Fizika és 6. Előadás
|
|
- Dénes Papp
- 6 évvel ezelőtt
- Látták:
Átírás
1 Fzka 5. és 6. Előadás
2 Gejesztett, csllapított oszclláto: dőméés F s λv k F F s m F( t) Fo cos( ωt) v F (t) Mozgásegyenlet: F f o o m ma kx λ v + Fo cos( ωt) Megoldás: x( t) Acos ( ) ( ) β ωt ϕ + ae t sn ω β t + α o
3 Tenge navgácó Konométe angol font John Hason A legendás Bounty vtolás 787-es útján Afkát, Ausztálát, Új-Zélandot délől megkeülve túlvtolázott Taht szélességén, majd északnyugata ckálva ét célba. (Wkpeda) Konométe
4 Kíséletek!!!
5 Impulzus (eőlökés) Impulzus: p Newton. töv.: mv F ma dv m dt Az mpulzus megváltozása (eőlökés): (tömegpont mpulzusa) d dt F ( mv ) dp dt dp dt p p( t) p( t) t t F( t) dt Ha F 0 p 0 azaz p const.
6 Pontendsze: m z m Tömegközéppont: tkp m m Tömegközéppont sebessége: x 3 y v tkp d tkp dt m & m m v m m 3 Tömegközéppont gyosulása: a tkp dv tkp dt m& m m a m
7 Tömegközéppont (súlypont?): példák I. TKP???
8 Tömegközéppont (súlypont?): példák II.
9 Pontendsze - dnamka: k F külső eők: k F és k F m F F k F k k I. + II. F + F + F + F m a + m a Láttuk: a tkp k F e dv tkp dt 0 m& m m a m m k I. F + F ma II. F + F m a F k e k F k e m m a a tkp Ma tkp
10 Pontendszeek: F k e m a tkp Ma tkp
11 Pontendsze mpulzusa: k F m F F k Láttuk: F k k I. + II. F + F + F + F m a + m a Fe k Ha m dv dt k F e dv dt 0 dp dt dp dt d dt m F ( p + ) + m + p k Fe 0 psyst. const. k e m F k e F a m a k e tkp Ma dp dt tkp syst. Ez az mpulzus-megmaadás tövénye.
12 Rakéta-mozgás: (akéta-hajtás) F k 0 m v Imp. megm. v u dm m dm v + dv mv ( m dm)( v + dv) + dm( v u) mv mv + mdv vdm dmdv + vdm udm udm mdv ntegálás u dm m dv u m dm v m v m dv (dm < 0!!!) u ln M m v v
13
14 Tökéletesen ugalmatlan ütközés: m v m v + m v ( m + m )v v m v m + m Enegaveszteség: E k mv + mv ( m + m ) v
15 Ballsztkus nga: Impulzus-megmaadás: l mv o ( m + M )v h Ütközés után: m M v ( + ) ( m + M )gh h l( cosθ) ( m + M ) v ( m + M ) gl( cosθ)
16 Tökéletesen ugalmatlan ütközés D-ben autók ütközése m v + mv ( m + m )v p p p f p p f p
17 Tökéletesen ugalmas ütközés: m v m v m v I. m v + m v m v + m v II. m m v + mv mv + mv v
18 Példa: v 0, m m m v f ϕ v f v ϕ 90
19 Rugalmas ütközés D-ban:
20 Stess eleve
21 Ütközés D-ban: Impulzus-megmaadás: Példa: x: y: Ha az ütközés ugalmas:
22 Bolygómozgás: L Centáls eő(k): F F F F és F F Fg F( ) M F 0 L áll. mv áll. F F g e m v ( + v ) m( v + v ) m( v ) áll. t t t ds v t dt v v v t df ds v dt df dt t v t df dt áll.
23 Keple tövények: (Tycho de Bahe méése alapján). A bolygók ellpszspályán kengenek a Nap köül és a Nap az ellpszs egyk fókuszpontjában van.. A Naptól a bolygóhoz húzott sugá egyenlő dők alatt egyenlő teületeket súol. T 3 a 3. áll. Ahol a az ellpszs nagytengelyének a fele és T a kengés dő (peódus dő) (Keple: a a bolygó Naptól mét középtávolsága)
24 Lehetséges bolygópályák a + ε cosϕ ϕ Enegavszonyok: ellpszs, kö: E < 0 paabola : E 0 hpebola : E > 0 Bolygó enegája: E mv G Mm
25 Bolygó enegája: E v mv e & G Mm + ( ϕ& ) e ϕ L m vt L m Síkbel polákood.: ( ) ϕ& E m& + m( & ϕ) G Mm m& + L m G Mm U ()
26 Egy egyszeű példa A Föld pályája csaknem egy "tökéletes" kö. (A Föld pályájának ellpszctása kcs. a b) F g G Mm F g F cp m G Mm mv M F g T π v v G π GM M 3/ π GM Azaz: T 3 4π GM
27 U () R
28 Stabltás? Kúpnga: D oszclláto: U Bolygómozgás: < < mn max
29 Mozgásegyenletek: Inecaendsze Gyosuló koodnáta endsze Newton tövények? Mozgásegyenlet Mozgásegyenlet Mozgástövény Mozgástövény
30 Mozgás gyosuló koodnátaendszeben. példa A felfüggesztett test súlya a kötélben ébedő T kényszeeővel egyenlő
31 K y Mozgás gyosuló koodnátaendszeben. példa K' y' a o F - ma o x F x' Eő a K-ban: F F e F Eő a K -ben: F + F ma - m ma net a o a a - K a o mg T ma Θ a - ma mg T Θ a Külső megfgyelő Belső megfgyelő
32 Mozgás gyosuló koodnátaendszeben y K' y' (t) (t) + K' (t) K (t) K (t) (t) a o x x' d dt a(t) - a 0 a'(t) a(t) a'(t) + a 0 ma(t) - ma 0 ma'(t) F e F e + F t F e F e F m t a 0
33 Magyaázat a fellépő eőke egy külső megfgyelő szent: Mozgás fogó koodnátaendszeben. ω a cp F cp F m cp a cp
34 Magyaázat a fellépő eőke egy belső megfgyelő szent: Mozgás fogó koodnátaendszeben. ω a cf F cf F m cf a cf
35 Centfugáls és centpetáls gyosulás vektoáls alakban ω v ω ω v ω ω a cp [ ] a cp v cf a ω [ ω ] a cf
36 Mozgás fogó koodnátaendszeben 3. ω R s v o v o R t ( ) t a v R v v R R t R R s c o o o Θ ω ω ω Cools gyosulás: a c Vektoáls alakban: ω v a c ) ( ω m v ma F c c
37 A Cools eő következménye.
38 + apály és dagály A Cools eő következménye.
39 A Cools eő következménye 3. É ω ω ω ϕ ϕ ω ω egyenlítő ω snϕ ω cosϕ
40 Összegezve az eddgeket: (gyosulás és fogómozgás s) K y K' y' (t) K (t) (t) a o x x' K-ban: F e ma K -ben: ma' F ma mω ( ω ') + m( v ω) m( & ω o ')
41 Centfugáls eő: F cf
42 Centfugáls eő: Ensten:
43 Centfugáls eő: Mozgás leíása a belső megfgyelő szent:? A golyó kömozgást végez K -ben A golyó nyugalomban van K-ban ω v F Co. mv ω F F Fe Fcf + FCo. Co. cf F v F cf m mω F Co. mvω mω e F cf ma mω ω cf F [ ] v e FCo. Fcf m mω
44 Centfugáls eő: A külső megfgyelő szent: F cp F cp F e mg + N v N mg m R N mg R És a belső megfgyelő szent?
45 Súlytalanság:
46 Cools eő: Gyocompass
47 Cools eő: tg (α) a g H O a g α a A folyó az észak féltekén dél ányba folyk a Co. g
48 Cools eő: Észak felé, v sebességgel haladó vasút szeelvény F Co. Megoldás: "síncsszolás" N mg N
49 Statka és ugalmasság
50 K K mg K K mg Az egyensúly feltétele: mg + K + K F e 0 0
51 Az egyensúly feltétele: F e 0 F + F 0???
52 STATIKA Az egyensúly feltétele I. Fe ma ha Fe 0 a 0 II. Me Θβ ha Me 0 β 0 Egyensúly feltétele: I. Fe 0 II. Me 0
53 Példa: fogáspont M e 0 m g d d m g M + M 0 m gd mgd 0
54 Eőka: I. F net 0 II. τnet 0 τnet Fd τ τ d F d F τ + + F Fd d F fogáspont fogáspont x F d F M?
55 Def.: sűűség ρ tömeg téfogat m V kg 3 m
56 g m N v... m m... m m tkp Tömegközéppont: Eedő fogatónyomaték:... g m g m e + + M ( ) ( ) M g... m m g cm e + + M
57 Rugalmasság: A (keesztmetszet) F l o l Stess Az anyag válasza l F A l -l l o o F stess Young modulus stan F A Y l l o Y
58 ??
59 Nyíás (shea) modulus:
60 Téfogat modulus:
61 Összeogyás (bucklng): A fák maxmáls magassága: Magastáta A fák az égg nőnek.
62 Szél nyomás
Merev testek kinematikája
Mechanka BL0E- 3. előadás 00. októbe 5. Meev testek knematkáa Egy pontendszet meev testnek tekntünk, ha bámely két pontának távolsága állandó. (f6, Eule) A meev test tetszőleges mozgása leíható elem tanszlácók
RészletesebbenFizika és 3. Előadás
Fizika. és 3. Előadás Az anyagi pont dinamikája Kinematika: a mozgás leíásaa kezdeti feltételek(kezdőpont és kezdősebesség) és a gyosulás ismeetében, de vajon mi az oka a mozgásnak?? Megfigyelés kísélet???
RészletesebbenKinematikai alapfogalmak
Kineatikai alapfogalak a ozgások leíásáal foglalkozik töegpont, onatkoztatási endsze, pálya, pályagöbe, elozdulás ekto a sebesség, a gyosulás Egyenes Vonalú Egyenletes Mozgás áll. 35 3 5 5 5 4 a s [] 5
Részletesebben0. Matematika és mértékegységek
. Matematka és métékegységek Defnált fogalom Meghatáozás Kö keülete, teülete K = π [m], = π [m ] églalap keülete, teülete K = (a+b) [m], = ab [m ] Deékszögű háomszög keülete, teülete K = a+b+c [m], = ab
RészletesebbenRugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai
Rugalmas hullámok tejedése. A hullámegyenlet és speciális megoldásai Milyen hullámok alakulhatnak ki ugalmas közegben? Gázokban és folyadékokban csak longitudinális hullámok tejedhetnek. Szilád közegben
RészletesebbenMerev testek kinematikája
Merev testek kinematikája Egy pontrendszert merev testnek tekintünk, ha bármely két pontjának távolsága állandó. (f=6, Euler) A merev test tetszőleges mozgása leírható elemi transzlációk és elemi rotációk
RészletesebbenAz elméleti mechanika alapjai
Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.
RészletesebbenKÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS
RészletesebbenMozgás centrális erőtérben
Mozgás centális eőtében 1. A centális eő Válasszunk egy olyan potenciális enegia függvényt, amely csak az oigótól való távolságtól függ: V = V(). A tömegponta ható eő a potenciális enegiája gaiensének
Részletesebben1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel
1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora
Részletesebben1. Feladatok a dinamika tárgyköréből
1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű
Részletesebben1. Feladatok merev testek fizikájának tárgyköréből
1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló
RészletesebbenAz inga mozgásának matematikai modellezése
Az inga mozgásának matematikai modellezése Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Természet és Matematika Szeged, SZTE L. Csizmadia (Szeged) Őszi Kulturális Fesztivál, 2011. 2011.10.08.
RészletesebbenMECHANIKA 1. félév 2006
MECHANIKA. félév 006 Munka-,, tűz-,, polgá-,, vagyonvédelm oktatás t a t a l o m j e gy z é k Bevezetés a fzka tágya, helye a tem.tudományok köében, a fzka megsmeés folyamata és módszee, a fzka mennységek
RészletesebbenHatvani István fizikaverseny forduló megoldások. 1. kategória
. kategória.... Téli időben az állóvizekben a +4 -os vízréteg helyezkedik el a legmélyebben. I. év = 3,536 0 6 s I 3. nyolcad tonna fél kg negyed dkg = 5 55 g H 4. Az ezüst sűrűsége 0,5 g/cm 3, azaz m
RészletesebbenIrányításelmélet és technika I.
Irányításelmélet és technika I. Mechanikai rendszerek dinamikus leírása Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010
RészletesebbenMechanika, dinamika. p = m = F t vagy. m t
Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.
RészletesebbenRezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele
Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:
RészletesebbenLendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.
Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg
Részletesebben1 2. Az anyagi pont kinematikája
1. Az anyagi pont kinematikája 1. Ha egy P anyagi pont egyenes vonalú mozgását az x = 1t +t) egyenlet írja le x a megtett út hossza m-ben), határozzuk meg a pont sebességét és gyorsulását az indulás utáni
RészletesebbenKéplet levezetése :F=m a = m Δv/Δt = ΔI/Δt
Lendület, lendületmegmaradás Ugyanakkora sebességgel mozgó test, tárgy nagyobb erőhatást fejt ki ütközéskor, és csak nagyobb erővel fékezhető, ha nagyobb a tömege. A tömeg és a sebesség együtt jellemezheti
RészletesebbenAnyagmozgatás és gépei. 3. témakör. Egyetemi szintű gépészmérnöki szak. MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék.
Anyagmozgatás és gépei tantárgy 3. témakör Egyetemi szintű gépészmérnöki szak 3-4. II. félé MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék - 1 - Graitációs szállítás Jellemzője: hajtóerő nélküli,
Részletesebbenα v e φ e r Név: Pontszám: Számítási Módszerek a Fizikában ZH 1
Név: Pontsám: Sámítási Módseek a Fiikában ZH 1 1. Feladat 2 pont A éjsakai pillangók a Hold fénye alapján tájékoódnak: úgy epülnek, ogy a Holdat állandó sög alatt lássák! A lepkétől a Hold felé mutató
RészletesebbenFizika és 14. Előadás
Fizika 11 13. és 14. Előadás Kapacitás C Q V fesz. méő Métékegység: F C, faad V Jelölés: Síkkondenzáto I. Láttuk, hogy nagy egyenletesen töltött sík tee: E σ ε o E ε σ o Síkkondenzáto II. E σ ε o σ Q A
RészletesebbenDinamika. p = mυ = F t vagy. = t
Dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség. Klasszikus
RészletesebbenA Hamilton-Jacobi-egyenlet
A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P
RészletesebbenA LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő, a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő
RészletesebbenDr. Beszeda Imre 2008
D. Beszeda Ime 008 t a t a l o m j e gy z é k a fizika tágya, helye a tem.tudományok köében, a fizikai megismeés folyamata és módszeei, a fizikai mennyiségek jellege, métékendszeek, alapmennyiségek mechanika
RészletesebbenA LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő, a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő
RészletesebbenAz EM tér energiája és impulzusa kovariáns alakban. P t
LDIN 4- A té enegá és mpls ováns lbn β ε δ β BBβ β μ (, β,,) μ B ( g) P t t ( ε ) S A negtív előelne töténelm o vnn S μ B g S ε B ε μ B ésesé nnsene elen tében P ε g t S t Cs eletomágneses teet ttlm 4-es
RészletesebbenHatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3
Hatvani István fizikaverseny 016-17. 1. kategória 1..1.a) Két eltérő méretű golyó - azonos magasságból - ugyanakkora végsebességgel ér a talajra. Mert a földfelszín közelében minden szabadon eső test ugyanúgy
RészletesebbenEgy mozgástani feladat
1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.
RészletesebbenPÉLDÁK ERŐTÖRVÉNYEKRE
PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,
RészletesebbenA csoport. Statika ZH feladat. Határozza meg az erőrendszer nyomatékát a F pontra! a = 3 m b = 4 m c = 4 m
Stata ZH-1. 215. 1. 14. A csoport 1. feladat Határozza meg az erőrendszer nyomatéát a F pontra! a = 3 m b = 4 m c = 4 m F 1 = 5 N F 2 = 1 N M = 5 Nm M = + 4 + 3 4 F 1 = 2 = + 12 16 + 9 + 16 3 + 4 F 2 =
RészletesebbenGyakorló feladatok Tömegpont kinematikája
Gyakorló feladatok Tömegpont kinematikája 2.3.1. Feladat Egy részecske helyzetének időfüggését az x ( t) = 3t 3 [m], t[s] pályagörbe írja le, amint a = indulva a pozitív x -tengely mentén mozog. Határozza
RészletesebbenMérnöki alapok 10. előadás
Mérnöki alapok 10. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334.
RészletesebbenMechanika I-II. Példatár
Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását
RészletesebbenA nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p
Jedlik 9-10. o. reg feladat és megoldás 1) Egy 5 m hosszú libikókán hintázik Évi és Peti. A gyerekek tömege 30 kg és 50 kg. Egyikük a hinta végére ült. Milyen messze ült a másik gyerek a forgástengelytől,
RészletesebbenMérnöki alapok 2. előadás
Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
RészletesebbenDINAMIKA ALAPJAI. Tömeg és az erő
DINAMIKA ALAPJAI Tömeg és az erő NEWTON ÉS A TEHETETLENSÉG Tehetetlenség: A testek maguktól nem képesek megváltoztatni a mozgásállapotukat Newton I. törvénye (tehetetlenség törvénye): Minden test nyugalomban
RészletesebbenFelvételi, 2017 július -Alapképzés, fizika vizsga-
Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2017 július -Alapképzés, fizika vizsga- Minden tétel kötelező. Hivatalból 10 pont jár. Munkaidő 3 óra. I. Az alábbi kérdésekre adott
RészletesebbenFIZIKA II. Dr. Rácz Ervin. egyetemi docens
FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés
RészletesebbenLejtn guruló golyó nemlineáris irányítása
Lejtn guuló golyó nemlneás ányítása. A gyakolat célja Lyapunov technkákon alapuló szaályozótevezés mószeek elsajátítása, alkalmazása a lejt-golyó enszee. A nemlneás szaályozás ensze vzsgálata szmulácókkal.
RészletesebbenFizika alapok vegyészeknek Mechanika II.: periodikus mozgások november 10.
Fizika alapok vegyészeknek Mechanika II.: periodikus mozgások Surján Péter 2018. november 10. 2 Tartalomjegyzék 1. Körmozgás 5 1.1. Az egyenletes körmozgás leírása.................. 5 1.2. A centripetális
RészletesebbenBevezetés az elméleti zikába
Bevezetés az elméleti zikába egyetemi jegyzet Merev test mozgása Lázár Zsolt, Lázár József Babe³Bolyai Tudományegyetem Fizika Kar 011 TARTALOMJEGYZÉK 0.1. Alapfogalmak,jelölések............................
RészletesebbenMéréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1
Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása
RészletesebbenTehetetlenségi nyomaték, impulzusmomentum-tétel, -megmaradás
Tehetetlenségi nyomaték, impulzusmomentum-tétel, -megmaradás Tehetetlenségi nyomaték számítása pontrendszerre: Θ = Σ m i l i, ahol l i az m i tömegű test távolsága a forgástengelytől, kiterjedt testre:
Részletesebbenu u IR n n = 2 3 t 0 <t T
IR n n =2 3 u() u u u u IR n n = 2 3 ξ A 0 A 0 0 0 < T F IR n F A 0 A 0 A 0 A 0 F :IR n IR n A = F A 0 A 0 A 0 0 0 A F A 0 A F (, y) =0 a = T>0 b A 0 T 1 2 A IR n A A A F A 0 A 0 ξ A 0 = F (ξ) ε>0 δ ε
RészletesebbenFizika 1 Mechanika órai feladatok megoldása 10. hét
Fizika 1 Mechanika órai feladatok megoldása 10. hét Tehetetlenségi nyomaték m tömegű, a forgástengelytől l távolságra lévő tömegpont tehetetlenségi nyomatéka a rögzített tengelyre vonatkoztatva: Θ = m
RészletesebbenA LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő
Részletesebben= 450 kg. b) A hó 4500 N erővel nyomja a tetőt. c) A víz tömege m víz = m = 450 kg, V víz = 450 dm 3 = 0,45 m 3. = 0,009 m = 9 mm = 1 14
. kategória... Adatok: h = 5 cm = 0,5 m, A = 50 m, ρ = 60 kg m 3 a) kg A hó tömege m = ρ V = ρ A h m = 0,5 m 50 m 60 3 = 450 kg. b) A hó 4500 N erővel nyomja a tetőt. c) A víz tömege m víz = m = 450 kg,
Részletesebbenrnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika
Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó
RészletesebbenDINAMIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2004/2005 tavaszi félév)
DINAMIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2004/2005 tavaszi félév) Dinamika Pontszám 1. A mechanikai mozgás fogalma (1) 2. Az anyagi pont pályája (1) 3. A mozgástörvény
Részletesebben28. Nagy László Fizikaverseny Szalézi Szent Ferenc Gimnázium, Kazincbarcika február 28. március osztály
1. feladat a) A négyzet alakú vetítővászon egy oldalának hossza 1,2 m. Ahhoz, hogy a legnagyobb nagyításban is ráférjen a diafilm-kocka képe a vászonra, és teljes egészében látható legyen, ahhoz a 36 milliméteres
RészletesebbenÉgi mechanika tesztkérdések. A hallgatók javaslatai 2008
Égi mechanika tesztkérdések A hallgatók javaslatai 2008 1 1 Albert hajnalka 1. A tömegközéppont körüli mozgást leíró m 1 s1 = k 2 m 1m 2 r,m s r 2 r 2 2 = k 2 m 1m 2 r r 2 r mozgásegyenletek ekvivalensek
Részletesebben7. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL
7. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL Számos technológiai folyamat, kémiai reakció színtere gáz, vagy folyékony közeg (fluid közeg). Gondoljunk csak a fémek előállításakor
Részletesebbenv i = v i V. (1) m i m i (v i V) = i P = i m i V = m i v i i A V = P M
Mképpen függ egy pontrendszer mpulzusa a vonatkoztatás rendszertől? K-ban legyenek a részecskék sebessége v. K -ben mely K-hoz képest V sebességgel halad v = v V. (1) P = m v = m (v V) = m v m V = = P
RészletesebbenMechanikai rezgések Ismétlő kérdések és feladatok Kérdések
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen
RészletesebbenDifferenciálegyenletek a mindennapokban
Differenciálegyenletek a mindennapokban Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Kutatók éjszakája Szeged, SZTE L. Csizmadia (Szeged) Kutatók éjszakája 2011. 2011.09.23. 1 / 15 Pénz, pénz,
RészletesebbenAtomfizika előadás 2. Elektromosság elemi egysége szeptember 17.
Atomfizika előadás. Elektromosság elemi egysége 014. szeptember 17. Az elektrolízis Faraday-törvényei mkit Nm/A(k/A)It k/a 1--szer egy adott érték (egység létezése) minden egy vegyértékű elem 1 moljának
RészletesebbenOktatási Hivatal FIZIKA. I. kategória. A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny 2. forduló. Javítási-értékelési útmutató
Oktatási Hivatal A 017/018. tanévi Országos Középiskolai Tanulmányi Verseny. forduló FIZIKA I. kategória Javítási-értékelési útmutató A versenyz k gyelmét felhívjuk arra, hogy áttekinthet en és olvashatóan
RészletesebbenGeometriai vagy kinematikai természetű feltételek: kötések vagy. kényszerek. 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső
Kényszerek Geometriai vagy kinematikai természetű feltételek: kötések vagy kényszerek. Példák: 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső felületén mozog. Kényszerek Geometriai vagy
RészletesebbenMakromolekulák fizikája
Makomoekuák fizikája Bevezetés Az egyedi ánc moekuaméet, áncmode a konfomációt befoyásoó tényezők eoszások Poime odatok köcsönhatások eegyedés fázisegyensúy Moekuatömeg meghatáozás fagyáspontcsökkenés
RészletesebbenDifferenciálegyenletek
DE 1 Ebben a részben I legyen mindig pozitív hosszúságú intervallum DE Definíció: differenciálegyenlet Ha D n+1 nyílt halmaz, f:d folytonos függvény, akkor az y (n) (x) f ( x, y(x), y'(x),..., y (n-1)
RészletesebbenFizika és 8. Előadás
Fizika 11 7. és 8. Előadás Még egy kis rezgés Körmozgás rezgőmozgás analógia! v r a r cp vx ax x x( t) = R sinϕ = Asin( ωt) v( t) = v cosϕ = Rω cos( ωt) = Aω cos( ωt) + kezdeti feltételek!!! a x ( t) =
RészletesebbenFizika Előadás
Fizika 11 1. Előadás Fonos-e egy manage-nek fiziká anulnia????? Mié fonos egy manage-nek fiziká anulnia??? Az euo/usd keeszáfolyam göbéje. A legnagyobb őzsdei guuk sem udják megállapíani, melyik az öpeces,
Részletesebbenrnök k informatikusoknak 1. FBNxE-1
izika ménm nök k infomatikusoknak 1. BNxE-1 Mechanika 6. előadás D. Geetovszky Zsolt 2010. októbe 13. Ismétl tlés Ütközések tágyalása Egymáshoz képest mozgó vonatkoztatási endszeek egymáshoz képest EVEM-t
RészletesebbenSzakács Jenő Megyei Fizika Verseny, I. forduló, 2003/2004. Megoldások 1/9., t L = 9,86 s. = 104,46 m.
Szakác enő Megyei Fizika Vereny, I. forduló, 00/004. Megoldáok /9. 00, v O 4,9 k/h 4,9, t L 9,86.,6 a)?, b)?, t t L t O a) A futók t L 9,86 ideig futnak, így fennáll: + t L v O. Az adott előny: 4,9 t L
RészletesebbenHangfrekvenciás mechanikai rezgések vizsgálata
Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk
RészletesebbenGépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú
RészletesebbenΨ - 1/v 2 2 Ψ/ t 2 = 0
ELTE II. Fizikus 005/006 I. félév KISÉRLETI FIZIKA Optika 7. (X. 4) Interferencia I. Ψ (r,t) = Φ (r,t)e iωt = A(r) e ikl(r) e iωt hullámfüggvény (E, B, E, B,...) Ψ - /v Ψ/ t = 0 ω /v = k ; ω /c = k o ;
RészletesebbenOktatási Hivatal FIZIKA. I. kategória. A 2018/2019. tanévi Országos Középiskolai Tanulmányi Verseny els forduló. Javítási-értékelési útmutató
Oktatási Hivatal A 2018/2019. tanévi Országos Középiskolai Tanulmányi Verseny els forduló FIZIKA I. kategória Javítási-értékelési útmutató A versenyz k gyelmét felhívjuk arra, hogy áttekinthet en és olvashatóan
RészletesebbenCsuklós mechanizmus tervezése és analízise
Csuklós mechanizmus tervezése és analízise Burmeister Dániel 1. Feladatkitűzés Megtervezendő egy többláncú csuklós mechanizmus, melynek ABCD láncában található hajtórúd (2-es tag) mozgása során három előírt
RészletesebbenFizika I minimumkérdések:
Fizika I minimumkérdések: 1. Elmozdulás: r 1, = r r 1. Sebesség: v = dr 3. Gyorsulás: a = dv 4. Sebesség a gyorsulás és kezdei sebesség ismereében: v ( 1 ) = 1 a () + v ( 0 0 ) 5. Helyvekor a sebesség
Részletesebben(4) Adja meg a kontinuum definícióját! Olyan szilárd test, amelynek tömegeloszlása és mechanikai viselkedése folytonos függvényekkel leírható.
SZÉCHENYI ISTVÁN EGYETEM MECHANIKA - REZGÉSTAN ALKALMAZOTT MECHANIKA TANSZÉK Eméet édése és váaszo eyetem aapépzésben (BS épzésben) észtvevő ménöhaató számáa () Adja me az anya pont defníóját! defníó:
Részletesebben(Gauss-törvény), ebből következik, hogy ρössz = ɛ 0 div E (Gauss-Osztrogradszkij-tételből) r 3. (d 2 + ρ 2 ) 3/2
. Elektosztatika. Alapképletek (a) E a = össz (Gauss-tövény), ebből következik, hogy ρössz = ɛ 0 iv E (Gauss-Osztogaszkij-tételből) ɛ 0 (b) D = ɛ 0 E + P, P = p V, ez spec. esetben P = χɛ 0E. Tehát D =
RészletesebbenREZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK EZGÉSTAN GYAKOLAT Kidolozta: Dr. Na Zoltán eetemi adjunktus 5. feladat: Szabad csillapított rezőrendszer A c k ϕ c m k () q= q t m rúd c k Adott:
RészletesebbenGépészmérnöki alapszak Mérnöki fizika ZH NÉV: október 18. Neptun kód:...
1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika ZH NÉV:.. 2018. október 18. Neptun kód:... g=10 m/s 2 Előadó: Márkus/Varga Az eredményeket a bekeretezett részbe be kell írni! 1. Egy m=3
RészletesebbenA Coulomb-törvény : 4πε. ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) elektromos térerősség : ponttöltés tere : ( r)
Villamosságtan A Coulomb-tövény : F 1 = 1 Q1Q 4π ahol, [ Q ] = coulomb = 1C = a vákuum pemittivitása (dielektomos álladója) 1 4π 9 { k} = = 9 1 elektomos téeősség : E ponttöltés tee : ( ) F E = Q = 1 Q
Részletesebben4. Lineáris csillapítatlan szabad rezgés. Lineáris csillapított szabad rezgés. Gyenge csillapítás. Ger-jesztett rezgés. Amplitúdó rezonancia.
4 Lneárs csllapíalan szabad rezgés Lneárs csllapío szabad rezgés Gyenge csllapíás Ger-jesze rezgés Aplúdó rezonanca Lneárs csllapíalan szabad rezgés: Téelezzük fel hogy a öegponra a kvázelaszkus vagy közel
RészletesebbenMODELLEZÉS - SZIMULÁCIÓ
Mechatronika = Mechanikai elemek+ elektromechanikai átalakítók+ villamos rendszerek+ számítógép elemek integrációja Eszközök, rendszerek, gépek és szerkezetek felügyeletére, vezérlésére (manapság miniatürizált)
RészletesebbenKinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek
Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből
RészletesebbenSíkbeli polárkoordináta-rendszerben a test helyvektora, sebessége és gyorsulása általános esetben: r = r er
Fizika Mechanika óai felaatok megolása 5. hét Síkbeli polákooináta-enszeben a test helyvektoa, sebessége és gyosulása általános esetben: = e Ha a test köpályán mozog, akko = konst., tehát sebessége : éintő
Részletesebben(1) Definiálja a mechanizmus fogalmát! Mechanizmuson gépek, berendezések mechanikai elven működő részeinek együttesét értjük.
ZÉCHENYI ITVÁN EGYETEM MECHANIZMUOK ALKALMAZOTT MECHANIKA TANZÉK Elméleti kédések és válaszok egyetemi alapképzésbe (Bc képzésbe) észtvevő méökhallgatók számáa () Defiiálja a mechaizmus fogalmát! Mechaizmuso
RészletesebbenNewton törvények, lendület, sűrűség
Newton törvények, lendület, sűrűség Newton I. törvénye: Minden tárgy megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja
RészletesebbenModern fizika és alkalmazásai
Moden fizika és alkalmazásai.előadás Fizika Tsz. h előadás http://fizipedia.bme.hu/inde.php/moden_fizika_ és_alkalmazásai Miét éppen fizika? Fizikai kutatások Alkalmazások Számítógépes hálózat Intenet
RészletesebbenSzent István Egyetem Fizika és folyamatirányítási Tanszék FIZIKA. rezgések egydimenziós hullám hangok fizikája. Dr. Seres István
Szent István Egyetem Fizika és folyamatirányítási Tanszék rezgések egydimenziós hullám hangok fizikája Dr. Seres István Harmonikus rezgőmozgás ( sin(ct) ) ( c cos(ct) ) c sin(ct) ( cos(ct) ) ( c sin(ct)
RészletesebbenLássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben
Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma
Részletesebben1687: Newton, Principiamathematica
1687: Newton, Principiamathematica Ismétlés 0. Statika súly -> erő: erők felbontása, összeadása merev test: -> erőrendszer redukciója erőcsavarra nyugalom feltételei, súlypont 1. Kinematika Pillanatnyi
RészletesebbenPeriódikus mozgás, körmozgás, bolygók mozgása, Newton törvények
Periódikus mozgás, körmozgás, bolygók mozgása, Newton törvények Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periódikus mozgásnak nevezzük. Pl. ingaóra ingája, rugó
RészletesebbenBolygómozgás. Számítógépes szimulációk fn1n4i11/1. Csabai István, Stéger József
Bolygómozgás Számítógépes szimulációk fn1n4i11/1 Csabai István, Stéger József ELTE Komplex Rendszerek Fizikája Tanszék Email: csabai@complex.elte.hu, steger@complex.elte.hu Bevezetés Egy Nap körül kering
RészletesebbenEgy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá.
Egy szép és jó ábr csodákr képes Az lábbi. ábrát [ ] - ben tláltuk; tlán már máskor is hivtkoztunk rá.. ábr Az különlegessége, hogy vlki nem volt rest megcsinál(tt)ni, még h sok is volt vele munk. Ennek
RészletesebbenA mechanika alapjai. A pontszerű testek dinamikája
A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v 0.6 1 / 26 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26 Bevezetés alapi Bevezetés Newton
Részletesebben17. tétel A kör és részei, kör és egyenes kölcsönös helyzete (elemi geometriai tárgyalásban). Kerületi szög, középponti szög, látószög.
17. tétel kö és észei, kö és egyenes kölcsönös helyzete (elemi geometiai tágyalásban). Keületi szög, középponti szög, látószög. Def: Kö: egy adott ponttól egyenlő távolsága levő pontok halmaza a síkon.
RészletesebbenSzilárd testek rugalmas alakváltozásai Nyú y j ú tás y j Hooke törvény, Hooke törvén E E o Y un un modulus a f eszültség ffeszültség
Kontinuumok mechanikája Szabó Gábor egyetemi tanár SZTE Optikai Tanszék Szilárd testek rugalmas alakváltozásai Nyújtás l l = l E F A Hooke törvény, E Young modulus σ = F A σ a feszültség l l l = σ E Szilárd
RészletesebbenElektromágnesség 1.versenyfeladatsor Varga Bonbien, VABPACT.ELTE
. Feladat: Elektromágnesség.versenyfeladatsor Varga Bonbien, VABPACT.ELTE Akkor alakulhat ki egyenletes körmozgás, hogyha egy állandó nagyságú erő hat a q töltésre, és ez az erő biztosítja a körmozgáshoz
RészletesebbenOptika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)
Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok
RészletesebbenFogaskerekek III. Általános fogazat
Fogskeekek III. Áltlános fogt Elei, kopenált fogtok esetén: vlint: ostóköök gödülőköökkel egybeesnek áltlános fogt főbb jelleői: A tengelytáv: -ól -enő, A kpcsolósög α-ólα -e nő, A ostókö dés gödülőkö
RészletesebbenU = 24 V I = 4,8 A. Mind a két mellékágban az ellenállás külön-külön 6 Ω, ezért az áramerősség mindkét mellékágban egyenlő, azaz :...
Jedlik Ányos Fizikaverseny regionális forduló Öveges korcsoport 08. A feladatok megoldása során végig századpontossággal kerekített értékekkel számolj! Jó munkát! :). A kapcsolási rajz adatai felhasználásával
RészletesebbenMérnöki alapok 2. előadás
Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Részletesebben