-edik tagját! [a +1 = +7 +4, a = 11. Vizsgálja

Részletesebben

Statisztika 1. zárthelyi dolgozat március 21.

Statisztika 1. zárthelyi dolgozat március 21. Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy

Részletesebben

Egy lehetséges tételsor megoldásokkal

Egy lehetséges tételsor megoldásokkal Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe

Részletesebben

10.M ALGEBRA < <

10.M ALGEBRA < < 0.M ALGEBRA GYÖKÖS KIFEJEZÉSEK. Mutassuk meg, hogy < + +... + < + + 008 009 + 009 008 5. Mutassuk meg, hogy va olya pozitív egész szám, amelyre 99 < + + +... + < 995. Igazoljuk, hogy bármely pozitív egész

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

Analízis feladatokban I.

Analízis feladatokban I. Szili László Aalízis feladatokba I. Egyel tleségek, függvéyek, számsorozatok, számsorok A köyvet a szerz ajálotta fel a mideki számára igyees letölthet ség feltételével. Írta: Szili László egyetemi doces

Részletesebben

Metrikus terek. továbbra is.

Metrikus terek. továbbra is. Metrius tere továbbra is. Defiíció: Legye X egy halmaz, d : X X R egy függvéy. Azt modju, hogy d metria (távolság), ha.. 3. 4. d d d d x, x 0, x, y 0 x y, x, y dy, x, x, z dx, y dy, z. Az X halmazt a d

Részletesebben

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak

Részletesebben

1. Gyökvonás komplex számból

1. Gyökvonás komplex számból 1. Gyökvoás komplex számból Gyökvoás komplex számból. Ismétlés: Ha r, s > 0 valós, akkor rcos α + i siα) = scos β + i siβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete scos β+i

Részletesebben

f(n) n x g(n), n x π 2 6 n, σ(n) n x

f(n) n x g(n), n x π 2 6 n, σ(n) n x Számelméleti függvéyek extremális agyságredje Dr. Tóth László 2006 Bevezetés Ha számelméleti függvéyek, l. multilikatív vagy additív függvéyek agyságredjét vizsgáljuk, akkor először általába az adott függvéy

Részletesebben

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum) Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa

Részletesebben

Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz. 2 dx = 1, cos nx dx = 2 π. sin nx dx = 2 π

Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz. 2 dx = 1, cos nx dx = 2 π. sin nx dx = 2 π Matematika Ac gyakorlat Vegyzméröki, Bioméröki, Köryezetméröki szakok, 7/8 ősz 4. feladatsor: Fourier-sorok megoldás. Legye fx = ha x, ], fx = ha x, π]. Írjuk fel f Fourier-sorát. Mely potokba állítja

Részletesebben

Matematika B4 I. gyakorlat

Matematika B4 I. gyakorlat Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a

Részletesebben

Sorozatok A.: Sorozatok általában

Sorozatok A.: Sorozatok általában 200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,

Részletesebben

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Megoldott feladatok Ijektivitás és egyéb tulajdoságok 59 ) INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Határozd meg azt az f:r R függvéyt, amelyre f ( f ( ) x R és a g:r R g ( = x f ( függvéy

Részletesebben

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011 1 Molár-Sáska Gáboré: Hajós György Verseyre javasolt feladatok SZIE.YMÉTK 011 1. Írja fel a számokat 1-tıl 011-ig egymás utá! Határozza meg az így kapott agy szám 0-cal való osztási maradékát!. Az { }

Részletesebben

3.4. gyakorlat. Matematika B1X február 1819.

3.4. gyakorlat. Matematika B1X február 1819. 3.4. gyakorlat Matematika B1X 2003. február 1819. 1. A harmadik el adás (II. 17.) 1.1. Számosság Egyel számosságú halmazok. Véges, megszámlálhatóa végtele és kotiuum számosságú halmazok. Hatváyhalmaz számossága

Részletesebben

Algebrai egyenlőtlenségek versenyeken Dr. Kiss Géza, Budapest

Algebrai egyenlőtlenségek versenyeken Dr. Kiss Géza, Budapest Magas szitű matematikai tehetséggodozás Algebrai egyelőtleségek verseyeke Dr Kiss Géza, Budapest Néháy helyettesítési módszer és a Cauchy-Schwarz-egyelőtleség speciális esetéek alkalmazása bizoyítási feladatokba

Részletesebben