Valószínűségszámítás és statisztika előadás Info. BSC B-C szakosoknak. 1. előadás: Bevezetés. Számonkérés. Irodalom. Cél. Véletlen tömegjelenségek
|
|
- Ágnes Horváthné
- 6 évvel ezelőtt
- Látták:
Átírás
1 Valószíűségszámítás és statszta előadás If. S - szasa 008/09. félév Zemplé drás zemple@caesar.elte.hu zemple.elte.hu. előadás: evezetés Irdalm, övetelméye félév céla Valószíűségszámítás tárgya Törtéet lapfgalma Valószíűsége számítása Irdalm Jegyzet arót-gáré-fees Tóth-gyród: Valószíűségszámítás egyzet prgramzó szas hallgatóa atemata statszta egyzet prgramzó matematus hallgatóa Iteretes egyzete E, Debrece, stb Taöyve: répa: Valószíűségelmélet Slt: Valószíűségszámítás lla - Kráml: Statszta öveteztetése elmélete ál: valószíűségszámítás és a statszta alapa I-II éldatára gáré-gyród-répa-réy-szász: Valószíűségszámítás feladatgyűteméy rató lós, ra Vlms és Zemplé drás: evezetés a valószíűségszámításba és alalmazásaba: példáal, szmulácóal eletrus egyzet ór-szedl-zemplé: atemata statszta példatár Számérés Gyarlat gyarlat egy: csprtét zh- alapá Vzsga: írásbel, ésőbb egyeztetedő dőptba z előadás s ötelező a elelét 3 háyzás lehetséges! apírs elleőrzés lesz z óraütözést az tató gazlhata Előadás ayaga: zemple.elte.hu/t.html él Valószíűségszámítás és statszta alapaa smertetése Feladatmegldás észség alaítása elsősrba gyarlat lalmazás lehetősége bemutatása der módszere bg data, R Véletle tömegelesége Ismételhető/agy számba végbemeő eseméye például: X éves férf/ő mera valószíűséggel öt hóap belül házasságt Véletle: az smert feltételredszer em határzza meg egyértelműe az eredméyt pl. cadbás. em s érdemes determsztus mdellel ísérletez, mert túl bylult lee.
2 Valószíűségszámítás helye a tudmáy özött atemata tudmáy, mert precíze megfgalmaztt axómáxra épül. Gyarlat alalmazása: statszta öveteztetése levása pl.: ha egy érmével 000 dbásból 550 fe ött, ar 99.9% valószíűséggel állítható, hgy az érme em szabálys. Törtéet áttetés. Első smert feladat 494-ből: áté dő előtt abbahagyása eseté hgya sztzzaa? Helyes megldás több, mt 00 évvel ésőbb: ascal 3, Fermat 0 5 Köye adható szmulácós megldás precíz számítás a gyarlat arda 540 örül öyvet írt a caátéhz apcslódó valószíűségszámítás érdéseről Törtéet áttetés. de Wtt, Halley 7: életáradé-számítás valószíűség alap Jacb erull 73: rs ectad agy szám törvéye XVIII-XIX. sz: vre, ayes, Gauss, ss uff: gemetra valószíűség bevezetése paradx XIX.sz: sebsev, arv, Lapuv Törtéet áttetés 3. xmatzálás: Klmgrv 933 der alalmazás: Ifrmácóelmélet Sha Játéelmélet euma atemata statszta Fsher Sztchasztus flyamat agyar tudós: Jrdá Kárly Réy lfréd lapfgalma Eseméytér Kísérlet egy lehetséges meetele: elem eseméy, elölése ω. Elem eseméye összessége: eseméytér, Ω. Ω részhalmaza: eseméye,,,. Eseméy ar övetez be, ha az őt altó elem eseméye valamelye beövetez. éldá Kcadbás: Ω={,,,}. Ha az eseméy: párs számt dbtu, ar ={,4,}. Érmét étszer feldbva: Ω={II,IF,FI,FF} ={II,IF} az az eseméy, hgy az első dbás írás. Érmét addg dbu, míg feet em apu. Ω={F,IF,IIF,,ω } ahl ω =III. azaz mde dbás írás
3 Eseméye Specáls eseméye: Ω bzts eseméy lehetetle eseméy z eseméye összessége: halmazredszer Ω részhalmazaból űvelete eseméyeel: száss lga művelete = halmazművelete űvelete eseméyeel : vagy vagy beövetez az s lehet, hgy mdettő : és s beövetez eseméy elletette: Tuladság éldá \ De rga Kcadbás: ={párs számt dbu} ={legalább 3-ast dbu} ={4,} ={,3,4,5,} \={} ={,3,5} Valószíűség Szemléletes megfelelőe: relatív gyarság. Ha egymástól függetleül, azs örülméye özött végrehattt ísérletből az adtt eseméy -szr övetezett be, ar a relatív gyarság /. agy -re a relatív gyarság egy fx szám örül gadz: ezt evezzü az valószíűségée. Szmulácó applete: Kca-ísérlet valószíűség Jele: relatív gyarság tuladságaból: emegatív: 0 mde -ra Egymást záró eseméyere, azaz, ha : addtvtás Ω= Ω,,: valószíűség mező 3
4 Tuladság. ddtvtás eseméyre: ha,,, párét záró eseméye, ar zyítás: ducóval. =0. zyítás: Ω= Ω felbtásból és az addtvtásból Tuladság. \ zyítás: = \ felbtásból és az addtvtásból zyítás: = \ felbtásból, az addtvtásból és az előző tuladságból. Klmgrv-féle valószíűség mező Ω,,: Klmgrv-féle valószíűség mező, ha Ω emüres halmaz az Ω részhalmazaa σ-algebráa : [0,] halmazfüggvéy valószíűség, melyre. Ω=. σ-addtvtás: ha,,, párét záró eseméye, ar valószíűség tvább tuladsága Klmgrv-féle valószíűség végese s addtív: ha,,, párét záró eseméye, ar zyítás. + = + = = választással alalmazzu a σ-addtvtást. Tehát a rábba beláttt tuladság a Klmgrv-féle valószíűség mezőre s érvéyese. Véges valószíűség mező Ω={ω, ω,,ω }, = Ω. Jelölés: p = ω. p az addtvtásból. : : zaz a p emegatív, összegű szám meghatárzzá a valószíűséget. p Klasszus valószíűség mező p =/ mde -re azs valószíűségűe az elem eseméye. Er ahl az elemszáma, pedg az összes esetszám. áséppe: =edvező esete száma/ összes esetszám. 4
5 5 Vsszatevéses mtavétel termé, melyből seletes elemű mta vsszatevéssel : ptsa seletes va a mtába =0,, azaz a valószíűség feezhető a p=/ seletaráy segítségével: tavétel p p Vsszatevés élül mtavétel termé, melyből seletes elemű mta vsszatevés élül : ptsa seletes va a mtába =0,, tavétel Eseméye uóáa valószíűsége élda: agyar ártyacsmagból étszer húzu vsszatevéssel. a valószíűsége, hgy húzu prsat? : első prs, : másd prs ==/4, =/ Tehát =7/ Szta caré frmula Képlet az általás esetre: ahl az téyezős metszete valószíűségee összege. S S lalmazás Ha az egyes eseméye és metszete s egyfrmá valószíűe, ar Átfgalmazás metszetere: egállapdás: S 0 =. élda: a valószíűsége, hgy adtt számú cadbásból mde számt legalább egyszer megaptu? S 0 egldás : az számt em dbtu =0 d s =0 d s
6 Feltételes valószíűség. z eseméy valószíűségét eressü. Tudu, hgy eseméy beövetezett. relatív gyarságal: csa azat a ísérleteet ézzü, amelyebe beövetezett. Eze részsrzatba az relatív gyarsága: r / r Feltételes valószíűség. egfelelőe a valószíűségere: az eseméy -re vatzó feltételes valószíűsége feltétel: >0. élda: cadbás. ={párs számt dbu} ={3-ál agybbat dbtu} =/3. Teles eseméyredszer Defícó. Eseméye,,, srzata teles eseméyredszer, ha egymást párét zárá és egyesítésü Ω. Tuladság: Legtöbbször véges s elemből álló teles eseméyredszereet vzsgálu. Teles valószíűség tétele Legye,,, pztív valószíűségű eseméyeből álló teles eseméyredszer, tetszőleges. Er zyítás. dszut tagra btás, tehát és ada a tételt. élda Összetett mdelle pl. emtől függő valószíűsége: a szívaság valószíűsége a férfaál 0.0, a őél 0.00 Tfh. ugyaay a férf, mt a ő. a valószíűsége, hgy egy találmra választt ember szíva? teles eseméyredszer: {férf} {ő}. p=0.0/+0.00/= Ugyaígy tudu száml em azs valószíűségű eseméyere s ayes tétele Legye,,, pztív valószíűségű eseméyeből álló teles eseméyredszer és pztív valószíűségű. Er zyítás. evező éppe a teles valószíűség tétele matt. számláló pedg, defícó szert. Spec.: Két elemű teles eseméyredszerre:
1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél
Valószíűségszámítás előadás formata BSC/ szaosoa és matemata elemző BSC-see 2015/2016 1. félév Zemplé drás zemple@ludes.elte.hu http://www.cs.elte.hu/~zemple/ 1. előadás: Bevezetés Irodalom, övetelméye
1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél
Valószíűségszámítás 1 előadás al.mat BSc szaosoa 2015/2016 1. félév Zemplé Adrás zemple@ludes.elte.hu http://www.cs.elte.hu/~zemple/ 1. előadás: Bevezetés Irodalom, övetelméye A félév célja Valószíűségszámítás
A valószínőség folytonossága
Valószíőségszámítás és statszta elıadás f. BC/B-C szasa. elıadás szeptember 9. Megszámlálható valószíőség mezı Ω{ω, ω,,ω, }, A P Ω. Jelölés: p P ω, valószíőségelszlás: p, az összegü. A σ-addtvtás matt
Szita (Poincaré) formula. Megoldás. Alkalmazások. Teljes eseményrendszer. Példák, szimulációk
s s Valószíűségszámítás és statszta előadás f. BC/B-C szasa. előadás szeptember 7. zta Pcaré frmula Képlet az általás esetre: A A... A ahl Aj A j j j... j... A az téyezős metszete valószíűségee összege.
1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél
Valószíűségszámítás 1 előadás mat. BSc alk. mat. szakráyosokak 2016/2017 1. félév Zemplé Adrás zemple@ludes.elte.hu http://zemple.elte.hu/ 1. előadás: Bevezetés Irodalom, követelméyek A félév célja Valószíűségszámítás
1. előadás: Bevezetés. Irodalom. Számonkérés. A valószínűségszámítás és a statisztika tárgya. Cél
Valószíűségszámítás és statsztka előadás fo. BSC/B-C szakosokak 1. előadás szeptember 13. 1. előadás: Bevezetés Irodalom, követelméyek A félév célja Valószíűségszámítás tárgya Törtéet Alapfogalmak Valószíűségek
Ismétlés: Visszatevéses mintavétel. A valószínőség további tulajdonságai. Visszatevés nélküli mintavétel. A valószínőség folytonossága
Valószíőségszámítás és statsztka elıadás f. BC/B-C szakskak. elıadás szeptember. Ismétlés: Vsszatevéses mtavétel N termék, melybıl M selejtes elemő mta vsszatevéssel A: ptsa k selejtes va a mtába k k k,,
1. előadás: Bevezetés. Valószínűségszámítás survey statisztika MA. Számonkérés. Irodalom. Cél. A valószínűségszámítás tárgya
Vlószíűségszámítás surve sttszt MA 6/7. félév Zemlé Adrás. elődás: Bevezetés Irodlom, övetelmée A félév célj Vlószíűségszámítás tárg Törtéet Alfoglm Vlószíűsége számítás Irodlom Töve: Deger: Vlószíűségszámítás
1. elıadás: Bevezetés. Számonkérés. Irodalom. Valószínőségszámítás helye a tudományok között. Cél
1 Valószíőségszámítás 1 elıadás alk.mat és elemzı szakosokak 2013/2014 1. félév Zempléi Adrás zemplei@ludes.elte.hu http://www.cs.elte.hu/~zemplei/ 1. elıadás: Bevezetés Irodalom, követelméyek A félév
24. Kombinatorika, a valószínűségszámítás elemei
4. Kombiatoria, a valószíűségszámítás elemei Kombiatoria A véges halmazoal foglalozó tudomáyterület. Idő hiáyába csa a evezetes összeszámolásoal foglalozu. a) Sorbaállításo (ermutáció) alafeladat: ülöböző
24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje.
24. tétel valószíűségszámítás elemei. valószíűség kiszámításáak kombiatorikus modellje. GYORISÁG ÉS VLÓSZÍŰSÉG meyibe az egyes adatok a sokaságo belüli részaráyát adjuk meg (törtbe vagy százalékba), akkor
1.1. Műveletek eseményekkel. Első fejezet. egy véletlen esemény vagy bekövetkezik, vagy nem következik be. Egyszerű
Első fejezet Elemi valószíűségelmélet A valószíűségelmélet alapvető fogalma a véletle eseméy. A véletle ísérlet végrehajtásaor egy véletle eseméy vagy beövetezi, vagy em övetezi be. Egyszerű példa véletle
? közgazdasági statisztika
Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem
? közgazdasági statisztika
... Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB
Matematikai statisztika
Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),
VII. FEJEZET A STATISZTIKA ÉS A VALÓSZÍNŰSÉGSZÁMÍTÁS ELEMEI. VII.1. Statisztikai adatok és jellemzőik
Statszta és valószíűségszámítás 305 VII. FEJEZET A STATISZTIKA ÉS A VALÓSZÍNŰSÉGSZÁMÍTÁS ELEMEI VII.. Statszta adato és jellemző VII... Statszta adato és ábrázolásu A mdea életbe gyara hallu statszta adatoról.
ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet
Feladatok és megoldások a 11. heti gyakorlathoz
Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.
Valószínűségszámítás és statisztika előadás Info. BSC B-C szakosoknak. Bayes tétele. Példák. Események függetlensége. Példák.
Valószínűségszámítás és statisztia előadás Info. BSC B-C szaosona 20018/2019 1. félév Zempléni András 2.előadás Bayes tétele Legyen B 1, B 2,..., pozitív valószínűségű eseményeből álló teljes eseményrendszer
A valószínűségszámítás alapjai
A valószíűségszámítás alapjai Kombiatoria Permutáció (ismétlés élül): elem összes lehetséges sorredje: P = (-)(-) =!!- fatoriális Variáció ismétlés élül elem -ad osztályú ismétlés élüli variációja - elemből
Valószínûség számítás
Valószíûség számítás Adrea Glashütter Feller Diáa Valószíűségszámítás Bevezetés a pézügyi számításoba I. Bevezetés a pézügyi számításoba A péz időértéével apcsolatos számításo A péz időértéée számítása:
1. tétel. Halmazok, halmazműveletek, halmazok számossága, halmazműveletek és logikai műveletek kapcsolata.
. tétel. Halmazo, halmazművelete, halmazo számossága, halmazművelete és logiai művelete apcsolata. Vázlat:.Halmazoal apcsolatos elevezése, alapfogalma pl.: halmaz, elem, adott egy halmaz, megadása, jelölése
A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai
05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:
Valószínűségszámítás összefoglaló
Vlószíűségszámítás összefoglló I. Feezet ombtor ermutácó Ismétlés élül ülöböző elem lehetséges sorrede! b Ismétléses em feltétleül ülöböző elem összes ülöböző sorrede!... hol z zoos eleme gyorság!!...!
Eseme nyalgebra e s kombinatorika feladatok, megolda sok
Eseme yalgebra e s kombiatorika feladatok, megolda sok Szűk elméleti áttekitő Kombiatorika quick-guide: - db. elemből db. sorredjeire vagyuk kívácsiak: permutáció - db. elemből m < db. háyféleképp rakható
n*(n-1)*...*3*2*1 = n!
KOMBIATORIKA Pemutácó: egymától ülöböző elem egy meghatáozott oedbe való eledezée az elem egy pemutácója. Az öze pemutácó ülöböző oed záma: P! 0!: *-*...*3**! Imétlée pemutácó: Ha az elem özött,, 3, l
3. Valószínűségszámítás
Biometria az orvosi gyaorlatba 3. Valószíűségszámítás 3. Valószíűségszámítás 3.. Bevezetés 3.. Kombiatoria 3... Permutáció 3... Variáció 3..3. Kombiáció 3 3.3. Biomiális együttható tulajdoságai 3 3.4.
Zárthelyi dolgozat 2014 C... GEVEE037B tárgy hallgatói számára
Záthely dlgzat 4 C.... GEVEE37B tágy hallgató számáa Név, Nept ód., Néháy ss övd léyege töő válaszat adj az alább édésee! (5xpt a Ss és páhzams mmácós ptll felslása és legftsabb jellemző. Páhzams ptll
Valószín ségszámítás. Survey statisztika mesterszak és földtudomány alapszak Backhausz Ágnes 2018/2019.
Valószín ségszámítás Survey statisztika mesterszak és földtudomány alapszak Backhausz Ágnes agnes@cs.elte.hu 2018/2019. szi félév A valószín ségszámítás kurzus céljai a statisztika megalapozása: a véletlen
Dr. Tóth László, Kombinatorika (PTE TTK, 2007) nem vagyunk tekintettel a kiválasztott elemek sorrendjére. Mennyi a lehetőségek száma?
Dr Tóth László, Kombiatoria (PTE TTK, 7 5 Kombiáció 5 Feladat Az,, 3, 4 számo özül válasszu i ettőt (ét ülöbözőt és írju fel ezeet úgy, hogy em vagyu teitettel a iválasztott eleme sorredjére Meyi a lehetősége
Hadamard-mátrixok Előadó: Hajnal Péter február 23.
Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára Hadamard-mátrixok Előadó: Hajnal Péter 2012. február 23. 1. Hadamard-mátrixok Ezen az előadáson látásra a blokkrendszerektől független kombinatorikus
Információs rendszerek elméleti alapjai. Információelmélet
Iformácós redszerek elmélet alaja Iformácóelmélet A forrás kódolása csatora jelekké 6.4.5. Molár Bált Beczúr Adrás NMMMNNMNfffyyxxfNNNNxxMNN verzazazthatóvsszaálímdeveszteségcsaakkorfüggvéykódolásaakódsorozat:eredméyekódolássorozatváltozó:forás
Teljes eseményrendszer. Valószínőségszámítás. Példák. Teljes valószínőség tétele. Példa. Bayes tétele
Teljes eseményrendszer Valószínőségszámítás 3. elıadás 2009.09.22. Defnícó. Események A 1, A 2,..., sorozata teljes eseményrendszer, ha egymást páronként kzárják és egyesítésük Ω. Tulajdonság: P A ) +
Eseményalgebra, kombinatorika
Eseméyalgebra, kombiatorika Eseméyalgebra Defiíció. Véletle kísérletek evezük mide olya megfigyelést, melyek több kimeetele lehetséges, és a véletletől függ, (azaz az általuk figyelembevett feltételek
A Secretary problem. Optimális választás megtalálása.
A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra
A peremeloszlások. Valószínőségszámítás elıadás III. alk. matematikus szak. Példa. Valószínőségi vektorváltozók eloszlásfüggvénye.
y Valószíőségszámítás elıaás III. alk. matematkus szak 4. elıaás, szeptember 30 A peremeloszlások (X,Y) eloszlásából (elevezés: együttes eloszlás) következtethetük az egyes változók eloszlására: P(X)P(X,Y0)+P(X,Y)+P(X,Y2)
Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1
Mérés adatok feldolgozása 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel
18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható
8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.
A szita formula és alkalmazásai. Gyakran találkozunk az alábbi kérdéssel, sokszor egy összetett feladat részfeladataként.
A szta formula és alalmazása. Gyaran találozun az alább érdéssel, soszor egy összetett feladat részfeladataént. Tentsün bzonyos A 1,...,A n eseményeet, és számítsu anna a valószínűségét, hogy legalább
Tuzson Zoltán A Sturm-módszer és alkalmazása
Tuzso Zoltá A turm-módszer és alalmazása zámtala szélsérté probléma megoldása, vag egeltleség bzoítása ago gara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölder-féle egeltleség, derválta
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
KEZELÉSE ÉS ÉRTÉKELÉSE
MÉRÉSI ADATOK KEZELÉSE ÉS ÉRTÉKELÉSE Köryezettudomáy alapo taöyvsorozat A öryezetta alapja A öryezetvédelem alapja Köryezetfza Köryezet áramláso Köryezet ásváyta Köryezet mtavételezés Köryezetéma Köryezettudomáy
Kombinatorikus optimalizálás jegyzet TARTALOM
Kmbatrkus ptmalzálás egyzet az elıadás és a kadtt szakrdalm alapá Készítette: Schmdt Péter Alk. Mat., II. évf. 00-0 TARTALOM KOMBINATORIKUS OPTIMALIZÁLÁS... HALMAZOK... Halmaz lefedése... Sperer-redszerek...
Nem-extenzív effektusok az elemi kvantumstatisztikában?
Nm-xtzív tuso az lm vatumstatsztába? Bró Tamás Sádor MTA Wgr FK RMI 22.3.26.. Boltzma-Gbbs-Plac-Réy-Tsalls 2. Frm & Bos altérb á la Gbbs-Boltzma 3. NBD mt szuprstatszta 4. Kohrs állapot, Posso statszta
Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1
Halmazelmélet 1. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Halmazelmélet p. 1/1 A halmaz fogalma, jelölések A halmaz fogalmát a matematikában nem definiáljuk, tulajdonságaival
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.
Logikai szita (tartalmazás és kizárás elve)
Logikai szita (tartalmazás és kizárás elve) Kombinatorika 5. előadás SZTE Bolyai Intézet Szeged, 2016. március 1. 5. ea. Logikai szita két halmazra 1/4 Középiskolás feladat. Egy 30 fős osztályban a matematikát
Készítette: Ernyei Kitti. Halmazok
Halmazok Jelölések: A halmazok jele általában nyomtatott nagybetű: A, B, C Az x eleme az A halmaznak: Az x nem eleme az A halmaznak: Az A halmaz az a, b, c elemekből áll: A halmazban egy elemet csak egyszer
Statisztika 1. zárthelyi dolgozat március 21.
Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy
9. tétel: Elsı- és másodfokú egyenlıtlenségek, pozitív számok nevezetes közepei, és ezek felhasználása szélsıérték-feladatok megoldásában
9. tétel: Elsı- és másodfoú egyelıtlesége, pozitív számo evezetes özepei, és eze felhaszálása szélsıérté-feladato megoldásáa Egyelıtleség: Két relációsjellel összeapcsolt ifejezés vagy függvéy. Az egyelıtleséget
Valószínőségszámítás
Vlószíőségszáítás 6. elıdás... Kovrc Defícó. Az és ovrcáj: cov,:[--] Kszáítás: cov, [-- ]- A últ ór végé látott állítás értelée cov,, h és függetlee. Megj.: Aól, hogy cov, e övetez, hogy függetlee: legye
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
Számelméleti alapfogalmak
Számelméleti alapfogalma A maradéos osztás tétele Legye a és b ét természetes szám, b, és a>b Aor egyértelme léteze q és r természetes számo, amelyere igaz: a b q r, r b Megevezés: a osztadó b osztó q
KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára. Szita formula
KOMBINATORIKA ELŐADÁS osztatlan matematka tanár hallgatók számára Szta formula Előadó: Hajnal Péter 2015. 1. Bevezető példák 1. Feladat. Hány olyan sorbaállítása van a a, b, c, d, e} halmaznak, amelyben
Környezet statisztika
Környezet statisztika Permutáció, variáció, kombináció k számú golyót n számú urnába helyezve hányféle helykitöltés lehetséges, ha a golyókat helykitöltés Minden urnába akárhány golyó kerülhet (ismétléses)
8. tétel: Adatsokaságok jellemzıi, a valószínőségszámítás elemei
9 8 7 6 5 4 3 0 4 3.5 3.5.5 0.5 0 3 4 5 7 8 9 Magyar Eszter Emelt szitő érettségi tétele 8. tétel: Adatsoaságo jellemzıi, a valószíőségszámítás elemei ADATSOASÁGO JELLEMZİI STATISZTIA: Statisztia: Tömegese
ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június
ÖKONOMETIA Készült a TÁMOP-4.1.-08//A/KM-009-0041pályázat projet eretébe Tartalomfejlesztés az ELTE TáTK Közgazdaságtudomáy Taszéé az ELTE Közgazdaságtudomáy Taszé az MTA Közgazdaságtudomáy Itézet és a
VEKTORGEOMETRIA. Mit nevezünk null vektornak? Olyan vektort, amelynek a nagysága (abszolút értéke) 0 és az iránya tetszőleges.
VEKTORGEOMETRIA Mt evezü vetora? Olya meységet, amelye ráya és agysága va. Mt evezü egységvetora? Olya vetort, amelye a agysága (abszolút értée). Mt evezü ull vetora? Olya vetort, amelye a agysága (abszolút
Matematika I. 9. előadás
Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája
véletlen : statisztikai törvényeknek engedelmeskedik (Mi az ami közös a népszavazásban, a betegségek gyógyulásában és a fiz. kém. laborban?
BEVEZETÉS A statisztika teljese laikusokak: agy mukával gyűjtött adatok vizsgálata, abból következtetések levoása ( statistical iferece ) (Egy kicsit sok hűhó semmiért azaz Much ado about othig.) Mi is
Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától
Sztochasztkus tartalékolás és a tartalék függése a kfutás háromszög dőperódusától Faluköz Tamás Vtéz Ildkó Ibola Kozules: r. Arató Mklós ELTETTK Budapest IBNR kfutás háromszög IBNR: curred but ot reported
Példák 2. Teljes eseményrendszer. Tulajdonságok. Példák diszkrét valószínőségi változókra
Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 28 dszkrét valószíőség változókra X(ω)=c mde ω-ra. Elevezés: elfajult eloszlás. P(X=c)=1. X akkor 1, ha egy adott,
Diszkrét matematika I. gyakorlat
Diszkrét matematika I. gyakorlat 1. gyakorlat Gyakorlatvezet : Dr. Kátai-Urbán Kamilla Helyettesít: Bogya Norbert 2011. szeptember 8. Tartalom Információk 1 Információk Honlapcímek Számonkérések, követelmények
5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI-
5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI- FÉLE RELATIVITÁSI ELV m, m,,m r, r,,r r, r,, r 6 db oordáta és sebességompoes 5.. Dama Mozgásegyelete: m r = F F, ahol F jelöl a
I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.
I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.
Bevezetés. Valószínűségszámítás 2 előadás III. alk. matematikus szak. Irodalom. Egyéb info., számonkérés. Cél. Alapfogalmak (ismétlés)
Valószínűségszámítás 2 előaás III. alk. matematikus szak 2016/2017 1. félév Zempléni Anrás Bevezetés Iroalom, követelmények A félév célja Alapfogalmak mértékelméleti alapon Kapcsolóás a val.szám. 1-hez
1. A radioaktivitás statisztikus jellege
A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a
HALMAZOK. A racionális számok halmazát olyan számok alkotják, amelyek felírhatók b. jele:. A racionális számok halmazának végtelen sok eleme van.
HALMAZOK Tanulási cél Halmazok megadása, halmazműveletek megismerése és alkalmazása, halmazok ábrázolása Venn diagramon. Motivációs példa Egy fogyasztó 80 000 pénzegység jövedelmet fordít két termék, x
Populáció. Történet. Adatok. Minta. A matematikai statisztika tárgya. Valószínűségszámítás és statisztika előadás info. BSC/B-C szakosoknak
Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 16. A matematikai statisztika tárgya Következtetések levoása adatok alapjá Ipari termelés Mezőgazdaság Szociológia
Valószínőségszámítás helye a tudományok között. Véletlen tömegjelenségek. Történeti áttekintés 1. Modellezés. Történeti áttekintés 3.
Valószíőségszámítás és statsztka elıadás Ifo. BSC B-C szakosokak 4/5. félév Zemplé Adrás zemple@ludes.elte.hu http://www.cs.elte.hu/~zemple/. elıadás: Bevezetés Irodalom, követelméyek A félév célja Valószíőségszámítás
1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata.
1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. HLMZOK halmaz axiomatikus fogalom, nincs definíciója. benne van valami a halmazban szintén axiomatikus fogalom,
1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.
1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét
biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat
Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 7. Bevezetés a valószínűségszámításba Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés 2 Definíciók, tulajdonságok Példák Valószínűségi mező
Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat
Megállapítható változók elemzése Függetleségvzsgálat, lleszkedésvzsgálat, homogetásvzsgálat Ordáls, omáls esetre s alkalmazhatóak a következő χ próbá alapuló vzsgálatok: 1) Függetleségvzsgálat: két valószíűség
Diszkrét matematika KOMBINATORIKA KOMBINATORIKA
A ombiatoria véges elemszámú halmazoat vizsgál. A fő érdése: a halmaz elemeit háyféleéppe lehet sorbaredezi, iválasztai özülü éháyat vagy aár midet bizoyos feltétele mellett, stb. Ezért a ombiatoria alapját
Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás
SZDT-01 p. 1/23 Biometria az orvosi gyakorlatban Számítógépes döntéstámogatás Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Gyakorlat SZDT-01 p.
f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben
Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,
Tulajdonságok. Teljes eseményrendszer. Valószínőségi változók függetlensége. Példák, szimulációk
Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 26 p 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 A bomáls és a hpergeom. elo. összehasolítása 0 1 2 3 4 5 6 7 8 9 10 k Hp.geom
Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése
3 4 Tartalomegyzék. BEVEZETÉS 5. A MÉRÉS 8. A mérés mt folyamat, fogalmak 8. Fotosabb mérés- és műszertechka fogalmak 4.3 Mérés hbák 8.3. Mérés hbák csoportosítása eredetük szert 8.3. A hbák megeleítés
Gépi tanulás. A szükséges mintaszám korlát elemzése. Pataki Béla (Bolgár Bence)
Gépi tanulás A szükséges mintaszám krlát elemzése Pataki Béla (Blgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki A Russell-Nrvig könyv n=10 bemenetű lgikai
Makroökonómia 1.előadás Bevezetés és alapfogalmak, a makrogazdasági körforgás 2011.02.07.
Makröknómia 1.előadás Bevezetés és alapfgalmak, a makrgazdasági körfrgás 2011.02.07. előadó: Hnvári Jáns Minden tantárggyal kapcslats infrmáció: cspace.bgf.hu A hallgatók bejelentkezése (cspace): felhasználói
Valószínűségszámítás és matematikai statisztika. Ketskeméty László
Valószíűségszámítás és matematka statsztka Ketskeméty László Budapest, 996 Tartalomjegyzék I. fejezet VALÓSZÍNŰSÉGSZÁMÍTÁS 4. Kombatorka alapfogalmak 5 Elleőrző kérdések és gyakorló feladatok 7. A valószíűségszámítás
Diszkrét matematika I. legfontosabb tételek/definíciók (II. javított verzió) 2014/2015. I. félév
Diszkrét matematika I. legfotosabb tételek/defiíciók (II. javított verzió) 2014/2015. I. félév 1. Előszó A jegyzet a Diszkrét matematika I. (DE IK PTI, tárgykód: INDK101-K5, Dr. Burai Pál) tatárgy 2014/2015.
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 10. A statisztika alapjai Debrecei Egyetem, 2015 Dr. Bérczes Attila, Bertók Csaád A diasor tartalma 1 Bevezetés 2 Statisztikai függvéyek Defiíció, empirikus várható érték Empirikus
Komplex számok. 6. fejezet. A komplex szám algebrai alakja. Feladatok. alábbi komplex számokat és helyvektorukat:
6 fejezet Komplex számo A omplex szám algebrai alaja D 61 Komplex száma evezü mide olya a+bi alaú ifejezést amelybe a és b valós szám i pedig az összes valós számtól ülöböz épzetes egysége evezett szimbólum
Wilcoxon-féle előjel-próba. A rangok. Ismert eloszlás. A nullhipotézis megfogalmazása H 1 : m 0 0. A medián 0! Az eltérés csak véletlen!
0.0.4. Wlcoxo-féle előel-próba ragok Példa: Va-e hatáa egy zórakoztató flm megtektééek, a páceek együttműködé halamára? ( zámok potértékek) orzám előtte utáa külöbég 0 0 3 3-4 4 5 3 6 3 3 0 7 4 3 8 5 4
V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL
86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )
Valószín ségszámítás és statisztika
Valószín ségszámítás és statisztika Informatika BSc, esti tagozat Backhausz Ágnes agnes@math.elte.hu fogadóóra: szerda 10-11 és 13-14, D 3-415 2018/2019. tavaszi félév Bevezetés A valószín ségszámítás
A Sturm-módszer és alkalmazása
A turm-módszer és alalmazása Tuzso Zoltá, zéelyudvarhely zámtala szélsőérté probléma megoldása, vagy egyelőtleség bzoyítása agyo gyara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölderféle
Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév
Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis 1. Írásbeli beugró kérdések Készítette: Szátó Ádám 2011. Tavaszi félév 1. Írja le a Dedekid-axiómát! Legyeek A R, B R. Ekkor ha a A és b B : a b, akkor
1 2. gyakorlat Matematikai és nyelvi alapfogalmak. dr. Kallós Gábor
1 2. gyakorlat Matematikai és nyelvi alapfogalmak dr. Kallós Gábor 2017 2018 Köszönetnyilvánítás Köszönetnyilvánítás (Acknowledgement) Ez a gyakorlati feladatsor nagyban épít a következő könyvre Elements
Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O
1. Mit nevezünk elemi eseménynek és eseménytérnek? A kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük. Az adott kísélethez tartozó elemi események halmazát eseménytérnek nevezzük, jele: X 2.
Matematika B4 I. gyakorlat
Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a
3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.
3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.
MÉRÉSI ADATOK KEZELÉSE ÉS ÉRTÉKELÉSE
MÉRÉSI ADATOK KEZELÉSE ÉS ÉRTÉKELÉSE Köryezettudomáy alapo taöyvsorozat A öryezetta alapja A öryezetvédelem alapja Köryezetfza Köryezet áramláso Köryezet ásváyta Köryezet mtavételezés Köryezetéma Köryezetmősítés