Van-e hőmérséklet? 1. Biró Tamás Sándor MTA KFKI RMKI

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Van-e hőmérséklet? 1. Biró Tamás Sándor MTA KFKI RMKI"

Átírás

1 Vn-e hőmérséklet?. Bró Tmás ándor MTA KFKI RMKI

2 Vn-e hőmérséklet? Hogyn mérjük?

3 Julus Robert von Myer, Hő munk ~ energ Bemerkungen über de Kräfte der belebten und unbelebten Ntur, Annlen der Cheme und Phrmce (ed. Justus Lebg, M 84 kcl 45 mkp A mtrózok vénás vére trópusokon kékebb, hdegebb övekben prosbb z nygcsere hőt termel. Vn-e hőmérséklet? 3

4 Jmes Prescott Joule, lektromos hőtermelés. 845 A hő mechnk egyenértéke. 847 kcl 47 mkp P R I Tnítvány: Wllm Thompson Lord Kelvn Vn-e hőmérséklet? 4

5 A levegőnél nehezebb repülő testet márpedg Lehetetlen építen. Vn-e hőmérséklet? 5

6 Zárt rendszerben z entróp mgától nem csökken. A hő melegebb testről hdegebbre ármlk. Vn-e hőmérséklet? 6

7 . Főtétel és Élet Np: Föld: d β d β d 0 d d 0 d < 0, ( β β d 0 β β d 0 A Föld entrópáj nem csökkenhetne nem lehet evolúcó!

8 . Főtétel és Élet Np: Föld: Űr: 3 d β d d β d d d β 3 3 d d 3 > 0, d λd 3, d ( λd 3 ( β 3 β λ( β β 0 β <β <β 3 : d < 0 d < 0 A Föld entrópáj csökkenhet lehet evolúcó!

9 A nulldk főtétel Rnkne 853 Az egyenlőhőmérséklet defnícój: két nygdrbnk kkor egyenlő hőmérséklete, h egyk sem d át hőt másknk. Mxwell 87: H két test termkusn érntkezk, kkor z egyk hőt veszít, másk hőt kp, s melyk dj hőt, zt mgsbb hőmérsékletűnek tekntjük. H egyk sem vesz fel vgy d le hőt, kkor két test egyenlőhőmérsékletűés termkus egyensúlybn vnnk. Tt 884: H A és B, vlmnt B és C zonos hőmérsékletűek, kkor A és C s. Plnck 897: H A B-vel és C-vel termkus egyensúlybn vn, kkor B és C egymássl s egyensúlybn vn. Clusus, Boltzmnn, Jynes: gyensúlybn z entróp mxmáls. Fowler 939, Fowler & Guggenhem 965: Zeroth Lw Vn-e hőmérséklet? 9

10

11 Jynes entróp mxmum elve (,V, N, K mx fx V V V fx N N N fx A dfferencálok NM függetlenek!

12 Absztrkt kompozícós szbályok x y h(x,y PL 84: 56003, 008

13 Az szmptotkus szbályok sszoctívk és ttrktorok z összes szbály között

14 Nulldk főtétel: θ(, θ(, mprkus hőmérséklet: bárm, m egyenlő d d d K 0 d d d 0 Az összedás esetén ez fktorzálódk!

15 Az entróp és z energ ddtívek, hőmérséklet egyenlő T ( ( T, ( (

16 xtenzív termodnmk egyensúly β T [, ] β mx

17 xtenzív termodnmk egyensúly: sok állpot [ ] β w α w w mx A w_ z _ energájú-dk állpot betöltés rány sok-sok példány (rendszer-kóp, sokság-elem esetén. /Gbbs/

18 Ludwg Boltzmnn, Vn-e hőmérséklet? 8

19 Boltzmnn entróp képlete Vn-e hőmérséklet? 9

20 Logrtmus: szorzt összeg ( f ( f ( f e f ] [f ] [f ] f [f f ln f Z β ddtív kommuttív sszoctív extenzív

21 Boltzmnn entróp képlete Vn-e hőmérséklet?

22 Gbbs levezetése ln W N ln N N ln N ln W N ln N Nw ln(nw ln W N ln N ( w N( w ln w k w ln w míg w.

23 Boltzmnn-Gbbs ntróp: xtenzív Boltzmnn Gbbs w ln w w eq Z e ( β α

24 Addtív entróp gyensúly eloszlás fktorzálódk ddtív energ β β β e e e

25 ttsztk, entróp, hőmérséklet Vn-e hőmérséklet? 5

26 Ferm eloszlás: N, K-N W N!(K K! N! K N Ω k B lnw βhω(n βµ N mx Ω N Ω N Ω N Ω N

27 Ferm eloszlás: N, K-N N N K x N N K lnx ln lnx ln. k, ( lnx Jelölés: N N K N N N N K N N B Ω Ω Ω Ω ω µ β h

28 Ferm eloszlás: N, K-N x K x f x x K x f K f x K f f K K, N / f fx:

29 Ferm eloszlás: N, K-N f w Ferm (x x w Ferm e β( hω µ

30 Ferm eloszlás lrendszerben P n, k k K n N K N k n

31 Ferm eloszlás ks lrendszerben k << K, n << N, (N n! N! N n P n,k k n K N N! N n (K K! K k N!(K N (k n

32 Ferm eloszlás ks lrendszerben Bernoull eloszlás P n,k k n K N K k K N N n P n,k k n f n ( f k n A hms érmék története

33 Bose eloszlás lrendszerben P n, k k n n K k N K N N N n n k sznt és n gerjesztés tetszőleges keveréke

34 Bose eloszlás ks lrendszerben P n,k k n n f n ( f k n n (k f f w Bose e β( hω µ

35 Negtív bnomáls (NBD k n n ( n k n P n.k k n ( f n ( f k n

36 Ferm Bose trnszformácó: szuperszmmetr B n,k (f F n, k ( f F n,k (f B n, k ( f nvráns k(k

37 Rtk Bernoull: Posson n << k k n k n n! P n ( f k n! kf f n P n C k (x n! ( ke x n

38 Rtk Bernoull: Posson P n n n! e n δn

39 NBD uler Posson 0 x N e x dx N! N P n,k k n n f n ( f k n f n k!n! 0 x k n e ( f x dx

40 NBD uler Posson P n,k 0 (xf n! n e f x x k k! e x dx Posson k-bn, uler-gmm x-ben z u p e r s t t sz t k

41 uler -Gmm dstrbuton mx: /c, men:, spred: / c

42 Feldtok. Tekntsük z lább eloszlásokt: Bernoull ( n, k; f NBD ( n, k; f Posson ( n, k; f Kérdések: Igzoljuk normáltságot n várhtó értéke, szórásnégyzete krktersztkus függvény (exp(bn várhtó értéke

43 Feldtok. M szupertrnszformácó véges rendszerben levő véges lrendszerekre? B( n; k N; K F( n; k N; K M f(x várhtóértéke, h x Guss b uler-gmm eloszlású?

44 Vn-e hőmérséklet?. Bró Tmás ándor MTA KFKI RMKI

45 RHIC: reltvsztkus nehézon ütköztető

46 Tslls qurk mtter trnsverse flow qurk colescence fts to hdron spectr dn/(pt*dpt π 0 dn/(pt*dpt 0 0 K K pt[gev] pt[gev] dn/(pt*dpt η dn/(pt*dpt 0 φ pt[gev] pt[gev] QM 008, Bejng

47 Tslls qurk mtter trnsverse flow qurk colescence fts to hdron spectr dn/(pt*dpt 0 0 p dn/(pt*dpt p pt[gev] pt[gev] dn/(pt*dpt 0 Ξ dn/(pt*dpt 0 Ξ pt[gev] pt[gev] QM 008, Bejng

48 Blst wve fts nd qurk colescence q η φ Ξ T sl (m [GeV] π K p Λ Ω m [GeV] m [GeV] QM 008, Bejng

49 dn/(pt*dpt M skálázk, vgy L(? p GeV T β γ (mt v pt 0 π κ κ φη p p Ξ Ξ Λ Λ

50 dn/(pt*dpt M skálázk, vgy L(? p GeV p 5 GeV T T 0 π β X κ κ φ η p p Ξ Ξ Λ Λ

51 Ismét nulldk: θ(, θ(, 0 d d d 0 d d d K Fktorzácó?

52 A hőmérséklet nem-ddtív esetben const., ( C, ( C, ( H, ( H A B C F G H B C A H FG ( (

53 A hőmérséklet nem-ddtív esetben T ( L ( Lˆ ( L ( Lˆ T ( ( A ( B ( G F ( ( A ( B ( G ( F ( const., ( C, ( C, ( H, ( H

54 Áltlánosított bszolút hőmérséklet T Lˆ ( L( Lˆ ( F( G( d L( A( B( d

55 Megengedett kompozícós szbályok ( Lˆ ( Lˆ ( Lˆ Lˆ (Lˆ Lˆ Lˆ F G F G H G F F G H Ψ

56 Megengedett kompozícós szbályok ( L ( L ( L L (L L L A B A B C B A B A C Φ

57 Péld: Tslls entróp â ( â ( â ( â Lˆ ( ln( â â

58 Heterogén egyensúly â â ( ( ( ln â ln â â ln â â [( â ( â ] â â â â

59 (Ngy- Knonkus eloszlás Lˆ ( λ L (X mx. p Z e µ k L (X BT p L (X L (X X (,V, N, K

60 Nemextenzív termodnmk: összefoglló Lˆ ( Lˆ ( Lˆ ( L( L( L( β T Lˆ ( L( Lˆ ( [ w] β w L( α w mx

61 ntróp formulák, eloszlások Boltzmnn Gbbs Rény Tslls Kndks PJ A 40: 35, 009

62 Nem-ddtív Tslls -ntróp Tslls â ( w â w Lˆ ( â ln w â Rény w eq Z ( â( β α / â

63 Cnoncl dstrbuton wth Rény entropy q q ln q q p p q q p α p αβ β p mx Ths cut power-lw dstrbuton s n excellent ft to prtcle spectr n hgh-energy experments! p e Lˆ ( ( q β( q q

64 loszlás fktorzálódk nerg nem ddtív w eq Ẑ ( ∠β /â ( /â ( /â ( ∠β ∠β ∠β /â ∠β

65 upersttsztk htványeloszláshoz ( x ˆ cx c 0 (c c eq eq / â eq e e x c dx Z w c ˆ Z w â( w c β Γ β α β uler-gmm

66 NBD uler Posson Power Lw uler Gbbs P n,k 0 (xf n! n e f x x k k! e x dx w eq Z 0 dx c c Γ(c x c e cx e xˆ β z u p e r s t t sz t k

67 NBD uler Posson Power Lw uler Gbbs P n,k 0 (xf n! n e f x x k k! e x dx w eq 0 Z e β k α x x k k! e x dx q k k z u p e r s t t sz t k

68 Áltlánosított knetkus elmélet

69 Boltzmnn lgortmus: párkombnácó szeprácó Függetlenség mellett ddtív: f f f 3 f f eq Z e β z szbály z exponencálst dj.

70 Boltzmnn lgortmus: párkombnácó szeprácó Függetlenség esetén sszoctív: f f f 3 f L( L( L( 3 L( 4 f eq βl( e Z Az lyen szbály formáls logrtmus exponencálsát dj.

71 Impulzusok evolúcój NB progrm lpján

72 Végső energ-eloszlások NB progrm lpján x y x y x y

73 Termkus kegyenlítődés NB progrm lpján

74 Mnth hőmérséklet fluktuáln ulergmm Gbbs Tslls / Rény ulergmm Posson Negtve Bnoml

75 Reltvsztkus hőmérséklet lső főtétel nerg és mpulzus összetrtoznk Hőmérséklet négyesvektor Doppler effektus

76 A reltvsztkusn mozgótest hőmérséklete T..Bró nd P.Ván (PL 89: 3000 P l n c k - n s t e n : c o o l e r B l n u s - O t t : h o t t e r L n d s b e r g : e q u l Vn Kmpen: v_rel 0 Doppler: m á s k f k t o r

77 Plnck és nsten Hővösebb egy Lorentz fktorrl

78 Blnus és Ott Forróbb egy Lorentz fktorrl

79 Peter Theodore Lndsberg Prof. emertus Unv. outhmpton Mc 946 PhD 949 Dc 966 Nture v., p. 57, (966 Nture v. 4, p. 903, (966 Does Movng Body pper Cool? gyenlı

80 Chrstn Andres Doppler Lorentz fktor (v / Doppler fktor (v Doppler fktor (-v / Lorentz fktor (-v Reltvsztkus Doppler fktor! 803 Nov 9 lzburg 853 Mr 7 Venez

81 Reltvsztkus entróp-változás d pdv δq Td d pu dv δq A d Σ dτ d A A b u A b d A A b A b dg A A b u A b pdv Rudolf Clusus: hı ntegráló fktor /T

82 Hőmérséklet és. főtétel T A u Td d A A b Td b g, g d g T dg A A A b pdv pdv b Új ntenzív prmeter g négyesvektor (Jüttner: g test négyessebessége

83 Knonkus ntróp-mxmum T p T p, T g T g 0,V d(,v d( 0 d d 0, dv dv

84 Ag felosztás w u g v < : test sebessége, w < : testen belül energárm sebessége w g g, w w w g u, u u

85 gydmenzós mozgás u w ( γ, γv ( γvw, γ v γw v test sebessége, szublumnáls, w z energárm sebessége, szublumnáls; gmm v-hez trtozó Lorentz fktor

86 gydmenzós egyensúly T w (v T w (v T w v ( T w v ( γ γ γ γ Vegyük z rányt és négyzetek különbségét!

87 gydmenzós egyensúly T w T w w v w v w v w v Vn egyenlı mennység, de T függ z energárm sebességétıl! A sebességek nsten-összege s egyenlı!

88 Az egyensúly mért hőmérséklet v vw T T v v ( v w ( w v w v w A mért T T-hez képest: áltlános Doppler formul! Négyessebességek: v, v, w, w Csk z egyket lehet nulláb Lorentz-trnszformáln.

89 w, w h v v T T 0 w w h T T 0 w v, w h v v T T v w 0, w h v T T v vw T T A mért T T-hez képest: áltlános Doppler formul!

90 Mért hőmérsékletek Blnus Lndsberg

91 t T T u u w w x Doppler blue-shft

92 t T.5 T u u w w 0 x No energy conducton n body

93 t T 0.8 T u u w 0 x w No energy conducton n body

94 t T T u u w w x nergy conductons n bodes nd compenste ech other

95 t T 0.5 T u u w x w Doppler red-shft

96 Vn-e hőmérséklet? 96

97 Reltvsztkus hőmérséklet Doppler effektus Konstns gyorsulás: Unruh hőmérséklet Fekete lyuk horzont: Hwkng hőmérséklet Nehézon: fluktuáló Unruh hőmérséklet

98 Unruh hőmérséklet Teljesen klsszkus pec. reltvtás elég hozzá I(f e ω v( τ dτ fτ v( τ dτ Unruh I(f 0 e cωz / g z fc / g dz e πcf / g Állndó g gyorsulás együttmozgó rendszerben: dv/dτ -g(-v² Mx Plnck

99 Unruh hőmérséklet Plnck-nterpretácó: πc g f hf k B T A hımérséklet Plnck egységekben: T g π A hımérséklet szokásosn: k B T h c g π M g P L P π

100 Unruh hőmérséklet Newton grvtácór kcs g GM R k B T Mc π L R P A Föld felszínén kb. 0^(-9 ev, míg szobhımérséklet kb. 0^(-3 ev.

101 Unruh hőmérséklet Nehézon ütközésben nem kcs g c L mc h 3 k B T mc π c-rıl 0-r fékezve Compton hullámhossz fele ltt: kt ~ 50 MeV h mc² ~ 940 MeV (proton

102 Bekensten-Hwkng entróp Unruh hőmérséklet z eseményhorzonton Clusus: hőmérséklet mnt ntegráló tényező Hwkng Bekensten P B 3 B B B L A 4 k R G c T k d(mc k c g T k R c R GM g c GM R π π h h

103

104 Topcl Revew Issue of PJ A

105 Vn-e hőmérséklet? 05

106 Feldtok. Bzonyítsuk be, hogy z nsten-féle sebességösszedás formul sszoctív!. Mekkor reltív sebesség egyensúlybn, h z energármok sebessége éppen ellentett? 3. Az állndógyorsulásútrjektór hogyn néz k mgnárus sjátdő esetén?

107 Vn-e hőmérséklet? Bró Tmás ándor MTA KFKI RMKI. zupersttsztk: hőmérséklet-eloszlás vn hőmérséklet, h fktorzálódk. Mozgás és hőárm Doppler htás és Lorentz fktorok. Gyorsulás / fékezés mnth feketest sugárzás lenne 3. seményhorzont: hőmérséklete vn? Mtől?

ANALÍZIS II. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA

ANALÍZIS II. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA ANALÍZIS II. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA Szerkesztette: Blogh Tmás 2013. jnuár 16. H hibát tlálsz, kérlek jelezd info@bloghtms.hu e-mil címen! Ez Mű Cretive Commons Nevezd meg! - Ne dd el! - Így

Részletesebben

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.

Részletesebben

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. (

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. ( FELADATOK A LEKÉPEZÉSEK, PERMUTÁCIÓK TÉMAKÖRHÖZ Diszkrét Matematika 4. LEKÉPEZÉSEK Értelmezési tartomány és értékkészlet meghatározása : Összefoglaló feladatgyűjtemény matematikából ( zöld könyv ): XIII.

Részletesebben

Kalkulus II. Beugró kérdések és válaszok 2012/2013 as tanév II. félév

Kalkulus II. Beugró kérdések és válaszok 2012/2013 as tanév II. félév Klkulus II. Beugró kérdések és válszok 2012/2013 s tnév II. félév 1. Legyen ], b[ R nemüres, nyílt intervllum, f :], b[ R függvény. Hogyn vn értelmezve z f függvény primitív függvénye? Válsz. Legyen ],

Részletesebben

Numerikus módszerek 2.

Numerikus módszerek 2. Numerikus módszerek 2. 12. elődás: Numerikus integrálás I. Krebsz Ann ELTE IK 2015. május 5. Trtlomjegyzék 1 Numerikus integrálás 2 Newton Cotes típusú kvdrtúr formulák 3 Hibformulák 4 Összetett formulák

Részletesebben

Nem-extenzív effektusok az elemi kvantumstatisztikában?

Nem-extenzív effektusok az elemi kvantumstatisztikában? Nm-xtzív tuso az lm vatumstatsztába? Bró Tamás Sádor MTA Wgr FK RMI 22.3.26.. Boltzma-Gbbs-Plac-Réy-Tsalls 2. Frm & Bos altérb á la Gbbs-Boltzma 3. NBD mt szuprstatszta 4. Kohrs állapot, Posso statszta

Részletesebben

FELVÉTELI VIZSGA, július 15.

FELVÉTELI VIZSGA, július 15. BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 8. július. Írásbeli vizsg MATEMATIKÁBÓL FONTOS TUDNIVALÓK: ) A feleletválsztós feldtok (,,A rész) esetén egy vgy

Részletesebben

Matematika A1a - Analízis elméleti kérdései

Matematika A1a - Analízis elméleti kérdései Mtemtik A1 - Anlízis elméleti kérdései (műszki menedzser szk, 2018. ősz) Kör egyenlete Az (x 0, y 0 ) középpontú, R sugrú kör egyenlete síkon (x x 0 ) 2 + (y y 0 ) 2 = R 2. Polinom Az x n x n + n 1 x n

Részletesebben

4. előadás: A vetületek általános elmélete

4. előadás: A vetületek általános elmélete 4. elődás: A vetületek áltlános elmélete A vetítés mtemtiki elve Két mtemtikilg meghtározott felület prméteres egyenletei legyenek következők: x = f 1 (u, v), y = f 2 (u, v), I. z = f 3 (u, v). ξ = g 1

Részletesebben

2010/2011 es tanév II. féléves tematika

2010/2011 es tanév II. féléves tematika 2 február 9 Dr Vincze Szilvi 2/2 es tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási

Részletesebben

1. Példa. A gamma függvény és a Fubini-tétel.

1. Példa. A gamma függvény és a Fubini-tétel. . Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +

Részletesebben

Evans-Searles fluktuációs tétel

Evans-Searles fluktuációs tétel Az idő folyásának iránya Evans-Searles fluktuációs tétel Osváth Szabolcs Semmelweis Egyetem a folyamatok iránya a termodinamikai második főtétele alapján Nincs olyan folyamat, amelynek egyetlen eredménye,

Részletesebben

2, = 5221 K (7.2)

2, = 5221 K (7.2) 7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon

Részletesebben

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,

Részletesebben

Vektortér fogalma vektortér lineáris tér x, y x, y x, y, z x, y x + y) y; 7.)

Vektortér fogalma vektortér lineáris tér x, y x, y x, y, z x, y x + y) y; 7.) Dr. Vincze Szilvi Trtlomjegyzék.) Vektortér foglm.) Lineáris kombináció, lineáris függetlenség és lineáris függőség foglm 3.) Generátorrendszer, dimenzió, bázis 4.) Altér, rng, komptibilitás Vektortér

Részletesebben

Várható érték:... p Módusz:...

Várható érték:... p Módusz:... NEVEZETES ELOSZLÁSOK. Bernoull-eloszlás: B(, p p ha x = Súlyfüggvény:... P( X = x; p =...ahol: q=-p q ha x = 0 ha p q Várható érték:... p Módusz:... 0 ha p q Varanca:... pq Relatív szórás:... q p. ÁBRA.

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 15. (XII.14) Irreverzibilis termodinamika Diffúzió

ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 15. (XII.14) Irreverzibilis termodinamika Diffúzió λ x ELTE II. Fzkus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 15. (XII.14) Irreverzbls termodnamka Dffúzó Az átlagos szabad úthossz (λ) és az átlagos ütközés dı (τ): λ = < v> τ A N = n (A x); A σ σ π (2r)

Részletesebben

0.1 Deníció. Egy (X, A, µ) téren értelmezett mérhet függvényekb l álló valamely (f α ) α egyenletesen integrálhatónak mondunk, ha

0.1 Deníció. Egy (X, A, µ) téren értelmezett mérhet függvényekb l álló valamely (f α ) α egyenletesen integrálhatónak mondunk, ha Vegyük észre, hogy egy mérhet f függvény pontosn kkor integrálhtó, h f dµ =. lim N Ez indokolj következ deníciót. { f α >N}. Deníció. Egy X, A, µ téren értelmezett mérhet függvényekb l álló vlmely f α

Részletesebben

Molnár Bence. 1.Tétel: Intervallumon értelmezett folytonos függvény értékkészlete intervallum. 0,ami ellentmondás uis. f (x n ) f (y n ) ε > 0

Molnár Bence. 1.Tétel: Intervallumon értelmezett folytonos függvény értékkészlete intervallum. 0,ami ellentmondás uis. f (x n ) f (y n ) ε > 0 Anlízis. Írásbeli tételek-bizonyítások Molnár Bence 1.Tétel: Intervllumon értelmezett folytonos függvény értékkészlete intervllum Legyen I R tetszőleges intervllum és f I R folytonos függvény R f intervllum

Részletesebben

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:

Részletesebben

Differenciálgeometria feladatok

Differenciálgeometria feladatok Differenciálgeometri feldtok 1. sorozt 1. Egy sugrú kör csúszás nélkül gördül egy egyenes mentén. A kör egy rögzített kerületi pontj áltl leírt pályát cikloisnk nevezzük. () Írjuk fel ciklois egy c: R

Részletesebben

összetevője változatlan marad, a falra merőleges összetevő iránya ellenkezőjére változik, miközben nagysága ugyanakkora marad.

összetevője változatlan marad, a falra merőleges összetevő iránya ellenkezőjére változik, miközben nagysága ugyanakkora marad. A termodinamika 2. főtétele kis rendszerekben Osváth Szabolcs Semmelweis Egyetem Statisztikus sokaságok Nyomás Nyomás: a tartály falával ütköző molekulák, a falra erőt fejtenek ki Az ütközésben a részecske

Részletesebben

Egy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá.

Egy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá. Egy szép és jó ábr csodákr képes Az lábbi. ábrát [ ] - ben tláltuk; tlán már máskor is hivtkoztunk rá.. ábr Az különlegessége, hogy vlki nem volt rest megcsinál(tt)ni, még h sok is volt vele munk. Ennek

Részletesebben

Határozott integrál. Newton -Leibniz szabály. alkalmazások. improprius integrál

Határozott integrál. Newton -Leibniz szabály. alkalmazások. improprius integrál Htározott integrál definíció folytonos függvények esetén definíció korlátos függvények esetén Newton -Leibniz szbály integrálási szbályok lklmzások improprius integrál Legyen z f függvény [, b]-n értelmezett

Részletesebben

KIEGÉSZÍTÉS A VONALINTEGRÁLHOZ

KIEGÉSZÍTÉS A VONALINTEGRÁLHOZ KIEGÉSZÍTÉS A VONALINTEGRÁLHOZ BSC MATEMATIKATANÁR SZAKIRÁNY 28/29. TAVASZI FÉLÉV Az lábbikbn z el dáson vonlinterálról ill. primitív füvényr l elhnzottk közül zok olvshtók, mik Lczkovich-T. Sós: Anlízis

Részletesebben

2014/2015-ös tanév II. féléves tematika

2014/2015-ös tanév II. féléves tematika Dr Vincze Szilvi 24/25-ös tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási módszereik

Részletesebben

Abszolút folytonos valószín ségi változó (4. el adás)

Abszolút folytonos valószín ségi változó (4. el adás) Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t

Részletesebben

Els gyakorlat. vagy más jelöléssel

Els gyakorlat. vagy más jelöléssel Els gykorlt Egyszer egyenletek, EHL PDE A gykorlt elején megismerkedünk prciális dierenciálegyenletek (mostntól: PDE-k) lpfoglmivl. A félév során sokt fog szerepelni z ún. multiindex jelöl, melynek lényege,

Részletesebben

1. Feladatok a termodinamika tárgyköréből

1. Feladatok a termodinamika tárgyköréből . Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással.. Feladat: (HN 9A-5) Egy épület téglafalának mérete: 4 m 0 m és, a fal 5 cm vastag. A hővezetési együtthatója λ = 0,8 W/m K. Mennyi

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

Termoelektromos hűtőelemek vizsgálata

Termoelektromos hűtőelemek vizsgálata KLASSZIKUS FIZIKA LABORATÓRIUM 4. MÉRÉS Termoelektromos hűtőelemek vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 30. Szerda délelőtti csoport 1. A mérés célja

Részletesebben

A Riemann-integrál intervallumon I.

A Riemann-integrál intervallumon I. A Riemnn-integrál intervllumon I. A htározott integrál foglm és kiszámítás Boros Zoltán Debreceni Egyetem, TTK Mtemtiki Intézet, Anĺızis Tnszék Debrecen, 2017. március 6. Zárt intervllum felosztási A továbbikbn,

Részletesebben

A csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD

A csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD A csillagközi anyag Interstellar medium (ISM) gáz + por Ebből jönnek létre az újabb és újabb csillagok Bonyolult dinamika turbulens áramlások lökéshullámok MHD Speciális kémia porszemcsék képződése, bomlása

Részletesebben

Gazdasági matematika I. tanmenet

Gazdasági matematika I. tanmenet Gzdsági mtemtik I. tnmenet Mádi-Ngy Gergely A hivtkozásokbn z lábbi két tnkönyvre utlunk: Cs: Csernyák László (szerk.): Anlízis, Nemzeti Tnkönyvkidó 200. D: Denkinger Géz: Anlízis gykorltok, Nemzeti Tnkönyvkidó

Részletesebben

Bevezetés a programozásba. 3. Előadás Algoritmusok, tételek

Bevezetés a programozásba. 3. Előadás Algoritmusok, tételek Bevezetés progrmozásb 3. Elődás Algortmusok, tételek ISMÉTLÉS Specfkácó Előfeltétel: mlyen körülmények között követelünk helyes működést Utófeltétel: mt várunk kmenettől, m z összefüggés kmenet és bemenet

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Gazdasági matematika II. vizsgadolgozat megoldása, június 10 Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett

Részletesebben

u u IR n n = 2 3 t 0 <t T

u u IR n n = 2 3 t 0 <t T IR n n =2 3 u() u u u u IR n n = 2 3 ξ A 0 A 0 0 0 < T F IR n F A 0 A 0 A 0 A 0 F :IR n IR n A = F A 0 A 0 A 0 0 0 A F A 0 A F (, y) =0 a = T>0 b A 0 T 1 2 A IR n A A A F A 0 A 0 ξ A 0 = F (ξ) ε>0 δ ε

Részletesebben

Házi feladatok megoldása. Veremautomaták. Házi feladatok megoldása. Házi feladatok megoldása. Formális nyelvek, 12. gyakorlat

Házi feladatok megoldása. Veremautomaták. Házi feladatok megoldása. Házi feladatok megoldása. Formális nyelvek, 12. gyakorlat Veremutomták Formális nyelvek, 12. gykorlt Házi feldtok megoldás 1. feldt Oldjuk meg következő egyenletrendszert! X () Y = X X Y = Y Célj: A környezet-független nyelvek hsználtávl kpsoltos lpfeldtok egykorlás

Részletesebben

Programtervezési ismeretek

Programtervezési ismeretek Progrmtervezési ismeretek Feldtok gykorláshoz 1. Hlmzok m veletek 1. Tekintsük z A = {α β γ ζ} és B = {igz hmis} hlmzokt! Írjuk fel z A A A B B A B B Déscrtes szorztokt! Írjuk fel 2 A 2 B hlmzokt! Írjuk

Részletesebben

Gyökvonás. Hatvány, gyök, logaritmus áttekintés

Gyökvonás. Hatvány, gyök, logaritmus áttekintés Htvány, gyök, logritmus áttekintés. osztály Gyökvonás Négyzetgyök: Vlmely nem negtív vlós szám négyzetgyöke olyn nem negtív vlós szám, melynek négyzete z szám. Mgj.: R = Azonosságok: b ; b k ;, h, b R

Részletesebben

Az ideális Fermi-gáz termodinamikai mennyiségei

Az ideális Fermi-gáz termodinamikai mennyiségei Az ideális Fermi-gáz termodinamikai mennyiségei Kiegészítés III. éves BSc fizikusok számára Cserti József Eötvös Loránd udományegyetem, Komplex Rendszerek Fizikája anszék 2017. március 1. Néhány alapvető

Részletesebben

Laplace-transzformáció. Vajda István február 26.

Laplace-transzformáció. Vajda István február 26. Anlízis elődások Vjd István 9. február 6. Az improprius integrálok fjtái Tegyük fel, hogy egy vlós-vlós függvényt szeretnénk z I intervllumon integrálni, de függvény nincs értelmezve I minden pontjábn,

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

f (ξ i ) (x i x i 1 )

f (ξ i ) (x i x i 1 ) Villmosmérnök Szk, Távokttás Mtemtik segédnyg 4. Integrálszámítás 4.. A htározott integrál Definíció Az [, b] intervllum vlmely n részes felosztásán (n N) z F n ={,,..., n } hlmzt értjük, melyre = <

Részletesebben

T obbv altoz os f uggv enyek integr alja. 3. r esz aprilis 19.

T obbv altoz os f uggv enyek integr alja. 3. r esz aprilis 19. Többváltozós függvények integrálja. 3. rész. 2018. április 19. Kettős integrál Kettős integrál téglalap alakú tartományon. Ismétlés Ha = [a, b] [c, d] téglalap-tartomány, f : I integrálható függvény, akkor

Részletesebben

Határozzuk meg, hogy a következő függvényeknek van-e és hol zérushelye, továbbá helyi szélsőértéke és abszolút szélsőértéke (

Határozzuk meg, hogy a következő függvényeknek van-e és hol zérushelye, továbbá helyi szélsőértéke és abszolút szélsőértéke ( 9 4 FÜGGVÉNYVIZSGÁLAT Htározzuk meg, hogy következő függvényeknek vn-e és hol zérushelye, továbbá helyi szélsőértéke és bszolút szélsőértéke (41-41): 41 f: f, R 4 f: 4 f: f 5, R f 5 44 f: f, 1, 1 1, R

Részletesebben

f függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van)

f függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van) Mgyr Eszter. tétel Függvények vizsgált elemi úton és dierenciálszámítás elhsználásávl Függvény: H egy A hlmz minden eleméhez hozzárendelünk egy B hlmz egy-egy elemét, kkor egy A-ból B-be rendelı üggvényt

Részletesebben

Typotex Kiadó. Jelölések

Typotex Kiadó. Jelölések Jelölések a = dolgozók fogyasztása (12. fejezet és A. függelék) a i = egyéni tőkeállomány i éves korban A = társadalmi (aggregált) tőkeállomány b j = egyéni nyugdíj j éves korban b k = k-adik nyugdíjosztály

Részletesebben

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozt: Szüle Veronik, eg ts) Mtemtiki összeoglló Mátrilgeri összeoglló: ) Mátri értelmezése, jelölése: Mátri: skláris

Részletesebben

Egy látószög - feladat

Egy látószög - feladat Ehhez tekintsük z 1. ábrát is! Egy látószög - feldt 1. ábr Az A pont körül kering C pont, egy r sugrú körön. A rögzített A és B pontok egymástól távolság vnnk. Az = CAB szöget folymtosn mérjük. Keressük

Részletesebben

VI. Deriválható függvények tulajdonságai

VI. Deriválható függvények tulajdonságai 1 Deriválhtó függvének tuljdonsági VI Deriválhtó függvének tuljdonsági Ebben fejezetben zt vizsgáljuk, hog deriválhtó függvének esetén derivált milen összefüggésben vn függvén más tuljdonságivl, és hogn

Részletesebben

2. NUMERIKUS INTEGRÁLÁS

2. NUMERIKUS INTEGRÁLÁS numerikus nlízis ii. 39 B - SPLINEOK DERIVÁLTJÁRA ÉRVÉNYES : B mi x =m Bm,i x B m,ix. t i+m t i t i+m+ t i+. NUMERIKUS INTEGRÁLÁS Htározott integrálok numerikus kiszámítás mtemtik egyik legrégebbi problémáj.

Részletesebben

Fizika és 6. Előadás

Fizika és 6. Előadás Fzka 5. és 6. Előadás Gejesztett, csllapított oszclláto: dőméés F s λv k F F s m F( t) Fo cos( ωt) v F (t) Mozgásegyenlet: F f o o m ma kx λ v + Fo cos( ωt) Megoldás: x( t) Acos ( ) ( ) β ωt ϕ + ae t sn

Részletesebben

Lagrange és Hamilton mechanika

Lagrange és Hamilton mechanika Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

GAZDASÁGI MATEMATIKA I.

GAZDASÁGI MATEMATIKA I. GAZDASÁGI MATEMATIKA I.. A HALMAZELMÉLET ALAPJAI. Hlmzok A hlmz, hlmz eleme lpfoglom (nem deniáljuk ket). Szokásos jelölések: hlmzok A, B, C (ngy bet k), elemek, b, c (kis bet k), trtlmzás B ( eleme z

Részletesebben

Mátrixok és determinánsok

Mátrixok és determinánsok Informtik lpji Mátriok és erminánsok számok egyfjt tábláztát mátrink hívjuk. mátriok hsználhtóság igen sokrétő kezdve mtemtikávl, folyttv számítástechnikán és fizikán keresztül, egészen z elektrotechnikáig.

Részletesebben

AZ INSTACIONER HŐVEZETÉS ÉPÜLETSZERKEZETEKBEN. várfalvi.

AZ INSTACIONER HŐVEZETÉS ÉPÜLETSZERKEZETEKBEN. várfalvi. AZ INSTACIONER HŐVEZETÉS ÉPÜLETSZERKEZETEKBEN várfalvi. IDÉZZÜK FEL A STACIONER HŐVEZETÉST q áll. t x áll. q λ t x t λ áll x. λ < λ t áll. t λ áll x. x HŐMÉRSÉKLETELOSZLÁS INSTACIONER ESETBEN Hőáram, hőmérsékleteloszlás

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

TERMOELEKTROMOS HŰTŐELEMEK VIZSGÁLATA

TERMOELEKTROMOS HŰTŐELEMEK VIZSGÁLATA 9 MÉRÉEK A KLAZKU FZKA LABORATÓRUMBAN TERMOELEKTROMO HŰTŐELEMEK VZGÁLATA 1. Bevezetés A termoelektromos jelenségek vizsgált etekintést enged termikus és z elektromos jelenségkör kpcsoltár. A termoelektromos

Részletesebben

= n 2 = x 2 dx = 3c 2 ( 1 ( 4)). = π 13.1

= n 2 = x 2 dx = 3c 2 ( 1 ( 4)). = π 13.1 Htározott integrál megoldások + 7 + + 9 = 9 6 A bl végpontokt válsztv: i = i n, i+ i = n, fξ i = i 6 d = lim n n i= i n n = n lim n n i = lim n i= A jobb végpontokt válsztv: fξ i = n i, n i d = lim n n

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

OPTIKA STATISZTIKUS OPTIKA IDŐBELI KOHERENCIA. Budapesti Műszaki és Gazdaságtudományi Egyetem Atomfizika Tanszék, dr. Erdei Gábor

OPTIKA STATISZTIKUS OPTIKA IDŐBELI KOHERENCIA. Budapesti Műszaki és Gazdaságtudományi Egyetem Atomfizika Tanszék, dr. Erdei Gábor OPTIKA STATISZTIKUS OPTIKA IDŐBELI KOHERENCIA Budpesti Műszki és Gzdságtudományi Egyetem Atomfizik Tnszék, dr. Erdei Gáor Ágzti felkészítés hzi ELI projekttel összefüggő képzési és K+F feldtokr Young-féle

Részletesebben

Feketetest sugárzás. E = Q + W + W sug. E = Q + W + I * dt. ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan (XI.

Feketetest sugárzás. E = Q + W + W sug. E = Q + W + I * dt. ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan (XI. ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 0-. (XI. 29-30) Feketetest sugárzás A sugárzás egy újfajta energia transzport (W sug. ), ahol I * = S da, ρ t w j w, t w A kontinuitási egyenletbıl:

Részletesebben

PIACI SZERKEZETEK BMEGT30A hét, 2. óra: Stackelberg-oligopólium

PIACI SZERKEZETEK BMEGT30A hét, 2. óra: Stackelberg-oligopólium IACI SZEREZETE BMEGT30A104 8. hét,. ór: Stkelerg-oligopólium RN: 11.1 fejezet 019.04.03. 1:15 QAF14 upsik Rék (kupsikr@kgt.me.hu) Stkelerg-oligopólium: feltételek Strtégii változó: mennyiség Szekveniális

Részletesebben

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete Fizika feladatok 2014. november 28. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-23) Határozzuk meg egy 20 cm hosszú, 4 cm átmérőjű hengeres vörösréz

Részletesebben

Kvantumoptikai alkalmazások

Kvantumoptikai alkalmazások Kvntumoptk lklmzások - Kvntumrdír - QKD - Kvdrtúr - CQKD - Összefonódott állpot (entngled-stte) - Kvntum-teleportácó - Késleltetett válsz (delyed choce) - Hong-Ou-Mndel kísérlet - Lézeres hűtés . Kvntumrdír

Részletesebben

9. HATÁROZATLAN INTEGRÁL

9. HATÁROZATLAN INTEGRÁL 9. HATÁROZATLAN INTEGRÁL 9. Definíció és lpintegrálok. Definíció. Legyen f : I R dott függvény (I R egy intervllum). A F : I R függvényt f függvény primitív függvényének nevezzük I-n, h F differenciálhtó

Részletesebben

4. Hatványozás, gyökvonás

4. Hatványozás, gyökvonás I. Nulldik ZH-bn láttuk:. Htványozás, gyökvonás. Válssz ki, hogy z lábbik közül melyikkel egyezik meg következő kifejezés, h, y és z pozitív számok! 7 y z z y (A) 7 8 y z (B) 7 8 y z (C) 9 9 8 y z (D)

Részletesebben

Az entrópia statisztikus értelmezése

Az entrópia statisztikus értelmezése Az entrópa statsztkus értelmezése A tapasztalat azt mutatja hogy annak ellenére hogy egy gáz molekulá egyed mozgást végeznek vselkedésükben mégs szabályszerűségek vannak. Statsztka jellegű vselkedés szabályok

Részletesebben

Enzimreakciók Aktiválási energia számítások Bevezetés a kinetikába. OH - + CH 3 Cl HO...CH HOCH 3 + Cl -

Enzimreakciók Aktiválási energia számítások Bevezetés a kinetikába. OH - + CH 3 Cl HO...CH HOCH 3 + Cl - Bevezetés ketkáb Bevezetés ketkáb A B j k j,l C l D,j,l, kvtuállpotok őérséklettől függő sebesség álldó [ A] d[ B] d T dt dt )[ A][ B] [A], [B] A és B kocetrácój [ A ] f A ( T )[ A] f A eloszlásfüggvéy

Részletesebben

Elemi részecskék, kölcsönhatások. Atommag és részecskefizika 4. előadás március 2.

Elemi részecskék, kölcsönhatások. Atommag és részecskefizika 4. előadás március 2. Elemi részecskék, kölcsönhatások Atommag és részecskefizika 4. előadás 2010. március 2. Az elektron proton szóródás E=1MeVλ=hc/(sqrt(E 2 -mc 2 )) 200fm Rutherford-szórás relativisztikusan Mott-szórás E=10MeVλ

Részletesebben

Molekulák mozgásban a kémiai kinetika a környezetben

Molekulák mozgásban a kémiai kinetika a környezetben Energiatartalék Molekulák mozgásban a kémiai kinetika a környezetben A termodinamika és a kinetika A termodinamika a lehetőség θ θ θ G = H T S A kinetika a valóság: 1. A fizikai rész: - a reaktánsoknak

Részletesebben

Mérnöki alapok 2. előadás

Mérnöki alapok 2. előadás Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

I. Az élő anyag legfontosabb szerkezeti tulajdonságai és szerepük a biológiai funkciókban

I. Az élő anyag legfontosabb szerkezeti tulajdonságai és szerepük a biológiai funkciókban I. z éő yg egotos szekezet tujoság és szeepük oóg ukók h j I. ε ε k e k I.5 h h λ I. p υ ε υ k ozgás I. M [ Z p Z ] M, Z pv k I.5 I.9 II. Sugázások és kösöhtásuk z éő ygg P M II. e P ~, ~ II. továk II.5

Részletesebben

Termodinamikai bevezető

Termodinamikai bevezető Termodinamikai bevezető Alapfogalmak Termodinamikai rendszer: Az univerzumnak az a részhalmaza, amit egy termodinamikai vizsgálat során vizsgálunk. Termodinamikai környezet: Az univerzumnak a rendszeren

Részletesebben

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =, Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2

Részletesebben

5. Atmoszférák. z I λ. z κ λ

5. Atmoszférák. z I λ. z κ λ 5. Atmoszférák 5.1. Sugárzásátvitel Az angol terminológia nyomán radiatív transzfernek nevezett kérdéskör azzal foglalkozik, hogy ha egy optikailag átlátszó, de saját sugárzással is rendelkező anyagon

Részletesebben

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. AZ ELEKTRON MÁGNESES MOMENTUMA Mágneses dipólmomentum: m H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. M = m H sinϕ (Elektromos töltés, q: monopólus

Részletesebben

TSHK 644 TSHK 643. Bekötési rajz A09153 A09154 A09155 A09156 A09157 A09158 A09159 A09160

TSHK 644 TSHK 643. Bekötési rajz A09153 A09154 A09155 A09156 A09157 A09158 A09159 A09160 21.164/1 SHK 621...661: Fn-Coil helyiséghőmérséklet-szályozó (elektromechnikus) Hogyn jvíthtó z energi htásfok égtechniki eszközök kívánt vezérlését dj. Felhsználási területek kó- és üzlethelyiségek egységes

Részletesebben

9. Előadás: Szimulációs módszerek, II. 3. Egyenletes eloszlású véletlen számok generálása

9. Előadás: Szimulációs módszerek, II. 3. Egyenletes eloszlású véletlen számok generálása 9. Elődás: Szimulációs módszerek, II. 3. Egyenletes eloszlású véletlen számok generálás Egyenletes eloszlású véletlenszámokt különböző módokon lehet generálni. Mivel szimulációs elemzéseket számítógépen

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

Matematika 4 gyakorlat Földtudomány és Környezettan BSc II/2

Matematika 4 gyakorlat Földtudomány és Környezettan BSc II/2 Mtemtik 4 gykorlt Földtudomány és Környezettn BSc II/2 1. gykorlt Integrálszámítás R n -ben: vonlintegrál, primitív függvény, Newton Leibniz-szbály. Legyen Ω R n egy trtomány, f : Ω R n folytonos függvény

Részletesebben

Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek

Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális és logritmikus egyenletek, Eponenciális és logritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális egyenletek 60 ) = ; b) = ; c) = ; d) = 0; e) = ; f) = ; g) = ; h) =- 7

Részletesebben

Bevezetés a részecske fizikába

Bevezetés a részecske fizikába Bevezetés a részecske fizikába Kölcsönhatások és azok jellemzése Kölcsönhatás Erősség Erős 1 Elektromágnes 1 / 137 10-2 Gyenge 10-12 Gravitációs 10-44 Erős kölcsönhatás Közvetítő részecske: gluonok Hatótávolság:

Részletesebben

Elméleti összefoglaló a Valószín ségszámítás kurzushoz

Elméleti összefoglaló a Valószín ségszámítás kurzushoz Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek

Részletesebben

2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás Hőáramlás (konvekció) olyan folyamat,

2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás Hőáramlás (konvekció) olyan folyamat, 2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás. 2.1. Hőáramlás (konvekció) olyan folyamat, amelynek során a hő a hordozóközeg áramlásával kerül

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben

SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport

SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport SEMMELWEIS EGYETEM Bofzka és Sugárbológa Intézet, Nanokéma Kutatócsoport TERMODINAMIKA egyensúlyok és transzportjelenségek legáltalánosabb tudománya Zríny Mklós egyetem tanár, az MTA levelező tagja mkloszrny@gmal.com

Részletesebben

Ellenállás mérés hídmódszerrel

Ellenállás mérés hídmódszerrel 1. Lbortóriumi gykorlt Ellenállás mérés hídmódszerrel 1. A gykorlt célkitűzései A Whestone-híd felépítésének tnulmányozás, ellenállások mérése 10-10 5 trtománybn, híd érzékenységének meghtározás, vlmint

Részletesebben

Van-e a vákuumnak energiája? A Casimir effektus és azon túl

Van-e a vákuumnak energiája? A Casimir effektus és azon túl Van-e a vákuumnak energiája? és azon túl MTA-ELTE Elméleti Fizikai Kutatócsoport Bolyai Kollégium, 2007. október 3. Van-e a vákuumnak energiája? és azon túl Vázlat 1 2 3 4 5 Van-e a vákuumnak energiája?

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

Differenciálszámítás. Lokális szélsőérték: Az f(x) függvénynek az x 0 helyen lokális szélsőértéke

Differenciálszámítás. Lokális szélsőérték: Az f(x) függvénynek az x 0 helyen lokális szélsőértéke Differenciálszámítás Lokális növekedés (illetve csökkenés): H z f() függvény deriváltj z 0 helyen pozitív: f () > 0 (illetve negtív: f () < 0), kkor z f() függvény z 0 helyen növekvően (illetve csökkenően)

Részletesebben

Tételjegyzék Áramlástan, MMF3A5G-N, es tanév, őszi félév, gépészmérnöki szak, nappali tagozat

Tételjegyzék Áramlástan, MMF3A5G-N, es tanév, őszi félév, gépészmérnöki szak, nappali tagozat Tételjegyzék Áramlástan, MMF3A5G-N, 006 007-es tané, őszi félé, géészmérnöki szak, naali tagozat. A folyaékok és gázok jellemzése: nyomás, sűrűség, fajtérfogat. Az ieális folyaék.. A hirosztatikai nyomás.

Részletesebben

Fluktuáló terű transzverz Ising-lánc dinamikája

Fluktuáló terű transzverz Ising-lánc dinamikája 2016. szeptember 8. Phys. Rev. B 93, 134305 Modell H(t) = 1 2 L 1 σi x σi+1 x h(t) 2 i=1 h(t)-fluktuáló mágneses tér. Hogyan terjednek jelek a zajos rendszerben? L σi z, i=1 Zajok típusai 1 fehér zaj 2

Részletesebben

( ) 3. Okawa, Fujisawa, Yasutake, Yamamoto, Ogata, Yamada in prep.

( ) 3. Okawa, Fujisawa, Yasutake, Yamamoto, Ogata, Yamada in prep. 6 P PC-Phys, 9//6 OF T W TITI Y YI I T O T. Fujisawa, Okawa, Yamamoto, Yamada, AstoPhys.. 7, 559. Okawa, Fujisawa, Yamamoto, iai, Yasutake, agakua, Yamada, axiv/cs:9.95 3. Okawa, Fujisawa, Yasutake, Yamamoto,

Részletesebben