f(n) n x g(n), n x π 2 6 n, σ(n) n x
|
|
- Etelka Pintérné
- 7 évvel ezelőtt
- Látták:
Átírás
1 Számelméleti függvéyek extremális agyságredje Dr. Tóth László 2006 Bevezetés Ha számelméleti függvéyek, l. multilikatív vagy additív függvéyek agyságredjét vizsgáljuk, akkor először általába az adott függvéy átlagos agyságredjét ézzük. Azt modjuk, hogy f átlagos agyságredje g, ha g), x f) x azaz f összegzési függvéye aszimtotikusa egyelő g összegzési függvéyével, ahol g elemi függvéyekkel kifejezhető és g-ek ismerjük az aszimtotikus viselkedését. Tekitsük l. az f = σ függvéyt, ahol σ) = d d az osztóiak összege. Akkor x σ) x π 2 6, tehát σ) átlagos agyságredje π2 6, azaz,,átlagosa osztóiak száma σ), 644. Hasolóa, ha f = ϕ az Euler-függvéy: ϕ) = #{k : k, k, ) = }, akkor ebbe az értelembe,,átlagosa ϕ) 6 0, 607. π 2 Az átlagos agyságred azoba csak eléggé otatla iformációt szolgáltat a függvéy viselkedésére voatkozóa, em mutatja ki azokat az értékeket, amelyek em tiikusak és amelyek ritká fordulak elő. A τ osztófüggvéyek éldául, ahol τ) = d az osztóiak száma, átlagos agyságredje log, ugyaakkor,,majdem mide -re τ) log ) log 2 log ) 0,693, ami a log τ) ormális agyságredjére voatkozó eredméyből következik. A log átlagos agyságredet az az aráyaiba kis számú eredméyezi, amelyekre τ) sokkal agyobb mit log. Azt modjuk, hogy f ormális agyságredje g, ha limstat f) g) = statisztikus határérték), azaz mide ε > 0 eseté f) g) < ε g) egy sűrűségű halmazo. Ha f em korlátos multilikatív függvéy és em az hatváya, akkor f-ek em létezik övekvő ormális agyságredje, lásd B. J. Birch [B], 967. A σ és ϕ függvéyek Nézzük a σ és ϕ függvéyet. Ezekre σ) +, φ) mide 2-re és az egyelőségek akkor és csak akkor igazak, ha rím. Kérdés, hogy σ) és φ) az -től függőe milye agy, illetve milye kicsi értékeket vehet fel? Ugyaakkor létezik additív függvéyek egy széles osztálya, amelyekek va övekvő ormális agyságredje.
2 . Tétel. Létezek olya C és C 2 ozitív álladók, hogy mide 2-re ) σ) < C log, 2) ϕ) > C 2 log. Választható C = 3 és C 2 = /3. Bizoyítás. Mide 2 eseté ϕ) σ) = d d = d d = d = r ) ) k k= d k= k < + log ) < 3 log, r k + ) = r + 2r log 2 2 log > 3 log, ahol k a k-adik rím, r = ω) és haszáltuk, hogy 2 r, log r log 2. k= A C és C 2 kostasok javíthatók ha 2, illetve ha 0. De eél léyegesebb kérdés, hogy javíthatók-e az )-be és 2)-be szerelő log és / log függvéyek. Igazoljuk, hogy: 2. Tétel. Létezek olya C 3 és C 4 ozitív álladók, hogy mide 3-ra 3) σ) < C 3 log log, 4) ϕ) > C 4 log log. A 3) és 4) egyelőtleségeket egy erősebb eredméyből vezetjük le, amelyből az is következik, hogy a jobb oldalo szerelő függvéyek tovább em javíthatók. Maximális és miimális agyságred Bevezetjük a következő fogalmakat: Defiíció. Legye f egy számelméleti függvéy, g edig egy övekvő függvéy, amelyre g) > 0, ha 0. Azt modjuk, hogy f egy) maximális ill. miimális) agyságredje g, ha lim su f) g) = ill. lim if ) f) g) =. és Itt az első összefüggés éldául azt jeleti, hogy i) mide ε > 0 eseté létezik Nε) úgy, hogy mide Nε)-ra f) < + ε)g) ii) mide ε > 0 eseté f) > ε)g) végtele sok -re. 2
3 A g) függvéy em egyértelműe meghatározott, szereelhet bee egy -hez tartó téyező. A σ) függvéy miimális agyságredje. Ez azoali, mert σ), és mide rímre σ) = + ). A ϕ) függvéy maximális agyságredje. Ez is azoali, mert ϕ), és mide rímre ϕ) = ). 3. Tétel. T. H. Gröwall [G], 93) A σ) függvéy maximális agyságredje e γ log log, ahol γ az Euler-álladó. 4. Tétel. E. Ladau [L], 903) A ϕ) függvéy miimális agyságredje e γ / log log, ahol γ az Euler-álladó. A 3. és 4. Tételek következek az alábbi eredméyből, amely a [TW] cikkbe szerelő eredméyek seciális esete: 5. Tétel. Legye f 0 egy multilikatív számelméleti függvéy és legye ρ) = su f a ), ahol rím, R = ) ρ). a 0 Ha ) mide rímre ρ) ) és 2) mide rímre létezik olya e kitevő, hogy log e = olog ) és f e ) +, akkor 5) lim su f) log log = eγ R, azaz f) maximális agyságredje e γ R log log., Bizoyítás. A feltételek miatt + ρ) ) ahoa ) 2 ρ), ezért az R szorzat abszolút) koverges. A bizoyításba em haszáljuk a rímszámtételt. Elegedő a x /) e γ log x, x, Mertes-kélet és θx) = x log Csebisev-függvéyre voatkozó θx) x összefüggés alkalmazása, amelyek jóval egyszerűbbe igazolhatók. Az = a számot írjuk fel = 2 alakba, ahol =, log a és 2 -be kerül a többi rímhatváy). Akkor f ) és f 2 ) így becsülhető: ahoa f ) =, log f a ) haszálva a feti Mertes-kéletet. log ρ) = log f ) + o) ) e γ R log log,, 3 ) ) ρ), log
4 Megtehető, hogy az = 2 alakba egy h) övekvő függvéyt veszük log helyett, majd belátjuk, hogy h) = log a megfelelő választás. Továbbá, f 2 ) =,>log f a ),>log ρ) =,>log ) ρ), >log ) + o) ) ) ω2 ) ) = + o) e O/ log log ) = + o),, log ahol ω 2 ) az 2 külöböző rímosztóiak a száma és 2 > log ) ω 2) alajá ω 2 ) log / log log. Tehát 6) f) + o) ) e γ R log log,. Most ézzük a fordított egyelőtleséget, otosabba azt, hogy a lim su elérhető. Azt fogjuk beláti, hogy a lim su legalább ε)-szor ayi mit a tételbe szerelő. Adott ε > 0 eseté legye N olya agy, hogy 2 ) ε, >N és N eseté válasszuk meg a k kitevőket úgy, hogy f k ) ε) ρ) N Ha N és k fixek, legye x és tekitsük: x) = N k N N< x e. Akkor f x) ) = f k ) N = ε) N ε) N< x ) ρ) f e ) ε) ρ) N< x N 2 ) x N< x ) ) ρ) ) 2 ) N< x + ) = haszálva ismét a Mertes-kéletet. Legye Ex) = max x e. Kajuk, hogy log x) N k log + ε) 2 R + o))e γ log x, N< x e log O)+Ex) x log = O)+Ex)θx) xex), 4
5 haszálva, hogy θx) x. A log e = olog ) feltételből log Ex) = olog x) következik és kajuk, hogy log log x) O) + log Ex) + log x + 2ε) log x, ha x elég agy. Következik, hogy 7) fx)) ε)3 + 2ε Reγ log log x). A 6) és 7) összefüggések alajá a Tétel bizoyított. Megjegyzés. A 3. és 4. Tételek a következő alakba is kimodhatók: max σ) x eγ x log log x, mi ϕ) x e γ x/ log log x. Alkalmazások. Ha f) = σ)/, akkor teljesülek az 5. Tétel feltételei, mert σ a ) a = a < ) = ρ) mide rímre és a -re, ie R =, továbbá vehető e =, és kajuk a 3) kéletet. 2. Legye f) = /ϕ), akkor a ϕ a ) = ) = ρ) mide rímre és a -re, ie R =, vehető itt is e =, és kajuk, hogy lim su ϕ) log log = eγ, ami egyeértékű a 4) kélettel. 3. Más alkalmazások is adhatók, l. legye f) = σ e) )/, ahol σ e) ) az exoeciális osztóiak az összege, amely multilikatív függvéy és σ e) a ) = d a d. Most ρ) = +, e = 2 és kajuk, hogy 8) lim su További megjegyzések A fetekhez kacsolódó eredméyek: 6. Tétel. G. Robi [R], 984) Ha a Riema-sejtés igaz, akkor σ e) ) log log = 6 π 2 eγ. 9) σ)/ < e γ log log, 504. Ha a Riema-sejtés hamis, akkor 0) σ)/ > e γ log log, végtele sok -re. 5
6 A σ)ϕ) 2 egyelőtleség alajá σ)/ /ϕ),. Az /ϕ) értékeire voatkozik a következő 7. Tétel. J. L. Nicolas [N], 983) Legye k a k-adik rím és k = 2 k. Ha a Riema-sejtés igaz, akkor ) k /ϕ k ) > e γ log log k, k. Ha a Riema-sejtés hamis, akkor ) végtele sok k-ra igaz és végtele sok k-ra hamis. A τ függvéy miimális agyságredje g) = 2, mert τ) 2 mide 2-re és τ) = 2 mide rímre. A τ függvéy maximális agyságredjére voatkozik a következő: 8. Tétel. S. Wigert [W], 907) A log τ) függvéy maximális agyságredje log 2 log log log, azaz 2) lim su log τ) log log log = log 2. Ez azt jeleti, hogy ha Nε), akkor τ) < ex + ε) log 2 log / log log ) = 2 +ε) log / log log +ε) log 2/ log log = és végtele sok -re τ) > ex ε) log 2 log / log log ) = 2 ε) log / log log = ε) log 2/ log log. A 8. Tételek általáosítása a következő: 9. Tétel. [SS], 975) Legye f egy ozitív függvéy, amelyre f) = O β ), ahol β > 0 rögzített. Legye F olya multilikatív függvéy, amelyre F a ) = fa) mide a a ) rímhatváyra. Akkor 3) lim su log F ) log log log = su a log fa). a Hivatkozások [B] B. J. Birch, Multilicative fuctios with o-decreasig ormal order. J. Lodo Math. Soc., ), 495. [FS] J. Fabrykowski, M. V. Subbarao, The maximal order ad the average order of the multilicative fuctio σ e) ), Théorie des ombres Québec, PQ, 987), , de Gruyter Berli New York, 989). [G] T. H. Gröwall, Some asymtotic exressios i the theory of umbers, Tras. Amer. Math. Soc., 4 93), [L] E. Ladau, Hadbuch der Lehre vo der Verteilug der Primzahle, Teuber, Leizig Berli, 909. [N] J. -L. Nicolas, Petites valeurs de la foctio d Euler, J. Number Theory 7 983), o. 3,
7 [R] G. Robi, Grades valeurs de la foctio somme des diviseurs et hyothèse de Riema, J. Math. Pures Al. 9) ), o. 2, [SS] D. Suryaarayaa, R. Sita Rama Chadra Rao, O the true maximum order of a class of arithmetical fuctios, Math. J. Okayama Uiv., 7 975), [TW] L. Tóth, E. Wirsig, The maximal order of a class of multilicative arithmetical fuctios, Aales Uiv. Sci. Budaest., Sect. Com., ), [W] S. Wigert Sur l ordre de gradeur du ombre des diviseurs d u etier, Arkiv. för Math ), -9. 7
1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3
Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)
Részletesebben3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.
3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.
RészletesebbenNevezetes sorozat-határértékek
Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív
RészletesebbenEötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli tételek. Készítette: Szántó Ádám Tavaszi félév
Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis. Írásbeli tételek Készítette: Szátó Ádám 20. Tavaszi félév . Archimedes tétele. Tétel: a > 0 és b R : N : b < a. Bizoyítás: Idirekt úto tegyük fel, hogy
RészletesebbenEötvös Loránd Tudományegyetem Informatikai Kar. Additív számelméleti függvények eloszlása
Eötvös Loránd Tudományegyetem Informatikai Kar Additív számelméleti függvények eloszlása Doktori értekezés tézisei Germán László Témavezető Prof. Dr. Kátai Imre akadémikus Informatika Doktori Iskola vezető:
RészletesebbenANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA
ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA Szerkesztette: Balogh Tamás 202. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add
Részletesebben(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):
A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak
RészletesebbenA tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat
A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Legye N, x k R k =,, és tegyük fel, hogy vagy x k 0 k =,, vagy pedig x k 0 k =,, Ekkor + x k + x k Speciális Beroulli-egyelőtleség Ha N és
Részletesebben2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...
. Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk
Részletesebben1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1
A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Ha N és h R, akkor + h + h Mikor va itt egyelőség? Léyeges-e a h feltétel? Számtai-mértai közép Bármely N és,, R, k 0 k =,, választással k
RészletesebbenMatematika I. 9. előadás
Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája
RészletesebbenSorozatok, határérték fogalma. Függvények határértéke, folytonossága
Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt
RészletesebbenInnen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha
. Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,
RészletesebbenKalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8
Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,
Részletesebbenmin{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is:
. A szupréum elv. = H R felülr l körlátos H fels korlátai között va legkisebb, azaz A és B a A és K B : a K Ekkor ξ-re: mi{k R K fels korlátja H-ak} } a A : a ξ : ξ fels korlát A legkisebb fels korlát
RészletesebbenVII. A határozatlan esetek kiküszöbölése
A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely
RészletesebbenAndai Attila: november 13.
Adai Attila: Aalízis éháy fejezete bizoyításokkal Óravázlat 006. ovember 13. Ebbe az óravázlatba az órá elhagzott defiíciókat és a bizoyított tételeket gyűjtöttem össze. i Elemi sorok és függvéyek 1 1.
RészletesebbenRudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása
Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai
RészletesebbenEötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév
Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis 1. Írásbeli beugró kérdések Készítette: Szátó Ádám 2011. Tavaszi félév 1. Írja le a Dedekid-axiómát! Legyeek A R, B R. Ekkor ha a A és b B : a b, akkor
RészletesebbenSZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo
SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő
RészletesebbenGyakorló feladatok II.
Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,
RészletesebbenSorozatok október 15. Határozza meg a következ sorozatok határértékeit!
Sorozatok 20. október 5. Határozza meg a következ sorozatok határértékeit!. Zh feladat:vizsgálja meg mootoitás és korlátosság szerit az alábbi sorozatot! a + ha ; 2; 5 Mootoitás eldötéséhez vizsgáljuk
RészletesebbenXXVI. Erdélyi Magyar Matematikaverseny Zilah, február II.forduló -10. osztály
Miisterul Educaţiei Națioale și Cercetării Știițifice Subiecte petru Etapa aţioală a Cocursului de Matematică al Liceelor Maghiare di Româia XXVI. Erdélyi Magyar Matematikaversey Zilah, 016. február 11
RészletesebbenLajkó Károly Kalkulus I. példatár mobidiák könyvtár
Lajkó Károly Kalkulus I. példatár mobidiák köyvtár Lajkó Károly Kalkulus I. példatár mobidiák köyvtár SOROZATSZERKESZTŐ Fazekas Istvá Lajkó Károly Kalkulus I. példatár programozó és programtervező matematikus
RészletesebbenI. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.
I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.
Részletesebben2. fejezet. Számsorozatok, számsorok
. fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk
RészletesebbenDiszkrét matematika II., 3. előadás. Komplex számok
1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,
RészletesebbenNUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.
NUMERIKUS SOROK II. Ebbe a részbe kizárólag a kovergecia vizsgálatával foglalkozuk. SZÜKSÉGES FELTÉTEL Ha pozitív (vagy em egatív) tagú umerikus sor, akkor a kovergecia szükséges feltétele, hogy lim a
RészletesebbenNumerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag
VIK, Műszaki Iformatika ANALÍZIS Numerikus sorok Oktatási segédayag A Villamosméröki és Iformatikai Kar műszaki iformatikus hallgatóiak tartott előadásai alapjá összeállította: Fritz Józsefé dr. Kóya Iloa
Részletesebbenf (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben
Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,
Részletesebben10.M ALGEBRA < <
0.M ALGEBRA GYÖKÖS KIFEJEZÉSEK. Mutassuk meg, hogy < + +... + < + + 008 009 + 009 008 5. Mutassuk meg, hogy va olya pozitív egész szám, amelyre 99 < + + +... + < 995. Igazoljuk, hogy bármely pozitív egész
Részletesebben(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1
. Bevezető. Oldja meg az alábbi egyeleteket: (a cos x + si x + cos x si x = (b π si x = x π 4 x 3π 4 cos x (c cos x + si x = si x (d x 6 3x = 0 (e x + x = x (f x + 5 + x = 8 (g x + + x + + x + x + =..
RészletesebbenA G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk:
Kocsis Júlia Egyelőtleségek 1. Feladat: Bizoytsuk be, hogy tetszőleges a, b, c pozitv valósakra a a b b c c (abc) a+b+c. Megoldás: Tekitsük a, b és c számok saját magukkal súlyozott harmoikus és mértai
RészletesebbenPrímszámok a Fibonacci sorozatban
www.titokta.hu D é e s T a m á s matematikus-kriptográfus e-mail: tdeest@freemail.hu Prímszámok a Fiboacci sorozatba A továbbiakba Fiboacci sorozato az alapsorozatot (u,,,3,5,...), Fiboacci számo az alapsorozat
RészletesebbenANALÍZIS I. DEFINÍCIÓK, TÉTELEK
ANALÍZIS I. DEFINÍCIÓK, TÉTELEK Szerkesztette: Balogh Tamás 2012. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add el! - Így add
Részletesebben4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!!
4. Test feletti egyhatározatlaú poliomok Klasszikus algebra előadás Waldhauser Tamás 2013 április 11. Eddig a poliomokkal mit formális kifejezésekkel számoltuk, em éltük azzal a lehetőséggel, hogy x helyébe
RészletesebbenFüggvényhatárérték-számítás
Függvéyhatárérték-számítás I Függvéyek véges helye vett véges határértéke I itervallumo, ha va olya k valós szám, melyre az I itervallumo, ha va olya K valós szám, melyre I itervallumo, ha alulról és felülről
RészletesebbenElsőbbségi (prioritásos) sor
Elsőbbségi (prioritásos) sor Közapi fogalma, megjeleése: pl. sürgősségi osztályo a páciesek em a beérkezési időek megfelelőe, haem a sürgősség mértéke szerit kerülek ellátásra. Az operációs redszerekbe
RészletesebbenDifferenciaegyenletek aszimptotikus viselkedésének
Differeciaegyeletek aszimptotikus viselkedéséek vizsgálata Mathematica segítségével Botos Zsófia Újvidéki Egyetem TTK Újvidék Szerbia E-mail: botoszsofi@yahoo.com 1. Bevezető Tekitsük az késleltetett diszkrét
RészletesebbenA primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be,
6 A primitív üggvéy létezése A primitív üggvéy létezése Kitűzött eladatok. Határozd meg az a és b valós paraméterek értékét úgy hogy az : R ae + b üggvéyek létezze primitív üggvéye! >. Az : [ + [ + olytoos
RészletesebbenV. Deriválható függvények
Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája
RészletesebbenStatisztika 1. zárthelyi dolgozat március 21.
Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy
Részletesebben1. Gyökvonás komplex számból
1. Gyökvoás komplex számból Gyökvoás komplex számból. Ismétlés: Ha r, s > 0 valós, akkor rcos α + i siα) = scos β + i siβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete scos β+i
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szit 1011 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fotos tudivalók
RészletesebbenI. rész. Valós számok
I. rész Valós számok Feladatok 3 4 Teljes idukció Igazolja a teljes idukcióval a következ állítások helyességét!.. k 2 = k= ( + )(2 + ). 6.2. 4 + 2 7 + + (3 + ) = ( + ) 2..3. a) b) ( + ) = +. k ( ) =
RészletesebbenBevezetés az algebrába komplex számok
Bevezetés az algebrába komplex számok Wettl Ferec Algebra Taszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2015. december 6.
RészletesebbenHatárértékszámítás. (szerkesztés alatt) Dr. Toledo Rodolfo április A határátmenet és a műveletek 12
Határértékszámítás szerkesztés alatt) Dr. Toledo Rodolfo 207. április 23. Tartalomjegyzék. Bevezetés 2 2. Segédállítások 3 3. Nevezetes sorozatok 7 4. A határátmeet és a műveletek 2 5. Az e szám fogalma
RészletesebbenAlgebrai egyenlőtlenségek versenyeken Dr. Kiss Géza, Budapest
Magas szitű matematikai tehetséggodozás Algebrai egyelőtleségek verseyeke Dr Kiss Géza, Budapest Néháy helyettesítési módszer és a Cauchy-Schwarz-egyelőtleség speciális esetéek alkalmazása bizoyítási feladatokba
RészletesebbenANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2
ANALÍZIS. I. VIZSGA. jauár. Mérök iformatikus szak α-variás Mukaidő: perc. feladat pot) Adja meg az z 4 i)z i egyelet összes megoldását. i + i) + 4i + 4 i +, vagyis z p i p cos 3 + i si ) 3 vagy z p i
RészletesebbenFourier sorok FO 1. Trigonometrikus. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
Fourier sorok FO Trigoometrikus Fourier sorok FO Trigoometrikus redszer Defiíció: trigoometrikus redszer Az {, cos x, si x, cos x, si x, cos 3x, si 3x, } függvéyekből álló (végtele sok függvéyt tartalmazó)
Részletesebben3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló
. Számelmélet I. Feladatok 1. Háy égyzetszám osztója va a 7 5 5 7 számak?. Az pozitív egész számak potosa két pozitív osztója va, az + 1-ek pedig potosa három. Háy pozitív osztója va az + 01 számak? OKTV
RészletesebbenVariációk egy egyenlőtlenség kapcsán
Variációk egy egyelőtleség kapcsá Tuzso Zoltá, Székelyudvarhely Mit a régebbi, mit az újabb alteratív taköyvekbe valamit számos feladatgyűjteméybe, a matematikai idukció taítása fejezetbe megtalálható
RészletesebbenVégtelen sorok. (szerkesztés alatt) Dr. Toledo Rodolfo március Mértani és teleszkopikus sorok 8
Végtele sorok (szerkesztés alatt) Dr. Toledo Rodolfo 207. március 25. Tartalomjegyzék. Bevezetés 2 2. A sor fogalma 3 3. Mértai és teleszkopikus sorok 8 4. Abszolút és feltételese koverges sorok 4 5. Sorok
RészletesebbenALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.
ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az
RészletesebbenDebreceni Egyetem. Kalkulus példatár. Gselmann Eszter
Debrecei Egyetem Természettudomáyi és Techológiai Kar Kalkulus példatár Gselma Eszter Debrece, 08 Tartalomjegyzék. Valós számsorozatok Elméleti áttekités........................................................
Részletesebben1. Gyökvonás komplex számból
1. Gyökvoás komplex számból Gyökvoás komplex számból Ismétlés: Ha r,s > 0 valós, akkor r(cosα+isiα) = s(cosβ+isiβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete: ( s(cosβ+isiβ)
Részletesebben2.1. A sorozat fogalma, megadása és ábrázolása
59. Számsorozatok.. A sorozat fogalma, megadása és ábrázolása.. Defiíció. Azokat az f : N R valós függvéyeket, melyek mide természetes számhoz egy a valós számot redelek hozzá, végtele számsorozatokak,
Részletesebben6. Számsorozat fogalma és tulajdonságai
6. Számsorozat fogalma és tulajdoságai Taulási cél: A számsorozat fogalmáak és elemi tulajdoságaiak megismerése. A mootoitás, korlátosság vizsgálatáak elsajátítása. Nevezetes sorozatok határértékéek megismerése.
Részletesebben1 h. 3. Hogyan szól a számtani és a mértani közép közötti összefüggést kifejező tétel?
1. Fogalmazza meg az R -beli háromszög-egyelőtleségeket!,y R (i) +y + y (ii) -y - y 2. Mit mod ki a Beroulli-egyelőtleség? (i) (1+h) 1+ h ( h>-1) ( N*) (ii) (1+h) 1+2 h 1 ( N*) h 2 3. Hogya szól a számtai
RészletesebbenHatárértékszámítás. 1 Határátmenet Tétel. (Nevezetes sorozatok) (a) n, n 2,... n α (α > 0), 1 n 0, 1. 0 (α > 0), (b) n 2 0,... 1.
Határátmeet Határértékszámítás.. Tétel. (Nevezetes sorozatok) 005..5 Készítette: Dr. Toledo Rodolfo (a)... α (α > 0) (b) (c) 0 0... 0 (α > 0) α q (d) c (c > 0) ha q > = ha q = 0 ha q < diverges korlátos
Részletesebben1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük:
1. A KOMPLEX SZÁMTEST A természetes, az egész, a raioális és a valós számok ismeretét feltételezzük: N = f1 ::: :::g Z = f::: 3 0 1 3 :::g p Q = j p q Z és q 6= 0 : q A valós szám értelmezése végtele tizedestörtkét
RészletesebbenKalkulus II., második házi feladat
Uger Tamás Istvá FTDYJ Név: Uger Tamás Istvá Neptu: FTDYJ Web: http://maxwellszehu/~ugert Kalkulus II, második házi feladat pot) Koverges? Abszolút koverges? ) l A feladat teljese yilvávalóa arra kívácsi,
RészletesebbenKözelítő és szimbolikus számítások haladóknak. 9. előadás Numerikus integrálás, Gauss-kvadratúra
Közelítő és szimolikus számítások hldókk 9. elődás Numerikus itegrálás, Guss-kvdrtúr Numerikus itegrálás Numerikus itegrálás Newto-Leiiz szály def I f f d F F Htározott Riem-itegrálok umerikus módszerekkel
Részletesebben1. gyakorlat - Végtelen sorok
. gyakorlat - Végtele sorok 06. március.. Határozza meg az alábbi végtele sorok összegét! a) e e e 3 = e e = e e e e = e e = e e b) c) 4 = 4 + 5 6 + = 6 ) 4 + 6 6 + ) = lim N ) 5 = 6 6 + 5 6 = 7 6 N )
RészletesebbenKomplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós
Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.
Részletesebben= λ valós megoldása van.
Másodredű álladó együtthatós lieáris differeciálegyelet. Általáos alakja: y + a y + by= q Ha q = 0 Ha q 0 akkor homogé lieárisak evezzük. akkor ihomogé lieárisak evezzük. A jobb oldalo lévő q függvéyt
Részletesebben18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható
8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.
RészletesebbenMatematika B4 I. gyakorlat
Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a
Részletesebben2.2. Indukció a geometriában
.. Idukció a geometriába... Számítási feladatok... Feladat. Határozzuk meg az R sugarú körbe írt, oldalú szabályos sokszög oldalhosszát! Megoldás eseté a oldalú szabályos sokszög a égyzet; az R sugarú
RészletesebbenDr. BALOGH ALBERT. A folyamatképesség és a folyamatteljesítmény statisztikái (ISO 21747)
Dr. BAOGH ABERT A folyamatkéesség és a folyamatteljesítméy statistikái ISO 747 Folyamat sabályoott, ha csak véletle okú váltoásokat hibákat tartalma. Sabályoatla, ha aoosítható okú redseres váltoásokat
Részletesebben(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0.
Földtudomáy lpszk 006/07 félév Mtemtik I gykorlt IV Megoldások A bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, >N eseté A < ε A 0 bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, > N
RészletesebbenMATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)
O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei
RészletesebbenAnalízis I. gyakorlat
Aalízis I. gyakorlat Kocsis Albert Tihamér, Németh Adriá 06. március 4. Tartalomjegyzék Előszó.................................................... Sorozatok és sorok.............................................
RészletesebbenSzámsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.
Számsorozatok 2015. december 22. 1. Alapfeladatok 1. Feladat: Határozzuk meg az a 2 + 7 5 2 + 4 létezik. sorozat határértékét, ha Megoldás: Mivel egy tört határértéke a kérdés, ezért vizsgáljuk meg el
RészletesebbenA függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,
l.ch FÜGGVÉNYSOROZATOK, FÜGGVÉNYSOROK, HATVÁNYSOROK Itt egy függvéysorozat: f( A függvéysorozatok olyaok, mit a valós számsorozatok, csak éppe a tagjai em valós számok, 5 haem függvéyek, f ( ; f ( ; f
RészletesebbenVÉLETLENÍTETT ALGORITMUSOK. 1.ea.
VÉLETLENÍTETT ALGORITMUSOK 1.ea. 1. Bevezetés - (Mire jók a véletleített algoritmusok, alap techikák) 1.1. Gyorsredezés Vegyük egy ismert példát, a redezések témaköréből, méghozzá a gyorsredezés algoritmusát.
RészletesebbenAz átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)
Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa
Részletesebben( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn
Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes
RészletesebbenBoros Zoltán február
Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n
Részletesebben16. Az AVL-fa. (Adelszon-Velszkij és Landisz, 1962) Definíció: t kiegyensúlyozott (AVL-tulajdonságú) t minden x csúcsára: Pl.:
6. Az AVL-fa Adelszo-Velszkij és Ladisz, 96 Defiíció: t kiegyesúlyozott AVL-tulajdoságú t mide x csúcsára: bal x jobb x. Pl.: A majdem teljes biáris fa AVLtulajdoságú. Az AVL-fára, mit speciális alakú
RészletesebbenSOROK Feladatok és megoldások 1. Numerikus sorok
SOROK Feladatok és megoldások. Numerikus sorok I. Határozza meg az alábbi, mértai sorra visszavezethető sorok esetébe az S -edik részletösszeget és a sor S összegét! )...... k 5 5 5 5 )...... 5 5 5 5 )......
RészletesebbenAnalízis feladatgy jtemény II.
Oktatási segédayag a Programtervez matematikus szak Aalízis I. tatárgyához (003004. taév szi félév) Aalízis feladatgy jteméy II. Összeállította Szili László 003 Tartalomjegyzék I. Feladatok 3. Valós sorozatok.......................................
RészletesebbenFüggvények határértéke 69. III. Függvények határértéke
Függvéyek határértéke 69 A határérték értelmezése III Függvéyek határértéke Ebbe a fejezetbe taulmáyozi fogjuk a függvéy határértékét egy potba A feladat így fogalmazható meg: Ha adott az f : D valós változójú
RészletesebbenINJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK
Megoldott feladatok Ijektivitás és egyéb tulajdoságok 59 ) INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Határozd meg azt az f:r R függvéyt, amelyre f ( f ( ) x R és a g:r R g ( = x f ( függvéy
RészletesebbenVégtelen sorok konvergencia kritériumai
Eötvös Lorád Tudomáyegyetem Természettudomáyi Kar Végtele sorok kovergecia kritériumai BSc Szakdolgozat Készítette: Gyebár Tüde Matematika BSc, Matematikai elemző szakiráy Témavezető: Bátkai Adrás Alkalmazott
RészletesebbenPályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.
Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika
Részletesebben1. Komplex szám rendje
1. Komplex szám redje A hatváyo periódiusa ismétlőde. Tétel Legye 0 z C. Ha z egységgyö, aor hatváyai periódiusa ismétlőde. Ha z em egységgyö, aor bármely ét, egész itevőjű hatváya ülöböző. Tegyü föl,
RészletesebbenFeladatok valós számsorozatokkal és sorokkal. 1.Feladatok valós számsorozatokkal
Simo Iloa: Feladatok valós számsorozatokkal Feladatok valós számsorozatokkal és sorokkal Írta és szerkesztette: Simo Iloa Lektorálta: Dr. Pap Margit.Feladatok valós számsorozatokkal A feladatgyűjteméy
RészletesebbenBIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 10. A statisztika alapjai Debrecei Egyetem, 2015 Dr. Bérczes Attila, Bertók Csaád A diasor tartalma 1 Bevezetés 2 Statisztikai függvéyek Defiíció, empirikus várható érték Empirikus
RészletesebbenA primitív függvény és a határozatlan integrál 7
A primitív függvéy és a határozatla itegrál 7 I A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL Korábbi taulmáyaitok sorá láthattátok, hogy sok műveletek, függvéyek va fordított művelete, iverz függvéye
RészletesebbenFolytonos függvények közelítése polinomokkal
Folytoos függvéyek közelítése poliomokkal Szakdolgozat Paksi lászló matematika BSc, Matematika taái szakiáy Témavezető: Gémes Magit, műszaki gazdasági taá Aalízis Taszék Eötvös Loád Tudomáyegyetem Temészettudomáyi
RészletesebbenLOGO. Kvantum-tömörítés. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar
LOGO Kvatum-tömörítés Gyögyösi László BME Villamosméröki és Iformatikai Kar Iformációelméleti alaok összefoglalása A kódolási eljárás Az iformáció átadás hűsége és gazdaságossága a kódolástól függ Az iformáció
RészletesebbenEmpirikus szórásnégyzet
Empirikus égyzet Mi lee hasoló szellembe a becslése a mita alapjá? Empirikus égyzet Mi lee hasoló szellembe a becslése a mita alapjá? Az átlagtól való égyzetes eltérést kée átlagoli... Empirikus égyzet
Részletesebben1. A radioaktivitás statisztikus jellege
A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a
RészletesebbenMőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK
Mőbiusz Nemzetözi Meghívásos Matematia Versey Maó, 0. március 6. MEGOLDÁSOK 5 700. Egy gép 5 óra alatt = 000 alatt 000 csavart. 000 csavart észít, így = gép észít el 5 óra 000. 5 + 6 = = 5 + 5 6 5 6 6.
RészletesebbenMATOLCSI TAMÁS ANALÍZIS V.
MATOLCSI TAMÁS ANALÍZIS V. Itegrálás 3 Tartalom A. VALÓS FÜGGVÉNYEK INTEGÁLÁSA I. MÉTÉK AZ INTEVALLUMOKON 1. Az itervallumok félgyűrűje................... 7 2. Az itervallumok gyűrűje...................
Részletesebben10 Norma. Vektornorma. = x T x, ha x R n, (10.1)
0 Norma A mátrixok bizoyos tulajdoságaiak például sorozataik kovergeciájáak vizsgálatába haszosak az olya meyiségek, melyek a köztük lévő külöbségeket a távolságra emlékeztető módo mérik Ehhez az abszolút
RészletesebbenLineáris kódok. u esetén u oszlopvektor, u T ( n, k ) május 31. Hibajavító kódok 2. 1
Lieáris kódok Defiíció. Legye SF q. Ekkor S az F q test feletti vektortér. K lieáris kód, ha K az S k-dimeziós altere. [,k] q vagy [,k,d] q. Jelölések: F u eseté u oszlopvektor, u T (, k ) q sorvektor.
Részletesebben2. gyakorlat - Hatványsorok és Taylor-sorok
. gyakorlat - Hatváysorok és Taylor-sorok 9. március 3.. Adjuk meg az itt szereplő sorok kovergeciasugarát és kovergeciaitervallumát! + a = + Azaz a hatváysor kovergeciasugara. Az biztos, hogy a (-,) yílt
RészletesebbenFELADATOK A KALKULUS C. TÁRGYHOZ
FELADATOK A KALKULUS C. TÁRGYHOZ. HALMAZOK RELÁCIÓK FÜGGVÉNYEK. Bizoyítsuk be a halmaz-műveletek alapazoosságait! 2. Legye adott az X halmaz legye A B C X. Ha A B := (A B) (B A) akkor bizoyítsuk be hogy
Részletesebben