Nem-extenzív effektusok az elemi kvantumstatisztikában?

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Nem-extenzív effektusok az elemi kvantumstatisztikában?"

Átírás

1 Nm-xtzív tuso az lm vatumstatsztába? Bró Tamás Sádor MTA Wgr FK RMI Boltzma-Gbbs-Plac-Réy-Tsalls 2. Frm & Bos altérb á la Gbbs-Boltzma 3. NBD mt szuprstatszta 4. Kohrs állapot, Posso statszta 5. Átlagüggő sajátérté Hartr st Wgr Eötvös Öépzőör: WEÖK

2 .Boltzma-Gbbs-Plac-Shao- Réy-Tsalls- S = log W W m valószíűség! Ismétléss prmutácó + Strlg ormula -p log p ormula a szumma p = ltétlll A log x általáosítása A W általáosítása Addtvtás vs. No-addtvtás Trmodama hőmérsélt. őtétl Ha a öryzt paramétr ügg az alrdszr állapotától: m xpocáls

3 Ludwg Boltzma, S = log W Va- hőmérsélt? 3

4 Boltzma trópa éplt S = log W Ha W 2 = W W 2 aor S 2 = S + S 2 Va- hőmérsélt? 4

5 Boltzma trópa éplt S = log W Függtl prmutácó: W = N! Strlg ormula: log N! N log N Ismétléss prmutácó: W = N! N! N Valószíűség: w = lm N N Va- hőmérsélt? 5

6 Gbbs lvztés l W N l N N l N l W N l N Nw lnw l W N l N w N w l w S w l w míg w.

7 Boltzma-Gbbs Etrópa: Extzív S Boltzma Gbbs w l w w q Z E

8 Addtív trópa Egysúly loszlás atorzálód addtív rga E E E 2 2 E 2 E E 2

9 Frm & Bos altérb Részcsé és lua: Frm-Drac Részcsé többszörös: Bos-Est A maradé ázstrt btöltjü a maradé vatumoal, ormálu: mroaous A agy öryzt lmtb az átlagérté bállítód: aous Hprgomtrus Broull Posso

10 + x = = Gráló soro x x = = x = = + x

11 Frm loszlás alrdszrb P, K N K N

12 Frm loszlás s alrdszrb, N N!K K N N! K! K N K P N N!! N N, K,

13 Frm loszlás s alrdszrb = Broull loszlás K N P N K N K N K P,, A hams érmé törtét

14 Kvés vatum s alrdszrb = Posso loszlás P,! /! Halálst vagy radoatív bomlás: rta és üggtl

15 Kvés vatum s alrdszrb = Posso loszlás xp Halálst vagy radoatív bomlás: rta és üggtl

16 Bos loszlás alrdszrb P, K K N N N N szt és grjsztés ttszőlgs vré

17 Bos loszlás s alrdszrb P,

18 Bos loszlás s alrdszrb Posso lmtb /,! P

19 Bos loszlás s alrdszrb Posso lmtb

20 Általáos szabály az átlagra btöltés Posso = btöltés Broull lu Broull

21 Ngatív bomáls NBD. P

22 Frm Bos traszormácó: szuprszmmtra B, F, F, B, varás

23 Statszta végs ázstérb Frm loszlás Broull, Posso Bos loszlás NBD, Posso Szuprstatszta: loszláso ovolúcója Va- hőmérsélt? 23

24 NBD mt szuprstatszta Ngatív bomáls loszlás Eulr-Gamma tgrál NBD mt ovolúcó: Eulr * Posso Tsalls-Parto = Eulr * Boltzma-Gbbs M lht a apcsolat?

25 NBD = Eulr Posso x, N ax N dx x!! P a N! dx x

26 NBD = Eulr Posso P, x! x x! x dx Posso -ba, Eulr-Gamma x-b Sz u p r s t a t sz t a

27 Suprstatszta a hatváyloszláshoz E x ˆ cx c c c q q / â q x c dx Z w c ˆE Z w E â w c Eulr-Gamma

28 NBD = Eulr Posso Powr Law = Eulr Gbbs P, x! x x! x dx w q Z dx c c c x c cx xˆ E Sz u p r s t a t sz t a

29 NBD = Eulr Posso Powr Law = Eulr Gbbs!!!, q dx x Z w dx x x P x x E q x x Sz u p r s t a t sz t a

30 Eloszlás atorzálód Erga m addtív w q Ẑ âˆe / â / â / â â ˆE â ˆE âˆe 2 2 / â E 2 E E 2 âˆe E 2

31 Kohrs állapoto Dícó, Foc-jtés Átdés gymással Kapcsolat az oszcllátorral, tgrál Átdés az -bozo állapottal: Posso Fázsátlagolt ohrs oprátor TrAB A-a -bozo állapot, B- ohrs állapot lgy a sajátállapota

32 Kohrs állapoto Az ltüttő oprátor sajátállapota omplx sajátértél a z > = z z > < z a a z > = z 2 = z = p + q = φ d 2 z π z >< z = d 2 z π = dpdq 2π = d dφ 2π

33 Kohrs állapoto Átdés gymással és az -vatum állapottal < z z 2 > 2 = z z 2 2 < z > 2 =!

34 Kohrs állapoto Kaous statsztus trac -vatum sajátállapotú oprátorral Ha ormál rdztt a rho oprátor d z d z d d O z z O O z z z O tr!, ˆ ˆ ˆ

35 Kohrs állapoto Kaous statsztus trac -vatum sajátállapotú oprátorral Ha ormál rdztt a rho oprátor z d P P z w O w O tr! ˆ ˆ 2 Posso -b, Eulr-Gamma -ba

36 Kohrs állapoto Kaous statsztus trac -vatum sajátállapotú oprátorral és sálázó ázsátlagolt Hamltoal Ha ormál rdztt a rho oprátor, 2 2 H d z d P d P d P z w Szuprstatsztus súly!

37 Kohrs állapoto Kohrs ázsátlag és sptráls lbotás ha rho-a sajátállapota d E E d O d S O d O d O tr!!! ˆ ˆ 2 2

38 Kohrs állapoto Kohrs ázsátlag és sptráls lbotás ha rho-a sajátállapota E d d O d S O d O d S! 2 2 Csas cs bta hbar omga ra!!!!

39 Kohrs állapoto A sptráls lbotás ormálása ha rho-a sajátállapota! ˆ S S d S tr d d d

40 Összgzés Hol tartu? M a érdés? Mrr tovább? Mr lsz z jó?

41 Taácso, mgjgyzés Whrl trópa Általáosított ohrs állapot sht oprátorrral Klasszus tér ohrs állapot: p-üggés tgrálva P-rprztácó: q-üggés tgrálva Posso rprztácó: ph üggés tgrálva Hogya végsít a ölcsöhatás a ázstrt?

A nagy számok törvényének néhány alkalmazása. Valószínűségszámítás. Példák. Konvolúció. Normális eloszlások konvolúciója

A nagy számok törvényének néhány alkalmazása. Valószínűségszámítás. Példák. Konvolúció. Normális eloszlások konvolúciója A agy sámo örvéyé éháy alalmaása Valósíűségsámíás. lőadás 5..5. Y Kovolúció Függl valósíűségi váloó össgé loslása Képl a absolú olyoos sr: ( ( u ( u du Y Y Bioyíásho a ljs valósíűség él mgllőj (a lőő épl

Részletesebben

Valószínűségszámítás. A standard normális eloszlás karakterisztikus függvénye. További tulajdonságok. További tulajdonságok.

Valószínűségszámítás. A standard normális eloszlás karakterisztikus függvénye. További tulajdonságok. További tulajdonságok. Karakriszikus függvéy Valószíűségszámíás. lőadás 07..05 Kompl érékű valószíűségi válozók: Z=+iY, ahol és Y is valószíűségi válozók. Z):=)+iY). (valós) valószíűségi válozó karakriszikus függvéy: ():= i

Részletesebben

Valós változós komplex függvények. y 0 görbe egyenlete komplex alakban: f x, y 0. Komplex változós komplex függvények y, ahol z x.

Valós változós komplex függvények. y 0 görbe egyenlete komplex alakban: f x, y 0. Komplex változós komplex függvények y, ahol z x. Valós váltoós omplx üggvéy, t x t yt rt cost st r t t, t dt b Ft C, t dt F t FbFa a t x t y t b. x, y görb gylt omplx alaba: x, y. a Komplx váltoós omplx üggvéy u x, y v x, y, ahol x y, Drválás: ( ) lm

Részletesebben

Van-e hőmérséklet? 1. Biró Tamás Sándor MTA KFKI RMKI

Van-e hőmérséklet? 1. Biró Tamás Sándor MTA KFKI RMKI Vn-e hőmérséklet?. Bró Tmás ándor MTA KFKI RMKI Vn-e hőmérséklet? Hogyn mérjük? Julus Robert von Myer, 84-878 Hő munk ~ energ Bemerkungen über de Kräfte der belebten und unbelebten Ntur, Annlen der Cheme

Részletesebben

1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél

1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél Valószíűségszámítás 1 előadás al.mat BSc szaosoa 2015/2016 1. félév Zemplé Adrás zemple@ludes.elte.hu http://www.cs.elte.hu/~zemple/ 1. előadás: Bevezetés Irodalom, övetelméye A félév célja Valószíűségszámítás

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem

Részletesebben

Szervomotor sebességszabályozása

Szervomotor sebességszabályozása Srvomotor sbsségsabályoása. A gyaorlat célja Egynáramú srvomotor sbsségsabályoásána trvés. A motorsabályoás programváána flépítés. A sbsség rányítás algortms mgvalósítása valós dbn. 2. Elmélt bvt A motor

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika ... Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB

Részletesebben

1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél

1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél Valószíűségszámítás előadás formata BSC/ szaosoa és matemata elemző BSC-see 2015/2016 1. félév Zemplé drás zemple@ludes.elte.hu http://www.cs.elte.hu/~zemple/ 1. előadás: Bevezetés Irodalom, övetelméye

Részletesebben

Feladatok megoldással

Feladatok megoldással Fladatok mgoldással. sztmbr 6.. Halmazrdszrk. Igazoljuk! A \ B A r (A r B) (A [ B) r ((A r B) [ (B r A)) Mgoldás. A r (A r B) A \ A \ B A \ A [ B A \ A [ (A \ B) A \ B (A [ B) r ((A r B) [ (B r A)) (A

Részletesebben

ĺ ö ö ü ű Ü ü ĺ ü ú ö ű ö ö ü ĺĺ ź Ü ö Ĺĺ Ü ĺ É Ü ľ ö ę ü ĺ

ĺ ö ö ü ű Ü ü ĺ ü ú ö ű ö ö ü ĺĺ ź Ü ö Ĺĺ Ü ĺ É Ü ľ ö ę ü ĺ Á ö É ö Á ö ö ö ö ö ö ö Ö ü ö ö Ü ü ű ö ú ű ö ű Ü ö ö ö ü ö ľ ü ö ű ö ö ö ű ö ö ĺ ö ö ü ű Ü ü ĺ ü ú ö ű ö ö ü ĺĺ ź Ü ö Ĺĺ Ü ĺ É Ü ľ ö ę ü ĺ ü ö ű ö ĺ ö ú ö ö Ü ö ü Á ü ű ĺ ü ö ö ü ű ö Á ü Ü ö ű ö Ü ö ö

Részletesebben

) ( s 2 2. ^t = (n x 1)s n (s x+s y ) x +(n y 1)s y n x+n y. +n y 2 n x. n y df = n x + n y 2. n x. s x. + s 2. df = d kritikus.

) ( s 2 2. ^t = (n x 1)s n (s x+s y ) x +(n y 1)s y n x+n y. +n y 2 n x. n y df = n x + n y 2. n x. s x. + s 2. df = d kritikus. Kétmtás t-próba ^t ȳ ( s +( s + + df + vag ha, aor ^t ȳ (s +s Welch-próba ^d ȳ s + s ( s + s df ( s ( s + d rtus t s (α, +t s (α, s + s Kofdecatervallum ét mta átlagáa ülöbségére SE s ( + s ( ±t (α,df

Részletesebben

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.

Részletesebben

Néhány pontban a függvény értéke: x -4-2 -1-0.5 0.5 1 2 4 f (x) -0.2343-0.375 0 6-6 0 0.375 0.2343

Néhány pontban a függvény értéke: x -4-2 -1-0.5 0.5 1 2 4 f (x) -0.2343-0.375 0 6-6 0 0.375 0.2343 Házi ladatok mgoldása 0. nov.. HF. Elmzz az ( ) = üggvényt (értlmzési tartomány, olytonosság, határérték az értlmzési tartomány véginél és a szakadási pontokban, zérushly, y-tnglymtszt, monotonitás, lokális

Részletesebben

2.2. AZ ANYAGHULLÁMOK A

2.2. AZ ANYAGHULLÁMOK A .. AZ ANYAGHULLÁMOK A fénynél nm udun dönn: maráns hullámjlnség mua más jlnségbn részcsén lász Elron: ddg mndnü részcs (pl. /m ísérl) hullámulajdonságo mua- valahol? [LOUIS DE BROGLIE (89-87), 94-7: részcshullám,

Részletesebben

4. feladatsor Mátrixok

4. feladatsor Mátrixok 4 feladatsor Mátrixok 41 Feladat Döntse el, hogy igazak-e az alábbi állítások, és döntését röviden indokolja: (a) n i=1 i = 1 i n i (b) 1 i>n 1 = 1 minden n pozitív egészre; (c) n i i=1 j=1 (i j) = n j

Részletesebben

Rácsrezgések.

Rácsrezgések. ácsrzgésk http://physics-imtis.cm/physics/glish/ph_txt.htm ácsrzgésk gitális hllám rúb Nwt II F x x F x V t F F x A x V x x x x x x A hllámszám értlmzési trtmáy végs mért prióiks htárfltétl Br-Kármá t

Részletesebben

Intézményakkreditációs lajstromszám: AL-2566 Nyilvántartási szám: 16-0098-06; E-000330/2014 KIMUTATÁS KÉPZÉSI HELYSZÍNEK, MEGVALÓSÍTOTT KÉPZÉSEK

Intézményakkreditációs lajstromszám: AL-2566 Nyilvántartási szám: 16-0098-06; E-000330/2014 KIMUTATÁS KÉPZÉSI HELYSZÍNEK, MEGVALÓSÍTOTT KÉPZÉSEK Intézménykkreditációs ljstromszám: AL-2566 Nyilvántrtási szám: 16-0098-06; E-000330/2014 KIMUTATÁS KÉPZÉSI HELYSZÍNEK, MEGVALÓSÍTOTT KÉPZÉSEK Tel: 56/52012, Fx: 56/52014 e-mil: felnottkepzes@contctnkft.hu

Részletesebben

5. témakör. Megújuló energiaforrások

5. témakör. Megújuló energiaforrások 5. témakör Megújuló energiaforrások Tartalom 1. A világ energiapotenciálja 2. Magyarország energiapotenciálja 3. Energiatermelés megújuló energiaforrásokból 3.1. Vízer m 3.2. Széler m 3.3. Napenergia 3.4.

Részletesebben

ELTE I.Fizikus 2004/2005 II.félév. KISÉRLETI FIZIKA Elektrodinamika 13. (IV.29 -V.3.) Interferencia II. = A1. e e. A e 2 = A e A e * = = A.

ELTE I.Fizikus 2004/2005 II.félév. KISÉRLETI FIZIKA Elektrodinamika 13. (IV.29 -V.3.) Interferencia II. = A1. e e. A e 2 = A e A e * = = A. omplx lírás: ELTE I.izius 004/005 II.félév + cos ϕ R ϕ KISÉRLETI IZIK Eltrodinamia 3. (IV.9 -V.3.) Intrfrncia II. [ ]; sin ϕ Im [ ] * i cosϕ + i sinϕ ; cosϕ isinϕ * ; cos ϕ R [ ] f cos ( ω t + ϕ) ; f cos

Részletesebben

Abszolút folytonos valószín ségi változó (4. el adás)

Abszolút folytonos valószín ségi változó (4. el adás) Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

Világítástechnikai alapfogalmak

Világítástechnikai alapfogalmak Világítástechnikai alapfogalmak - Látásunk révén szerezzük meg az érzékszerveink által felfogott teljes információmennyiség közel 90 %-át. - Mit látunk? Hogyan látjuk mindezt? - Vizuális környezet - Belsőtér,

Részletesebben

Numerikus módszerek 1. Alapvető fogalmak és összefüggések. Hogyan mérjük azt, hogy egy függvény nagy vagy kicsi?

Numerikus módszerek 1. Alapvető fogalmak és összefüggések. Hogyan mérjük azt, hogy egy függvény nagy vagy kicsi? umrus módszr. Apvtő ogm és összüggés Hog mérü zt hog g üggvé g vg cs? P. C[ ] - z [ ] trvumo otoos üggvé tré g : m C mmum-orm vg C-orm Eg más htőség: : d -orm Eg hrmd htőség: L és még számt más htőség

Részletesebben

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke

Részletesebben

Makrovilág mikrovilág. A mikrovilág: atom, atommag, elektron, foton. Makrovilág mikrovilág. Méretek. Atomfizika

Makrovilág mikrovilág. A mikrovilág: atom, atommag, elektron, foton. Makrovilág mikrovilág. Méretek. Atomfizika Makrovilág mikrovilág A mikrovilág: atom, atommag, lktro, foto Atomfizika Smllr László Makrovilág mikrovilág A agyo kis objktumok m ugyaúgy vislkdk? Görögök: a-tom XX. századi fizika: kvatumlmélt Myir

Részletesebben

12. Laboratóriumi gyakorlat MÉRÉSEK FELDOLGOZÁSA

12. Laboratóriumi gyakorlat MÉRÉSEK FELDOLGOZÁSA . Laoratórum gakorlat MÉRÉSK FLDOLGOZÁSA. A gakorlat célja Lgks égztk LS) módszré alapuló polom-llsztés proléma mutatása és a módszr alkalmazása mérés rdmék fldolgozására, lltv érzéklő karaktrsztkák aaltkus

Részletesebben

A hőmérsékleti sugárzás

A hőmérsékleti sugárzás A hőmérséklt sugárzás (Dr. Parpás Béla lőadása alapján ljgyzték a Mskolc gytm harmadévs nformatkus hallgató) Alapjlnségk Mndnnap tapasztalat, hogy a mlgíttt tstk hősugárzást (nfravörös sugárzást) bocsátanak

Részletesebben

KOD: B377137. 0, egyébként

KOD: B377137. 0, egyébként KOD: 777. Egy csomagológép kilogrammos zacskókat tölt. A zacskóba töltött cukor mnnyiség normális loszlású valószínûségi változó kg várható értékkl és.8 kg szórással. A zacskó súlyra nézv lsõ osztályú,

Részletesebben

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )

Részletesebben

A Standard modellen túli Higgs-bozonok keresése

A Standard modellen túli Higgs-bozonok keresése A Standard modellen túli Higgs-bozonok keresése Elméleti fizikai iskola, Gyöngyöstarján, 2007. okt. 29. Horváth Dezső MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen Horváth

Részletesebben

Mágneses momentum, mágneses szuszceptibilitás

Mágneses momentum, mágneses szuszceptibilitás Mágnss ontu, ágnss szuszcptibilitás A olkuláknak (atooknak, ionoknak) lktronszrkztüktől függőn lht pranns (állandóan glévő) ágnss ontua. Ha ágnss térb krülnk, a tér hatására indig ágnss ontu jön létr az

Részletesebben

1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél

1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél Valószíűségszámítás 1 előadás mat. BSc alk. mat. szakráyosokak 2016/2017 1. félév Zemplé Adrás zemple@ludes.elte.hu http://zemple.elte.hu/ 1. előadás: Bevezetés Irodalom, követelméyek A félév célja Valószíűségszámítás

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

&BCDE $FGHI JKLMNO P5QR23STU VFWXY J 7N Z[\5]^67 _T `abc 9 5 DE F 7 U 7 F \7 8 G A F U. F Z [4O 7 4O 7 75FM I X 7Q!"#$%&#$' ( )*+,-. / %)&

&BCDE $FGHI JKLMNO P5QR23STU VFWXY J 7N Z[\5]^67 _T `abc 9 5 DE F 7 U 7 F \7 8 G A F U. F Z [4O 7 4O 7 75FM I X 7Q!#$%&#$' ( )*+,-. / %)& &BCDE $FGHI JKLMNOP5QR23STU VFWXY J 7N Z[\5]^67 _T `abc 9 5 DE F 7 U 7 F\7 8 G A F U. F Z [4O 7 4O 7 75FM I X 7Q!"#$%&#$'( )*+,-. /0 1 2345678 %)& 9:;7 4567 ( )? /0 1 @ A !"#$%&'()*+,-./01 U $ $ :;7

Részletesebben

Dr. Nagy Balázs Vince D428

Dr. Nagy Balázs Vince D428 Műszaki Optika 2. előadás Dr. Nagy Balázs Vince D428 nagyb@mogi.bme.hu Izzólámpa és fénycső 30,0 25,0 20,0 15,0 10,0 5,0 0,0 350 400 450 500 550 600 650 700 750 2 Fényforrások csoportosítása Fényforrások

Részletesebben

Statisztika 1. zárthelyi dolgozat március 21.

Statisztika 1. zárthelyi dolgozat március 21. Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy

Részletesebben

Statisztika I. 4. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 4. előadás. Előadó: Dr. Ertsey Imre Statsztka I. 4. előadás Előadó: Dr. Ertsey Imre KÖZÉPÉRTÉKEK A statsztka sor általáos jellemzésére szolgálak, a statsztka sokaságot egy számmal jellemzk. Számított középértékek: matematka számítás eredméyekét

Részletesebben

Kvantummechanika gyakorlo feladatok 1 - Megoldások. 1. feladat: Az eltolás operátorának megtalálásával teljesen analóg módon fejtsük Taylor-sorba

Kvantummechanika gyakorlo feladatok 1 - Megoldások. 1. feladat: Az eltolás operátorának megtalálásával teljesen analóg módon fejtsük Taylor-sorba Kvatummechaika gyakorlo felaatok - Megolások felaat: z eltolás operátoráak megtalálásával teljese aalóg móo fejtsük Taylor-sorba a hullámfüggvéyt a változójába: ψr θ ϕ + ϕ ψr θ ϕ + ψr θ ϕ ϕ + ψr θ ϕ ϕ

Részletesebben

1. KVANTUMJELENSÉGEK, SUGÁRZÁSOK A kvantumfizika kísérleti alapjai. A klasszikus fizika néhány egyenlete és korlátai.

1. KVANTUMJELENSÉGEK, SUGÁRZÁSOK A kvantumfizika kísérleti alapjai. A klasszikus fizika néhány egyenlete és korlátai. . KVANTUMJELENSÉGEK, SUGÁRZÁSOK.. A kantumfizika kísérlti alapjai A klasszikus fizika néány gynlt és korlátai Haladó mozgás Ha ismrjük x 0 -t és p 0 -t, akkor mgatározatjuk x t -t és p t -t is bármly későbbi

Részletesebben

Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat

Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat Megállapítható változók elemzése Függetleségvzsgálat, lleszkedésvzsgálat, homogetásvzsgálat Ordáls, omáls esetre s alkalmazhatóak a következő χ próbá alapuló vzsgálatok: 1) Függetleségvzsgálat: két valószíűség

Részletesebben

Atomok mágneses momentuma

Atomok mágneses momentuma Kvantuchanikai pályaontu: A pályaontu gységkbn kvantált. Az abszolút érték kvantuszáai: l! ( n ) 0,,... l l,, Lˆ rˆ pˆ [ Lˆ x,lˆ y] i! Lˆ z, [ Lˆ y,lˆ z ] i! Lˆ x, [ Lˆ z,lˆ x ] i! Lˆ y L l( l +)! L z

Részletesebben

ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 13. (XII. 13) Boltzman statisztika, termodinamikai valószínőség

ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 13. (XII. 13) Boltzman statisztika, termodinamikai valószínőség d ELTE II. Fzkus, 005/006 I. éév KISÉRLETI FIZIKA Hıtan. (XII. Botzman statsztka, trmodnamka vaószínőség A ázstér p y dp y. dp p N db atom van, s az atomokat a hyükk (r, r + dr és az mpuzusukka (p, p +

Részletesebben

Integrált Intetnzív Matematika Érettségi

Integrált Intetnzív Matematika Érettségi tgrált ttzív Matmatika Érttségi. Adott az f : \ -, f függvéy. a) Számítsd ki az f függvéy driváltját! b) Határozd mg az f függvéy mootoitási itrvallumait! c) gazold, hogy f ( ) bármly sté!. Adott az f

Részletesebben

Vezetéki termikus védelmi funkció

Vezetéki termikus védelmi funkció Budaps, 011. április Bvzés A vzéki rmikus védlmi fukció alapvő a hárm miavélz fázisáram méri. Kiszámlja az ffkív érékk, és a hőmérsékl számíásá a fázisáramk ffkív érékér alapzza. A hőmérséklszámíás a rmikus

Részletesebben

Bányaipari technikus T 1/6

Bányaipari technikus T 1/6 A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Az ideális Fermi-gáz termodinamikai mennyiségei

Az ideális Fermi-gáz termodinamikai mennyiségei Az ideális Fermi-gáz termodinamikai mennyiségei Kiegészítés III. éves BSc fizikusok számára Cserti József Eötvös Loránd udományegyetem, Komplex Rendszerek Fizikája anszék 2017. március 1. Néhány alapvető

Részletesebben

MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY

MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY (Kezdő 9. évfolyam) A feladatokat a Borbás Lászlóné MATEMATIKA a nyelvi előkészítő évfolyamok számára című könyv alapján állítottuk össze. I. Számok, műveletek számokkal.

Részletesebben

MIKROELEKTRONIKA, VIEEA306

MIKROELEKTRONIKA, VIEEA306 udapesti Műszaki és Gazdaságtudomáyi gyetem MKROLKROKA, VA306 A bipoláris trazisztor. http://www.eet.bme.hu/~poppe/miel/hu/07-bipol.ppt http://www.eet.bme.hu A beépített tér, hatásfokok eépített tér számítása

Részletesebben

ő ó ő ö Í ű ü ó ó ő ö ó ő ü ű ö ü ľ ő ó ő ő ü ó ü ö ö ö í ő ó í ľ ő ő í ľ í ö ő ó ö ó ö ľ ü ü ű ó ź ó ö í ő ó ö ľ ó ű ó í ú ú í ú ü í ú ú ú ľ ó í ö Ĺ

ő ó ő ö Í ű ü ó ó ő ö ó ő ü ű ö ü ľ ő ó ő ő ü ó ü ö ö ö í ő ó í ľ ő ő í ľ í ö ő ó ö ó ö ľ ü ü ű ó ź ó ö í ő ó ö ľ ó ű ó í ú ú í ú ü í ú ú ú ľ ó í ö Ĺ É Ł ą ŕ Ü Á Á ó í ľ ľ ö ő ő ľü ó ö í ó ó ľ ľ ö ő ö í ó ú ő ź ó ö í Ĺ ö ö í í Ĺ ő ťę ő ó ź ź ó ű ö ö ö í ó í ő ü ú ź ó ź ö í ó í ľ ľ ó í í í í ľ ő ő ő ö ľ ę ó ö ü ö ź ö í ő ľ í ü ő ő í ő ö í ó ź ö ľ ű ő

Részletesebben

M3 ZÁRT CSATORNÁBAN ELHELYEZETT HENGERRE HATÓ ERŐ MÉRÉSE

M3 ZÁRT CSATORNÁBAN ELHELYEZETT HENGERRE HATÓ ERŐ MÉRÉSE M3 ZÁRT CSATORNÁBAN ELHELYEZETT HENGERRE HATÓ ERŐ MÉRÉSE. A mérés élja A mérés fladat égyzt krsztmtsztű satorába bépíttt, az áramlás ráyára mrőlgs szmmtratglyű, külöböző átmérőjű hgrkr ható ( x, y ) rő

Részletesebben

A KVARKANYAG SZOKATLAN TERMODINAMIKÁJA

A KVARKANYAG SZOKATLAN TERMODINAMIKÁJA A KVARKANYAG SZOKALAN ERMODINAMIKÁJA Bíró amás Sáor MA KFKI Részecse és Magfza Kutató Itézet M a varayag? Az ayag szerezete, folytoosság vagy atomosság, az atom része, az atommag része Eleme-e az elem

Részletesebben

é ú ű ü é é é é ű ű ö é ö ö ö ú é é ü ü é é é í ź ź ĺ ö ö é é é ź í ź ö ö é ú ł ĺ é ű é é í ź ą é í í é é é ł é ö é í é é ú í í é é é é é é ú é ö í é

é ú ű ü é é é é ű ű ö é ö ö ö ú é é ü ü é é é í ź ź ĺ ö ö é é é ź í ź ö ö é ú ł ĺ é ű é é í ź ą é í í é é é ł é ö é í é é ú í í é é é é é é ú é ö í é ę ę ů é é é é Ĺ ü é í ü é ö é ź ď ĺ í ü é ĺĺ ö é ź ź íĺ ö é ü é É Í É Á ĺ É É É Í Ü Á É Í Á É É Ü É ĺé ł Á ą ĺ É ĺ é é ü é é ĺ é é ź ä é ĺ é ĺ ü é ź é ö ö ź ö ü é ö é é é é ű é í é é é ę é é é é é é í

Részletesebben

Elektrotechnika. 7. előadás. Összeállította: Dr. Hodossy László

Elektrotechnika. 7. előadás. Összeállította: Dr. Hodossy László 7. előadás Összeállította: Dr. Hodossy László . Ellenállás 7.. Impedancia.. Csillag kapcsolás Váltakozóáramú Teljesítményszámítás Váltakozóáramú teljesítmény általában: Váltakozóáramú teljesítmény ellenálláson

Részletesebben

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum) Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa

Részletesebben

Valószínűségszámítás és statisztika előadás Info. BSC B-C szakosoknak. 1. előadás: Bevezetés. Számonkérés. Irodalom. Cél. Véletlen tömegjelenségek

Valószínűségszámítás és statisztika előadás Info. BSC B-C szakosoknak. 1. előadás: Bevezetés. Számonkérés. Irodalom. Cél. Véletlen tömegjelenségek Valószíűségszámítás és statszta előadás If. S - szasa 008/09. félév Zemplé drás zemple@caesar.elte.hu zemple.elte.hu. előadás: evezetés Irdalm, övetelméye félév céla Valószíűségszámítás tárgya Törtéet

Részletesebben

1 A kvantummechanika posztulátumai

1 A kvantummechanika posztulátumai A kvantummechanika posztulátumai October 29, 2006 A kvantummechanika posztulátumai Célunk felépíteni a kvantummechanikát posztulátumok segítségével úgy ahogy az elemi hullámmechanika során eljártunk. Arra

Részletesebben

A mikrorészecskék kettős természete, de Broglie-hipotézis

A mikrorészecskék kettős természete, de Broglie-hipotézis A mkrorészcskék kttős trmészt, d Brogl-hpotézs... Hullámcsomag... Kétréss kísérlt... 4 A Hsnbrg-fél határozatlanság rlácó... 5 A kvantummchanka alapja... 0 A kvantummchanka alaplv (alapaómá)... 0 Az oprátorok

Részletesebben

ANYAGMOZGATÓ BERENDEZÉSEK

ANYAGMOZGATÓ BERENDEZÉSEK ANYAGMOZGATÓ BERENDEZÉSEK 265 Anyagmozgató brndzésk Tartalomjgyzék Tartalomjgyzék A Pfaff-silbrblau anyagmozgató brndzésk kiválóan Kézi raklapmlők 270-281 Kézi raklapmlők mérlggl 282-283 Kézi ollós raklapmlők

Részletesebben

3.1. A Poisson-eloszlás

3.1. A Poisson-eloszlás Harmadik fejezet Nevezetes valószíűségi változók Valamely valószíűségi változóhoz kapcsolódó kérdésekre akkor tuduk potos választ adi, ha a változó eloszlása ismert, vagy megközelítőleg ismert. Ebbe a

Részletesebben

Pató Zsanett Környezettudomány V. évfolyam

Pató Zsanett Környezettudomány V. évfolyam Pató Zsanett Környezettudomány V. évfolyam Budapest, Témavezető: Dr. Konzulensek: Dr. Dr. Dr. Homonnay Zoltán Varga Beáta Süvegh Károly Marek Tamás A csernobili baleset és következményei Mérési módszerek:

Részletesebben

BSI. Gerendapapucs belső rögzítéssel Háromdimenziós perforált lemez horganyzott szénacélból BSI - 01 HATÉKONY KIFORDÍTÁS DISZKRÉT JÓVÁHAGYOTT

BSI. Gerendapapucs belső rögzítéssel Háromdimenziós perforált lemez horganyzott szénacélból BSI - 01 HATÉKONY KIFORDÍTÁS DISZKRÉT JÓVÁHAGYOTT SI Geredapapucs belső rögzítéssel áromdimeziós perforált lemez horgayzott széacélból ATÉKONY Szabváyosítot, hiteles, gyors és olcsó redszer ALKALMAZÁSI TERÜLET Fa-fa yírókötés, mid derékszögbe mid kifordítva

Részletesebben

1. előadás: Bevezetés. Irodalom. Számonkérés. A valószínűségszámítás és a statisztika tárgya. Cél

1. előadás: Bevezetés. Irodalom. Számonkérés. A valószínűségszámítás és a statisztika tárgya. Cél Valószíűségszámítás és statsztka előadás fo. BSC/B-C szakosokak 1. előadás szeptember 13. 1. előadás: Bevezetés Irodalom, követelméyek A félév célja Valószíűségszámítás tárgya Törtéet Alapfogalmak Valószíűségek

Részletesebben

A Magyar Nemzeti Bank H-EN-III-275/2019. számú határozata tőkepiaci közvetítők Bszt. szerinti hatósági nyilvántartásba vétele tárgyában

A Magyar Nemzeti Bank H-EN-III-275/2019. számú határozata tőkepiaci közvetítők Bszt. szerinti hatósági nyilvántartásba vétele tárgyában A Magyar Nemzeti Bank H-EN-III-275/2019. számú határozata tőkepiaci közvetítők Bszt. szerinti hatósági nyilvántartásba vétele tárgyában A Magyar Posta Befektetési Szolgáltató Zártkörűen Működő Részvénytársaság

Részletesebben

í ü ź ź í Ĺ ü ź í ü ľ ź ľ Ĺ ź ű ź ź ľ źń ź ę í ü ę ü ľ ü ľ ú ęľü ľ ľ í ľ ę ľ í ľ ľ źń ď ź ľ ľü ľ í ľü ę źú źú í ľ ľ í ľ ľü í í ü í đ í ľ ľ ľ ę ź ľ ű ź

í ü ź ź í Ĺ ü ź í ü ľ ź ľ Ĺ ź ű ź ź ľ źń ź ę í ü ę ü ľ ü ľ ú ęľü ľ ľ í ľ ę ľ í ľ ľ źń ď ź ľ ľü ľ í ľü ę źú źú í ľ ľ í ľ ľü í í ü í đ í ľ ľ ľ ę ź ľ ű ź Ł ľ ľ ľ ľ ł ľ í í ľ ľ í ü ľ íľ đ źů í Í É Í Á ł ł Ą É Íľ ł ľ ł É Ü É ń ľ ľ ł Á ľ É É ľ ą ł ľá ł ľ ľá É É É Á ü ľ ľ ľľ ź ź Á Á ľłľá Ü ľł ů ľ ľ ľ ź ľ ü í ľ ľ ü ľ ľü í ľ ź ľ ź ź ľ í ľ í Í ű ľ ľ ü ü ł ŕ úą

Részletesebben

ρ = 0 különben. STATISZTIKUS FIZIKA II Kvantummechanikai állapotok, kvantumsokaságok

ρ = 0 különben. STATISZTIKUS FIZIKA II Kvantummechanikai állapotok, kvantumsokaságok SAISZIKUS IZIKA II Kvatucaiai állaoto vatusoaságo A övtzıb gvizsgálju og il övtzéi vaa a vatucaiáa a statisztius fiziára ézv. gsúli rdszrl foglalozu. A fı fladato a övtzı:. Mg ll atározi a statisztius

Részletesebben

Mag- és részecskefizika

Mag- és részecskefizika Mag- és részcskfizika Horváth Ákos lőadása alapjá Második zh mlékzttő . Rádióaktivitás..Rádióaktivitás statisztikus kép...vizsgálat fltétlzési N db radioaktív atommaguk va Ezk gymástól függtlk, lég mssz

Részletesebben

1 Egydimenziós szórás, alagúteffektus

1 Egydimenziós szórás, alagúteffektus Egydmezós szórás, alagúteffektus Potecál barrer I : x a V x V > II : a x III : x > Hullámfüggvéyek és áramsűrűségek E k m ψ I x Ae kx + Be kx 3 ψ III x Ce kx 4 j I x m Im ψi x dψ I x A k dx m k B m + m

Részletesebben

2. Gázok 2.1. Ideális gáz. Első rész: előző előadás folytatása. Gázok. Fázisátalakulások. További példák a Boltzmann eloszlás következményeire

2. Gázok 2.1. Ideális gáz. Első rész: előző előadás folytatása. Gázok. Fázisátalakulások. További példák a Boltzmann eloszlás következményeire Első rész: előző előadás folytatása Gázo Fázisátalauláso További példá a Boltzma eloszlás övetezméyeire. Gázo.1. Ideális gáz Ideális gáz állapot jellemzése ics ölcsöhatás E =0 szerezete redezetle Potszerűe

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geometra modellezés, alakzatrekostrukcó, yomtatás 8 Rekurzív felosztáso alauló felületek htt://cgtbmehu/ortal/ode/3 htts://wwwvkbmehu/kezes/targyak/viiiav54 Dr Várady Tamás, Dr Salv Péter BME, Vllamosmérök

Részletesebben

13. gyakorlat Visszacsatolt műveletierősítők. A0=10 6 ; ω1=5r/s, ω2 =1Mr/s R 1. Kérdések: uki/ube=?, ha a ME ideális!

13. gyakorlat Visszacsatolt műveletierősítők. A0=10 6 ; ω1=5r/s, ω2 =1Mr/s R 1. Kérdések: uki/ube=?, ha a ME ideális! . gyakorlat Visszacsatolt művltirősítők.) Példa b (s) 6 ; r/s, Mr/s kω, 9 kω, kω, ( s )( s ) Kérdésk: /b?, ha a ME ális! Mkkora lgyn érték ahhoz, hogy az /b rősítés maximális lapos lgyn ( ξ ). Mkkora a

Részletesebben

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projet eretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszéén az ELTE Közgazdaságtudományi

Részletesebben

Ö Ö Ö Ö Á ű ű ű ű ű ű ű ű ű ű

Ö Ö Ö Ö Á ű ű ű ű ű ű ű ű ű ű Ö Á ű Á Ú Ö Ö Ö Ö Á ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű Ö ű Ö ű ű ű ű Ö Ú Á Á ű ű ű ű ű Á Ó Ó Á Á Ó Ú Ó Ó Ó Á Ó Ö Á Ú Ú Ö Ú ű Ú Ú Ú Ú Ó ű ű Ó ű Á Ó ű ű ű ű ű ű ű Ö ű ű Ú ű Ú ű ű Á ű Ó ű ű Ö ű Ú Ó Á Ú Á ű Á

Részletesebben

Ö ü ú ü ű ü ű ü Á ü ű ű ú ű Á Ű ú ü ü ú ű Á ü Ú ü ű ü ü ű ü ú ú ü ú ü ü ü ü ü ü Ü Ü Ü ü Ö Ü ü ü ü ű ü ü ű ú ü ú

Ö ü ú ü ű ü ű ü Á ü ű ű ú ű Á Ű ú ü ü ú ű Á ü Ú ü ű ü ü ű ü ú ú ü ú ü ü ü ü ü ü Ü Ü Ü ü Ö Ü ü ü ü ű ü ü ű ú ü ú ü Ú ú ü ú ű ű ű ü ü ü ü ü Ó Á Ö ü ú ü ű ü ű ü Á ü ű ű ú ű Á Ű ú ü ü ú ű Á ü Ú ü ű ü ü ű ü ú ú ü ú ü ü ü ü ü ü Ü Ü Ü ü Ö Ü ü ü ü ű ü ü ű ú ü ú ú Ü ü ü ü ü Ü ü ü ü Á ü ü Ü ú ü ü ü Ö ú ü ű ü ü ü ü ü ú ü ú

Részletesebben

ő ú ő ő ő ú đ ő ź ő ú ő ő ľ ú ő ú ő ľ ľ ő ő Ą ő Ę ú ú ü ő ł ő ö ü ą ö ö ź ü ö ź ö ö ő Ĺ ľ ő ö ľ ä ő ľ ľ ő ö ź ö ú ő ľ ú ö ź ú ő ź źúź ö Í Ü ő ő ő ź Í

ő ú ő ő ő ú đ ő ź ő ú ő ő ľ ú ő ú ő ľ ľ ő ő Ą ő Ę ú ú ü ő ł ő ö ü ą ö ö ź ü ö ź ö ö ő Ĺ ľ ő ö ľ ä ő ľ ľ ő ö ź ö ú ő ľ ú ö ź ú ő ź źúź ö Í Ü ő ő ő ź Í É ő ü ő ü ü ü Í ľ ś đ ľü ľ őľ ľ ő ľ ő ő Ü ź ľ ü ö ö ü ő ľ ü Ö ľ ő ľ ů ź ő ö ö ü ę ę ü ő ő ľ ź ő ľ ľ ľü Ö źú ö ü ü ľ ű ő ö ü ľ ý ú ü ő ő ü ľ ő ő ę ö ű ö ú ő ü ź ľ ľ ő ő ľ ü ö Ö ź ő ö ü ő ű ľ ú ú ő ő ő ú

Részletesebben

FELÁLDOZOTT KAPCSOLATOK BIZALOM, KÖZÖSSÉG, SZOLIDARITÁS. Utasi Ágnes utasi@mtapti.hu

FELÁLDOZOTT KAPCSOLATOK BIZALOM, KÖZÖSSÉG, SZOLIDARITÁS. Utasi Ágnes utasi@mtapti.hu FELÁLDOZOTT KAPCSOLATOK BIZALOM, KÖZÖSSÉG, SZOLIDARITÁS Utasi Ágs utasi@mtapti.hu MI TÖRTÖNIK VELÜNK? A NAGY SZÉTBOMLÁS JELEI A modr tchikával működő fogyasztói társadalmakba létrjött szmbtűő változások

Részletesebben

ą ľ ľľľ Á Á Á Á Á ű ľ ź ü ź ü ź ą É ń Á Á Á ę ź ľ ź ü ź ľ ü ź ľ Á ľ ľ ľ ľ ü ľ ľ ď ń ź ľü ź ľü ü Ä Í ę ź ü ľ ú ü ľ ź É Á ź ź ľ ü ľ Í ü ę ź ź ę ć ľ ł Í ľ ę ź ź ľ ü ľ ü ľ ľ ľ ľ ď ź ź ľ ü ü Í Á ď ü ź ľ ź ľ

Részletesebben

A gyenge kölcsönhatás az atommagokban

A gyenge kölcsönhatás az atommagokban A gyng kölcsönhatás az atommagokban 1. Példák β-bomlásokra. Ismétlés a Mag- és részcskfizika óráról. a) Λ 0 -részcsk lbomlása, Σ 0 -részcsk lbomlása. Mindkét mikrorészcskébn a valncia kvarkok ízi: uds.

Részletesebben

ő ó ó ó ő ó ő ó ő ő ő ó ö ó ó ö ő ő ö ő ö ű ó ő ő ű ő ő ö ő ó ó ő ö ó ö ő ő ű ó ö ő ő ű ő ő ő ö ó ü ó ő ő ő ő ű ő ö ő ü ő ő ó ő ö ö ö ő ó ő ő ő ó ü ö

ő ó ó ó ő ó ő ó ő ő ő ó ö ó ó ö ő ő ö ő ö ű ó ő ő ű ő ő ö ő ó ó ő ö ó ö ő ő ű ó ö ő ő ű ő ő ő ö ó ü ó ő ő ő ő ű ő ö ő ü ő ő ó ő ö ö ö ő ó ő ő ő ó ü ö Á ó ö ő ó ó ő ő ő ő ő ó ó Á ö ö ő ő ö ő ő ő ó ö ó ó ó ó ó ő ú ő ö ő ő ó ó ó ö ő ó ó ő ö ű ö ő ő ő ö ö ő ő ó ő ó ó ó ő ó ő ó ő ő ő ó ö ó ó ö ő ő ö ő ö ű ó ő ő ű ő ő ö ő ó ó ő ö ó ö ő ő ű ó ö ő ő ű ő ő ő

Részletesebben

A kvantum-kommunikáció leírása sűrűségmátrix segítségével

A kvantum-kommunikáció leírása sűrűségmátrix segítségével LOGO A kvantum-kommunikáció leírása sűrűségmátrix segítségével Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Hogyan tekinthetünk a sűrűségmátrixokra? Zaos kvantumrendszerek kvantumállapotra

Részletesebben

é ĺ é é é ü é ľ ü é ľ ó ö é é źą é ĺ ü é é é ü é ö é é ľ ü é é ó ź ľ ó ó ó é ö é ł é ö é é ľó ó ó é ĺ é é é ó ó é é ó í ó ó é ö ó ó í ó é ó í ó ó í ó

é ĺ é é é ü é ľ ü é ľ ó ö é é źą é ĺ ü é é é ü é ö é é ľ ü é é ó ź ľ ó ó ó é ö é ł é ö é é ľó ó ó é ĺ é é é ó ó é é ó í ó ó é ö ó ó í ó é ó í ó ó í ó ľ é ú ľ é ü ľ ľ é é ü é ľ ö é ü é Í ź é ź ű ĘĘ ę é ü é É Íľ É É ĺ Á Á É Ü ľ ľé Ü Á É Íľ ľ Ü ľľé ľ łĺ ć Éľ Ü Éľ É Á Ł Í łĺ ą ł ĺ ć úĺ ľń ľ É ĺ ł ľ é é ĺ é é ľ é é ź ź é é ĺ ý é ü é ź ź é ü é é ö é ľé ľ

Részletesebben

Paritássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1

Paritássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1 Paritássértés SZEGEDI DOMONKOS FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM 2013.11.27. PARITÁSSÉRTÉS 1 Tartalom 1. Szimmetriák 2. Paritás 3. P-sértés 1. Lee és Yang 2. Wu kísérlet 3. Lederman kísérlet

Részletesebben

Légköri áramlások, meteorológiai alapok

Légköri áramlások, meteorológiai alapok Légköri áramlások, meteorológiai alapok Áramlástan Tanszék 2015. november 05. 2015. november 05. 1 / 39 Vázlat 1 2 3 4 5 2015. november 05. 2 / 39 és környezetvédelem i előrejelzések Globális Regionális

Részletesebben

ó ľ ő ĺ ź ĺ ű í ĺ ĺ ľ Ĺ í ľ ĺ ú í íĺ í ľ ľü ĺ ľ ľ Ś í ü ľű í ń ö ö ľü ő ú í ö í ę ź í ĺí ó ľ ö ę ę í ö ü ő ú í ő Ąí í í í í ö ę í ö ę í

ó ľ ő ĺ ź ĺ ű í ĺ ĺ ľ Ĺ í ľ ĺ ú í íĺ í ľ ľü ĺ ľ ľ Ś í ü ľű í ń ö ö ľü ő ú í ö í ę ź í ĺí ó ľ ö ę ę í ö ü ő ú í ő Ąí í í í í ö ę í ö ę í ó ľ ľ ő ü Ě ł ő ľ ő ő ő ľ ó ľ ľ ú í ĺ Ę ĺ ü ĺ ź ľ ĺ ĺ É Í ľ É É ĺ Á Ü Á É Í Ü ĺľé É Ü É ľĺ É ľ ľ ĺ ĺĺ Í ł í Ä ĺ ĺ ľ ĺ É Ąĺ Ł ĺáľ ľ ü ĺ ü ď ź Í ĺ ź źń ĺ ő ü ő ő ĺĺľ ľĺ ő ő ü ź ú ö ö ő ź ö ö ľ ő ő ű ĺ đ

Részletesebben

STATISZTIKAI KÉPLETGYŰJTEMÉNY ÉS TÁBLÁZATOK

STATISZTIKAI KÉPLETGYŰJTEMÉNY ÉS TÁBLÁZATOK MKOLC EGYETEM Gazaáguoá Kar Gazaáglél é Mózra éz Üzl aza é Előrlzé éz Tazé TTZTK KÉPLETGYŰJTEMÉY É TÁLÁZTOK (Dolgozaíráál, zgá ca gé bgzé élül hazálhaó!) 7. VZOYZÁMOK, KÖZÉPÉRTÉKEK-ZÓRÓDÁ Vzozáo.) V, V,

Részletesebben

Regresszió és korreláció

Regresszió és korreláció Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 01.11.1 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés

Részletesebben

ľ ź í ö ö ü ý đ ö ü ľ ľ í ä ź ľ ľ ľ Ĺ í í ń ö ů ź í ö Á ö í ľ í Ĺ ľ ľ ö Ĺ ű ö í ź Ĺ ö ź í í ź ü ź ź ľ í ź í ľ Ĺ ú đö Ĺ Ő ľĺ ľü ľü ľü ľü ź ľ ľ ľ ö Í í

ľ ź í ö ö ü ý đ ö ü ľ ľ í ä ź ľ ľ ľ Ĺ í í ń ö ů ź í ö Á ö í ľ í Ĺ ľ ľ ö Ĺ ű ö í ź Ĺ ö ź í í ź ü ź ź ľ í ź í ľ Ĺ ú đö Ĺ Ő ľĺ ľü ľü ľü ľü ź ľ ľ ľ ö Í í ľ ľ ľ ü ü í ľ ľ ü ľ ľ ľü ľ í ű ľ Ĺ í đ ľ ü ľ ľ íľ ź ö đ ę í ź ľę í ü ľ ź í ź í ľ í Ĺ ľ ľ ľ ľ ö ź ů í í í ź Őľ ü ü ľ ü ú ľ í ę ü ę ö ú í ź Í í í ź í ů ľ í ľ ŕ Í í ź ź ď ź ľ í đ ź ľ ź đ ú í ľ ö ö ľ ź í ö

Részletesebben

Életkor (Age) és szisztolés vérnyomás (SBP)

Életkor (Age) és szisztolés vérnyomás (SBP) Lináris rgrsszió Éltkor (Ag) és szisztolés vérnyomás (SBP) Ag SBP Ag SBP Ag SBP 22 131 41 139 52 128 23 128 41 171 54 105 24 116 46 137 56 145 27 106 47 111 57 141 28 114 48 115 58 153 29 123 49 133 59

Részletesebben

ö ö ź ű ö ö ö ź ź ö ö ü í ĺ ö ź ö ö ö ľ źú ź ü ö ü ö ö ź ľ ľ ľ í íĺ í ü ľ ü í ü ľ ö ľ ľ í ź í ľ ö ľ ľ ľ ľ í ö ýú í ľ í ű ö ź ź ź í í ź Ü Ü í ľ ĺ ź ü ö

ö ö ź ű ö ö ö ź ź ö ö ü í ĺ ö ź ö ö ö ľ źú ź ü ö ü ö ö ź ľ ľ ľ í íĺ í ü ľ ü í ü ľ ö ľ ľ í ź í ľ ö ľ ľ ľ ľ í ö ýú í ľ í ű ö ź ź ź í í ź Ü Ü í ľ ĺ ź ü ö Í ĺ ľ ľ Ĺ ü ú ľ ü üĺĺ ľ ľ í ü ľ ź ĺ í ü ĺ É ľ ľ ľ É ł Á É Ü É Ü ľá É Í ĺé Ü É ł ě É Íľ ľ ď Éľ Ü É É Á í ĺ ę ŕ ł ľ ú ą É Á ĺ ľ ü ľ ü ĺ ĺ ĺĺ ľ í ü ü ö źů ö ĺ ü ľ ĺ ú ľ í í í ö í ű ĺ ö Íĺ öľ ö í í í ú ź ź

Részletesebben